• Keine Ergebnisse gefunden

World Fish Catch in Major Fisheries, 1979-84

II. Space: A Key to Planetary Management

56. Outer space can play a vital role in ensuring the continued habitability of the Earth, largely through space technology to monitor the vital signs of the planet and aid humans in protecting its health. According to the 1967 Outer Space Treaty, outer space, including the moon and other celestial bodies, is not subject to national appropriation by claim of sovereignty, by means of use of occupation, or by any other means. The UN Committee on the Peaceful Uses of Outer Space has been labouring to see that these ideals remain on the agenda. This

Commission, in view of these developments, considers space as a global commons and part of the common heritage of mankind.

57. The future of the space as a resource will depend not so much on technology as on the slow and difficult struggle to create sound international institutions to manage this resource. It will depend most of all upon humanity's ability to prevent an arms race in space.

1. Remote Sensing from Space

Our Common Future, Chapter 10: Managing The Commons - A/... http://www.un-documents.net/ocf-10.htm

destruction - better data on the Earth's natural systems will be essential.

59. Today several dozen satellites contribute to the accumulation of new knowledge about the Earth's systems: for example, about the spread of volcanic gases, enabling scientists for the first time to describe the specific links between a major natural disturbance of the upper atmosphere and changes in the weather thousands of miles away./19

60. Satellites also played a key scientific role after the 1986 discovery of a 'hole' in the ozone layer over Antarctica.

When ground-based observers noted this phenomenon, archived satellite data were examined and provided a record of seasonal ozone fluctuation extending back nearly a decade./20 And scientists have been able to follow closely the unfolding of the drought in the Sahel region of Africa in the 1980s. Satellite-generated maps correlating rainfall patterns and biomass have served as a tool in understanding droughts and helped in the targeting of relief aid.

We need a kind of new earth/space monitoring system. I think that it goes farther than simply an earth environmental system. It's a combined earth/space monitoring system, a new agency that would have the resources to be able to monitor, report, and recommend in a very systematic way on the earth/space interaction that is so fundamental to a total ecological view of the biosphere.

Maxwell Cohen University of Ottawa WCED Public Hearing Ottawa, 26-27 May 1986

61. Recently, an international and interdisciplinary group of scientists has proposed a major new initiative - the International Geosphere-Biosphere Programme (IGBP) to be coordinated through ICSU. It would investigate the biosphere using many technologies, including satellites. This proposal seemed in 1987 to be gaining momentum; it was already influencing the budget decisions of several nations on allocations for future satellite launches and is increasing coordination between existing efforts.

62. The primary frustration about this wealth of data is that the information is dispersed among governments arid institutions, rather than being pooled. UNEP's Global Environment Monitoring System is a modest effort to pool space data relevant to the Earth's habitability. It should be strengthened. But most such efforts are underfunded, undercoordinated, and inadequate to the tasks.

63. The primary responsibility for action rests initially with national governments, cooperating to pool, store and exchange data. In time, international efforts might be funded through some direct global revenue source or through contributions from individual nations. (See Chapter 12.)

2. The Geosynchronous Orbit

64. From an economic point of view, the most valuable part of the Earth's orbital space is the geosynchronous orbit, a band of space 36,000 kilometres, above the equator./21 Most communication and many weather satellites - as well as many military orbits - are in geosynchronous orbit. To prevent signals to and from the satellites interfering with one another, satellites must be placed some distance apart, effectively limiting the number that can use this valuable band to 180. Thus, the geosynchronous orbit is not only a valuable but also a scarce and limited global resource.

65. The growth in satellite communication traffic during the 1970s led to many predictions that slots would soon be saturated. Thus conflict emerged over the use and ownership of the geosynchronous orbit, largely between industrial nations that have the capacity to put satellites in this orbit and the equatorial developing nations that do not but that lie beneath this band of space.

66. The first effort to devise a property regime for geosynchronous orbit was the 1976 Bogota Declaration, signed by seven equatorial countries./22 These countries declared that the orbits above them were extensions of their territorial airspace. The Bogota Declaration has been challenged by some nations that see it as contradicting the 'non-appropriation' principle of the Outer Space Treaty. Another group of developing countries proposed a licensing system for the use of geosynchronous orbits./23 Countries would be awarded slots that could then be sold, rented, or reserved for future use.

67. Another way of managing this resource and capturing its rental value for the common interest would be for an international body to own and license the slots to bidders at an auction. Such an alternative would be analogous to the Seabed Authority in the Law of the Sea Convention.

66. Industrial countries have opposed the creation of a property rights regime for geosynchronous orbit, especially a regime that granted rights to slots to countries that cannot now use them. They argue that a regime of prior allocation would drive up costs and reduce the incentive of the private sector to develop and use this orbit. Others, who see a rapidly growing role for satellite communications, argue that regulatory regimes should be established before competition makes such a step more difficult.

