• Keine Ergebnisse gefunden

8.4 Crystallographic methods

8.4.1 Sitting drop

The sitting drop method[188] was used in 96 well format during screening for initial crystal-lization conditions with commercially available prefilled screens. Therefore, 100µl of each 96 screen solution was pipetted into a 96 well plate using a multi pipette. Afterwards, this 96 well plate was used with a Cartesian roboter, which pipetted 100, 200 and 400 nl of the reservoir condition into the pre- pipetted 200 nl protein drop. The plates were sealed with crystal clear adhesive foil and transferred into a temperated18Ccrystallization closet.

Figure 8.2: Sitting drop vapour diffusion method. Arrow represents transport of water to the reservoir solution containing a higher precipitant concentration (McPherson, 1998[188]).

Figure 8.3: Hanging drop vapour diffusion method. Arrows represent the netto transport of water. (McPherson, 1998[188]).

8.4.3 Hyper quenching

Hyper quenching was tested to improve crystal freezing.[178,179] The idea of hyper quenching is to increase the cooling rate for the crystal after fishing during freezing in liquid nitrogen.

Warkentinet al.[178,179]found that the temperature of the air layer above liquid nitrogen is below 0Cand leads to a slower cooling rate of the fished crystal when dipping the crystal into liquid nitrogen. A very simple design was used to remove the cool air layer above the liquid nitrogen.

The dewar containing liquid nitrogen was filled up to the lip and a dry air stream was blown from the side of the dewar to remove the cool air layer. Crystals were flash frozen by increased dipping speed. Significant differences between freezing with or without hyper quenching could not be detected, however, no decline in the crystal quality could be detected, too.

[4] J. L. Huppert. Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem Soc Rev, 37(7):1375–1384, Jul 2008.

[5] A. Ghosh and M. Bansal. A glossary of DNA structures from A to Z. Acta Cryst. D, 59(Pt 4):620–6, 2003.

[6] R. Wing, H. Drew, T. Takano, C. Broka, S. Tanaka, K. Itakura, and R. E. Dickerson.

Crystal structure analysis of a complete turn of B-DNA. Nature, 287(5784):755–758, Oct 1980.

[7] C. O. Pabo and R. T. Sauer. Protein-DNA recognition. Annu Rev Biochem, 53:293–321, 1984.

[8] S. Arnott, R. Chandrasekaran, D. L. Birdsall, A. G. W. Leslie, and T. L. Ratcliff. Left-handed DNA helices. Nature, 283:743–745, 1980.

[9] J.C. Wang. Helical Repeat of DNA in Solution. Proc. Natl Acad. Sci. USA, 76:200–203, 1979.

[10] R. Chandrasekaran, M. Wang, R.G. He, L.C. Puigjaner, M.A. Byler, R.P. Millane, and S. Arnott. A re-examination of the crystal structure of A-DNA using fiber diffraction data. J. Biomol. Struct. Dyn., 6:1189–1202, 1989.

[11] R. Chandrasekaran and S. Arnott. The structure of B-DNA in oriented fibers. J. Biomol.

Struct. Dyn., 13:1015–1027, 1996.

[12] E.C. Friedberg, G. C. Walker, W. Siede, R. D. Wood, R. A. Schultz, and T. Ellenberger.

DNA Repair And Mutagenesis. ASM Press; 2 edition (November 30, 2005), 2005.

[13] L. A. Loeb and B. D. Preston. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet, 20:201–230, 1986.

[14] O.D. Schaerer. Chemistry and biology of DNA repair.Angew Chem Int Ed Engl., 42(26):

2946–74, 2003.

[15] T. Lindahl. Instability and decay of the primary structure of DNA. Nature, 362(6422):

709–715, Apr 1993.

[16] J. Nakamura, V. E. Walker, P. B. Upton, S. Y. Chiang, Y. W. Kow, and J. A. Swenberg.

Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions. Cancer Res, 58(2):222–225, Jan 1998.

[17] L. A. Frederico, T. A. Kunkel, and B. R. Shaw. A sensitive genetic assay for the detec-tion of cytosine deaminadetec-tion: determinadetec-tion of rate constants and the activadetec-tion energy.

Biochemistry, 29(10):2532–2537, Mar 1990.

[18] J. C. Shen, W. M. Rideout, and P. A. Jones. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res, 22(6):972–976, Mar 1994.

[19] K. B. Beckman and B. N. Ames. Oxidative decay of DNA. J Biol Chem, 272(32):

19633–19636, Aug 1997.

[20] C. Burrows and J. Muller. Oxidative Nucleobase Modifications Leading to Strand Scis-sion. Chem Rev, 98(3):1109–1152, May 1998.

[21] J. Cadet, T. Delatour, T. Douki, D. Gasparutto, J. P. Pouget, J. L. Ravanat, and S. Sauvaigo. Hydroxyl radicals and DNA base damage. Mutat Res, 424(1-2):9–21, Mar 1999.

[22] J. Cadet, C. D’Ham, T. Douki, J. P. Pouget, J. L. Ravanat, and S. Sauvaigo. Facts and artifacts in the measurement of oxidative base damage to DNA. Free Radic Res, 29(6):

541–550, Dec 1998.

[23] F. Le Page, E. E. Kwoh, A. Avrutskaya, A. Gentil, S. A. Leadon, A. Sarasin, and P. K.

Cooper. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell, 101(2):159–171, Apr 2000.

[27] L. R. Barrows and P. N. Magee. Nonenzymatic methylation of DNA by S-adenosylmethionine in vitro. Carcinogenesis, 3(3):349–351, 1982.

[28] B. Rydberg and T. Lindahl. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction.EMBO J, 1(2):211–216, 1982.

[29] R. Saffhill, G. P. Margison, and P. J. O’Connor. Mechanisms of carcinogenesis induced by alkylating agents. Biochim Biophys Acta, 823(2):111–145, Dec 1985.

[30] M. Bignami, M. O’Driscoll, G. Aquilina, and P. Karran. Unmasking a killer: DNA O(6)-methylguanine and the cytotoxicity of methylating agents. Mutat Res, 462(2-3):71–82, Apr 2000.

[31] T. Lindahl and R. D. Wood. Quality control by DNA repair. Science, 286(5446):1897–

1905, Dec 1999.

[32] H. Nilsen and H. E. Krokan. Base excision repair in a network of defence and tolerance.

Carcinogenesis, 22(7):987–998, Jul 2001.

[33] J. L. Ravanat, T. Douki, and J. Cadet. Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B, 63(1-3):88–102, Oct 2001.

[34] V. Purohit and A. K. Basu. Mutagenicity of nitroaromatic compounds.Chem Res Toxicol, 13(8):673–692, Aug 2000.

[35] J. Szeliga and A. Dipple. DNA adduct formation by polycyclic aromatic hydrocarbon dihydrodiol epoxides. Chem Res Toxicol, 11(1):1–11, Jan 1998.

[36] E. R. Jamieson and S. J. Lippard. Structure, Recognition, and Processing of Cisplatin-DNA Adducts. Chem Rev, 99(9):2467–2498, Sep 1999.

[37] A. Sancar. DNA excision repair. Annu Rev Biochem, 65:43–81, 1996.

[38] R. D. Wood. Nucleotide excision repair in mammalian cells. J Biol Chem, 272(38):

23465–23468, Sep 1997.

[39] W. L. de Laat, N. G. Jaspers, and J. H. Hoeijmakers. Molecular mechanism of nucleotide excision repair. Genes Dev, 13(7):768–785, Apr 1999.

[40] A. Kornberg and T.A. Baker. DNA Replication. 2nd Edition, W.H. Freeman and Co., New York, New York:44–46, 1992.

[41] S.J. Benkovic, A.M. Valentine, and F. Salinas. Replisome-mediated DNA replication.

Annu Rev Biochem., 70:181–208, 2001.

[42] A. Johnson and M. O’Donnell. Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem., 74:283–315, 2005.

[43] K. Sugimoto, T. Okazaki, and R. Okazaki. Mechanism of DNA chain growth, II. Accu-mulation of newly synthesized short chains in E. coli infected with ligase-defective T4 phages. Proc Natl Acad Sci U S A, 60(4):1356–1362, 1968.

[44] R. Okazaki, T. Okazaki, K. Sakabe, K. Sugimoto, and A. Sugino. Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthe-sized chains. Proc Natl Acad Sci U S A, 59:589–605, 1968.

[45] K. Mullis, F. Faloona, S. Scharf, G. Horn, and H. Erlich. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol., 51 (1):263–273, 1986.

[46] C. Joyce. Quantitative RT-PCR. A review of current methodologies. Methods Mol Biol., 193:83–92, 2002.

[47] J.J. Sninsky. The polymerase chain reaction (PCR): a valuable method for retroviral detection. Lymphology, 23(2):92–7, 1990.

[48] M.M. Ling and B.H. Robinson. Approaches to DNA mutagenesis: an overview. Anal Biochem., 254(2):157–78, 1997.

[49] M. Benecke. DNA typing in forensic medicine and in criminal investigations: a current survey. Naturwissenschaften, 84(5):181–8, 1997.

[50] C.M. Niemeyer and D. Blohm. DNA Microarrays. Angew Chem Int Ed Engl., 38(19):

2865–2869, 1999.

[51] A.C. Syvaenen. Accessing genetic variation: genotyping single nucleotide polymor-phisms. Nat Rev Genet., 2(12):930–42, 2001.

[55] F.J. Ghadessy, J.L. Ong, and P. Holliger. Directed evolution of polymerase function by compartmentalized self-replication. Proc Natl Acad Sci U S A, 98(8):4552–7, 2001.

[56] M.B. Kermekchiev, A. Tzekov, and W.M. Barnes. Cold-sensitive mutants of Taq DNA polymerase provide a hot start for PCR. Nucleic Acids Res. 2003 Nov 1;, 31(21):6139–

47, 2003.

[57] B. D. Biles and B.A. Connolly. Low-fidelity Pyrococcus furiosus DNA polymerase mu-tants useful in error-prone PCR. Nucleic Acids Res., 32(22):e176, 2004.

[58] M. Camps, J. Naukkarinen, B.P. Johnson, and L.A. Loeb. Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. PNAS USA, 100 (17):

9727–9732, 2003.

[59] C. Gloeckner, K.B.M. Sauter, and A. Marx. Evolving a Thermostable DNA Polymerase That Amplifies from Highly Damaged Templates. Angewandte Chemie International Edition, 46(17):3115–3117, 2007.

[60] K.B.M. Sauter and A. Marx. Evolving Thermostable Reverse Transcriptase Activity in a DNA Polymerase Scaffold. Angewandte Chemie International Edition, 45(45):7633–

7635, 2006.

[61] J.L. Ong, D. Loakes, S. Jaroslawski, K. Too, and P. Holliger. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.

J Mol Biol., 361(3):537–50, 2006.

[62] F. Sanger, S. Nicklen, and A.R. Coulson. DNA sequencing with chaterminating in-hibitors. Proc Natl Acad Sci U S A., 74(12):5463–7, 1977.

[63] A.F. Gardner, C.M. