• Keine Ergebnisse gefunden

B.2 Source Code

Datei: /home/struppi/Dropbox/dropbox…n/Simulation/3d-random-slab.py Seite 1 von 2

#!/usr/bin/env python

#

# Simple 3d random walk through a slab

#

# for time-resolved profile at the exit

# surface

r_norm = (x_neu**2 + y_neu**2 + z_neu**2)**0.5 x_add = (l * x_neu)/r_norm

y_add = (l * y_neu)/r_norm z_add = (l * z_neu)/r_norm p[0] = p[0] + x_add p[1] = p[1] + y_add p[2] = p[2] + z_add p[3] = p[3] + 1 return p

nmbexitparticles = 2000000 # simulates 2'000'000 exiting particles modnmbparticles = 500

# check if more than m steps have been used

# if particlesave[3] > 50:

# exitcondition = 1 if particlesave[2] < 0:

exitcondition = 1 elif particlesave[2] > slabsize:

r = (particlesave[0]**2 + particlesave[1]**2)**0.5

# print "Particle exited on the target surface at: "

# print " x = ", particlesave[0]

if numberofparticles % modnmbparticles == 0:

print numberofparticles, numberofruns

particlelist.append([particlesave[3], particlesave[0], particlesave[1], r]) numberofruns += 1

#if numberofruns % 10000 == 0:

# print numberofruns

listoflimits =[ [0,50], [50,100], [100, 150], [150, 200], [200, 250], [250, 300], [300, 350], [350, 400], [400, 450], [450, 500], [500, 550], [550, 600], [600, 650], [650, 700] ]

Datei: /home/struppi/Dropbox/dropbox…n/Simulation/3d-random-slab.py Seite 2 von 2

if (tmp[0] >= lowertlimit and tmp[0] <= hightlimit):

rlist.append(tmp[3])

title("xy-Graph l = " +str(slabsize) + " for time slize " + str(lowertlimit) + " < t < " + str (hightlimit))

title("Histogram l = " +str(slabsize) + " for time slize " + str(lowertlimit) + " < t < " + str (hightlimit))

savefig("3d-"+str(len(particlelist))+"rhist-"+str(lowertlimit)+"-"+str(hightlimit)+"-"+".png", format="png")

close()

# Plot y-cut

datahist, bins = histogram(ycutlist, range=(-60,60), bins=120)

fitfunc = lambda parm, x: parm[0]*1/(parm[1]*math.sqrt(2*math.pi))*exp(-0.5*x**2/parm[1]**2) errofunc = lambda parm, x, y: fitfunc(parm, x) - y

parm0 = [100, 5]

parm1, success = optimize.leastsq(errofunc, parm0[:], args=(bins[0:len(datahist)], datahist [:]))

figure()

# hist(ycutlist, arange(-60,60,1), 'gr')

plot(bins[0:len(datahist)], datahist, 'b^', bins[0:len(datahist)], fitfunc(parm1, bins[0:len (datahist)]), 'b-')

xlim(-60, 60) ylabel('count') xlabel('x')

title("y-cut l = " +str(slabsize) + " Gauss: sigma = " + str(parm1[1]) + " for time slize " + str(lowertlimit) + " < t < " + str(hightlimit))

savefig("3d-"+str(len(particlelist))+"ycut-"+str(lowertlimit)+"-"+str(hightlimit)+"-"+".png", format="png")

close()

Bibliography

[AALR79] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.

Ramakrishnan. Scaling Theory of Localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 42(10):

673–676, Mar 1979.

[ABG+11] A. Antonello, G. Brusatin, M. Guglielmi, V. Bello, G. Mattei, G. Zacco, and A. Martucci. Nanocomposites of titania and hy-brid matrix with high refractive index. Journal of Nanoparticle Research, 13:1697–1708, 2011. 10.1007/s11051-010-9923-4.

[AM09] C. M. Aegerter and G. Maret. Coherent Backscattering and Anderson Localization of Light. In Emil Wolf, editor, Progress in Optics, volume 52 ofProgress in Optics, pages 1 – 62. Else-vier, 2009.

[And58] P. W. Anderson. Absence of Diffusion in Certain Random Lat-tices. Phys. Rev., 109(5):1492–1505, Mar 1958.

[ASB+07] C. M. Aegerter, M. St¨orzer, W. B¨uhrer, S. Fiebig, and G. Maret. Experimental signatures of Anderson localization of light in three dimensions. J Mod Optic, 54(16–18):2667–2677, 2007.

[ASM06] C. M. Aegerter, M. St¨orzer, and G. Maret. Experimental deter-mination of critical exponents in Anderson localisation of light.

Europhys. Lett., 75:562– 568, 2006.

[AWM86] E. Akkermans, P. E. Wolf, and R. Maynard. Coherent backscat-tering of light by disordered media: Analysis of the peak line shape. Phys. Rev. Lett., 56(14):1471–1474, Apr 1986.

[BBF+08] K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, and P. Sebbah. Coupling and level repulsion in the localized regime:

From isolated to quasiextended modes. Physical Review Let-ters, 101(13):133901, 2008.

[Bec06] W. Becker. The bh TCSCP Handbook. Becker & Hickl GmbH, 2nd edition, 2006.

[BJZ+08] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Cl´ement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect.

Direct observation of Anderson localization of matter waves in a controlled disorder. Nature, 453:891 – 894, 2008.

[BK87] R. Berkovits and M. Kaveh. Backscattering of light near the optical Anderson transition. Phys. Rev. B, 36(17):9322–9325, Dec 1987.

[BK90] R. Berkovitz and M. Kaveh. Propagation of waves through a slab near the Anderson transition: a local scaling approach. J.

Phys. Cond. Matter, 2:307–321, 1990.

[BS96] K. Busch and C. M. Soukoulis. Transport properties of random media: An energy-density CPA approach. Phys. Rev. B, 54:

893–899, Jul 1996.

[CAR07] C. Conti, L. Angelani, and G. Ruocco. Light diffusion and localization in three-dimensional nonlinear disordered media.

Physical Review A (Atomic, Molecular, and Optical Physics), 75(3):033812, 2007.

[CG01] A. A. Chabanov and A. Z. Genack. Photon localization in resonant media. Phys. Rev. Lett., 87:153901, Sep 2001.

[Che09] N. Cherroret. Transport coh´erent en milieu al´eatoire: des corr´elations m´esoscopiques `a la localisation d’Anderson. PhD thesis, Laboratoire de physique et de mod´elisation des milieux condens´es, 10 2009.

[CSvT10] N. Cherroret, S. E. Skipetrov, and B. A. van Tiggelen. Trans-verse confinement of waves in three-dimensional random media.

Phys. Rev. E, 82(5):056603, Nov 2010.

[CZG03] A. A. Chabanov, Z. Q. Zhang, and A. Z. Genack. Breakdown of diffusion in dynamics of extended waves in mesoscopic media.

Phys. Rev. Lett., 90:203903, 2003.

[EAWM04] S. Eiden-Assmann, J. Widoniak, and G. Maret. Synthesis and characterization of porous and nonporous monodisperse col-loidal TiO2 particles. Chemistry of Materials, 16(1):6–11, 2004.

Bibliography

[FAB+08] S. Fiebig, C. M. Aegerter, W. B¨uhrer, M. St¨orzer, E. Akker-mans, G. Montambaux, and G. Maret. Conservation of en-ergy in coherent backscattering of light. Europhys. Lett., 81(6):

64004, 2008.

[FC12] V. Folli and C. Conti. Anderson localization in nonlocal non-linear media. Opt. Lett., 37(3):332–334, Feb 2012.

[Fie10] S. Fiebig. Coherent Backscattering from Multiple Scattering Systems. PhD thesis, Universit¨at Konstanz, 2010.

[FSV+99] J. P. Frank, Schuurmans, Daniel Vanmaekelbergh, Jao van de Lagemaat, and Ad Lagendijk. Strongly photonic macroporous gallium phosphide networks. Science, 284(5411):141–143, 1999.

[Fuj07] Koji Fujita. Private communications, 2007.

[Gar04] J. C. Maxwell Garnett. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society of Lon-don. Series A, Containing Papers of a Mathematical or Physi-cal Character, 203(359-371):385–420, 1904.

[GSF+07] P Gross, M. St¨orzer, S. Fiebig, M. Clausen, G. Maret, and C.M. Aegerter. A precise method to determine the angular distribution of backscattered light to high angles. Rev. Sci.

Instrum., 78:033105, 2007.

[Hama] Hamamatsu. Metal package PMT - photosensor modules H5773/H5783/H6779/H6780 series. Data Sheet.

[Hamb] Hamamatsu. Si PIN photodiode S5971, S5972, S5973 series.

Data Sheet.

[Hic] Becker & Hickl. Datasheet HPM-100-40.

[HSP+08] H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A.

Van Tiggelen. Localization of ultrasound in a three-dimensional elastic network. Nature Physics, 4:945–948, 2008.

[IKNR08] L. Irimpan, B. Krishnan, V.P.N. Nampoori, and P. Radhakr-ishnan. Nonlinear optical characteristics of nanocomposites of ZnO-TiO2-SiO2. Optical Materials, 31(2):361 – 365, 2008.

[IR60] A. F. Ioffe and A. F. Regel. Non-crystalline, amorphous, and liquid electronic semiconductors. Prog. Semicond., 4:237, 1960.

[KMZD11] S. S. Kondov, W. R. McGehee, J. J. Zirbel, and B. DeMarco.

Three-dimensional anderson localization of ultracold matter.

Science, 334(6052):66–68, 2011.

[LAP+08] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N.

Christodoulides, and Y. Silberberg. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices.

Phys. Rev. Lett., 100(1):013906, 2008.

[LM00] R. Lenke and G. Maret. Multiple Scattering of Light: Coherent Backscattering and Transmission. Gordon and Breach Science Publishers, 2000.

[LTM02] R. Lenke, R. Tweer, and G. Maret. Coherent backscattering and localization in a self-attracting random walk model. The European Physical Journal B - Condensed Matter and Complex Systems, 26:235–240, 2002. 10.1140/epjb/e20020085.

[Mie08] G. Mie. Beitr¨age zur Optik tr¨uber Medien, speziell kolloidaler Metall¨osungen. Annalen der Physik, 330(3):377–445, 1908.

[PLC+10] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boc-cara, and S. Gigan. Measuring the transmission matrix in op-tics: An approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104:100601, Mar 2010.

[Ray71] J. W. S. Rayleigh. On the scattering of light by small particles.

Philos. Mag., 41:447, 1871.

[RBV+11] F. Riboli, P. Barthelemy, S. Vignolini, F. Intonti, A. De Rossi, S. Combrie, and D. S. Wiersma. Anderson localization of near-visible light in two dimensions. Opt. Lett., 36(2):127–129, Jan 2011.

[RDF+08] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zac-canti, G. Modugno, M. Modugno, and M. Inguscio. Anderson localization of a non-interacting Bose-Einstein condensate. Na-ture, 453(7197):895–898, June 2008.

[SBAM] T. Sperling, W. B¨uhrer, C.M. Aegerter, and G. Maret. Direct determination of the transition to localization in three dimen-sions. Submitted.

Bibliography

[SBFS07] T. Schwartz, G. Bartal, S. Fishman, and M. Segev. Trans-port and Anderson localization in disordered two-dimensional photonic lattices. Nature, 446:52 – 55, February 2007.

[SDE94] C. M. Soukoulis, S. Datta, and E. N. Economou. Propagation of classical waves in random media. Phys. Rev. B, 49:3800–3810, Feb 1994.

[SGAM06] M. St¨orzer, P. Gross, C. M. Aegeter, and G. Maret. Observation of the critical regime near Anderson localization of light. Phys.

Rev. Lett., 96:063904, 2006.

[SLTM99] F. Scheffold, R. Lenke, R. Tweer, and G. Maret. Localization or classical diffusion of light? Nature (London), 398:207–208, 1999.

[SMVL99] F. J. P. Schuurmans, M. Megens, D. Vanmaekelbergh, and A. Lagendijk. Light scattering near the localization transition in macroporous GaP networks. Phys. Rev. Lett., 83(11):2183–

2186, Sep 1999.

[Spe] T. Sperling. private communications.

[Spe11] T. Sperling. Time dependent transmission of light through highly scattering samples. Master’s thesis, Universit¨at Kon-stanz, Feb 2011.

[St¨o06] M. St¨orzer. Anderson Localization of Light. PhD thesis, Uni-versit¨at Konstanz, 2006.

[SvT06] S. E. Skipetrov and B. A. van Tiggelen. Dynamics of Anderson localization in open 3d media. Physical Review Letters, 96(4):

043902, 2006.

[TIV07] J. Topolancik, B. Ilic, and F. Vollmer. Experimental observa-tion of strong photon localizaobserva-tion in disordered photonic crystal waveguides. Phys. Rev. Lett., 99:253901, Dec 2007.

[Twe02] R. Tweer.Vielfachstreuung von Licht in Systemen dicht gepack-ter Mie-Streuer: Auf dem Weg zur Anderson-Lokalisierung?

PhD thesis, Universit¨at Konstanz, 2002.

[Val98] Valley Scientific. Lightlab: Far-field mie scattering, 1998.

[vdBBJ+12] T. van der Beek, P. Barthelemy, P. M. Johnson, D. S. Wiersma, and A. Lagendijk. Light transport through disordered layers of dense gallium arsenide submicron particles. Phys. Rev. B, 85:

115401, Mar 2012.

[vdMvAL88] M. B. van der Mark, M. P. van Albada, and A. Lagendijk. Light scattering in strongly scattering media: Multiple scattering and weak localization. Phys. Rev. B, 37:3575–3592, Mar 1988.

[VM08] I. M. Vellekoop and A. P. Mosk. Universal optimal transmission of light through disordered materials.Phys. Rev. Lett., 101(12):

120601, Sep 2008.

[vTLW00] B. A. van Tiggelen, A. Lagendijk, and D. S. Wiersma. Reflec-tion and transmission of waves near the localizaReflec-tion threshold.

Phys. Rev. Lett., 84(19):4333–4336, May 2000.

[VW80a] D. Vollhardt and P. W¨olfle. Anderson localization in d≤2 di-mensions: A self-consistent diagrammatic theory. Phys. Rev.

Lett., 45(10):842–846, Sep 1980.

[VW80b] D. Vollhardt and P. W¨olfle. Diagrammatic, self-consistent treatment of the Anderson localization problem in d ≤ 2 di-mensions. Phys. Rev. B, 22(10):4666–4679, Nov 1980.

[WBLR97] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini.

Localization of light in a disordered medium. Nature, 390:671–

673, 1997.

[WG11] J. Wang and A. Z. Genack. Transport through modes in ran-dom media. Nature, 471(7338):345–348, March 2011.

[ZHSG07] S. Zhang, B. Hu, P. Sebbah, and A. Z. Genack. Speckle evo-lution of diffusive and localized waves. Phys. Rev. Lett., 99:

063902, Aug 2007.

[ZLMM97] X. Zhu, Q. Li, N.n Ming, and Z. Meng. Origin of optical non-linearity for PbO, TiO2, K2O, and SiO2 optical glasses. Applied Physics Letters, 71(7):867–869, 1997.

[ZPW91] J. X. Zhu, D. J. Pine, and D. A. Weitz. Internal reflection of diffusive light in random media.Phys. Rev. A, 44(6):3948–3959, Sep 1991.