69. Since satellite communications involve the use of radio waves, a de facto regime for the parcelling out of slots in geosynchronous orbit has emerged through the activities of the International Telecommunications Union (ITU) in the past several years. The ITU allocates the use of the radio waves (those parts of the electromagnetic spectrum used for communication)./24 The highly technical character of the task of parcelling out radio waves, combined with the fact that strict compliance is necessary to allow any user to enjoy access to this resource, has produced a successful international resource regime, based on three regional conferences, for effective management of the resource./25 Whether this approach will endure depends in large part upon the perceived justice of the decisions

Our Common Future, Chapter 10: Managing The Commons - A/... http://www.un-documents.net/ocf-10.htm

reached by the regional conferences.

3. The Pollution of Orbital Space

70. Debris in orbit is a growing threat to human activities in space. In 1981, a panel of experts convened by the American Institute of Aeronautics and Astronautics concluded that the growth of space debris could pose 'an unacceptable threat' to life in space within a decade./26 This debris consists of spent fuel tanks, rocket shells, satellites that no longer function, and shrapnel from explosions in space: it is concentrated in the region between 160 and 1,760 kilometres above the Earth.

71. With greater care in the design and disposal of satellites, much of it could be avoided. However, the creation of debris is an integral and unavoidable consequence of the testing and use of space weapons. The contribution of military activities to the Earth's 'debris belt' could grow greatly if plans to place large numbers of satellite based weapons and weapons-related sensors are realized.

72. The most important measure to minimize space debris, therefore, is to prevent the further testing and deployment of space based weapons or weapons designed tor use against objects in space.

73. Clean up would be expensive. It has been proposed that the major powers lead an international effort to retrieve the larger pieces of space debris from orbit. Such work would involve the design, construction, and launch of vehicles that could manoeuvre in space and grapple with large, jagged, tumbling space objects. The proposal has elicited little enthusiasm.

4. Nuclear Power in Orbit

74. Many spacecraft are nuclear-powered and threaten contamination if they fall to the Earth./27 There are two basic approaches to the problem: Ban or regulate. The option of banning all radioactive materials from space is the simplest to enact. It would eliminate the problem and would also severely stunt the further development of space-based warfare systems. A total ban should exempt scientific uses in deep-space, as small amounts of fissionable materials have been essential for the powering of deep-space probes. A ban on reactors in space would be easy to monitor, because reactors produce waste heat detectable by infrared sensors at great distances. Verifying the absence of small nuclear power systems would be more difficult, but still possible.

75. A wide variety of methods are available for regulating the use of radioactive materials in space. The most important include limiting the size of reactors permitted in orbit, requiring shielding around radioactive material sufficient to withstand reentry into the Earth's atmosphere, and requiring deep space disposal of spacecraft that contain radioactive material. All are technologically feasible, but would add cost and complexity to missions.

Nevertheless, these measures should be implemented, as a minimum step.

5. Towards a Space Regime

76. Soon after the aeroplane was invented, it became obvious that collisions would occur unless a general air traffic control regime was established. This model offers a useful way to think about the need for and contents of a space regime. The creation of 'rules of the road' for orbital space could ensure that the activities of some do not degrade the resource for all.

Utilization of spacecraft for solving the problems of forestry provides a good example of the peaceful use of space. Taking into account the interests of the present and future generations, there is no other more favourable area of space technology application than environmental protection, to study the natural resources of Earth and control their rational utilization and reproduction. We think that in the forthcoming years international cooperation in this field will be further expanded.

L. E. Mikhailov

USSR State Committee on Forestry WCED Public Hearing

Moscow, 11 Dec 1986

77. Orbital space cannot be effectively managed by any one country acting alone. The inherently international character of orbital space has been recognized by a majority of nations in the Outer Space Treaty. The international community should seek to design and implement a space regime to ensure that space remains a peaceful environment for the benefit of all.

78. An essential step towards efficient management of the space resource is to abandon the notion that because outer space in general is unlimited, orbital space can absorb all human activity. Because of the speeds involved, orbital space is for practical purposes much 'closer' than the atmosphere. A system of space traffic control in which some activities were forbidden and others harmonized cuts a middle path between the extremes of a sole Space Authority and the present near anarchy.

79. The electromagnetic spectrum has been effectively regulated by international agreement, and through this regulation has begun to emerge the beginnings of a space regime for geosynchronous orbital space. An extension

Our Common Future, Chapter 10: Managing The Commons - A/... http://www.un-documents.net/ocf-10.htm

80. A fine balance must be struck between regulating activities too late and regulating non-existent activities too soon. Regulating activities on the Moon, for example, beyond the general principles laid out in the Outer Space Treaty is clearly premature. But regulating space debris and nuclear materials in Earth orbit is clearly overdue.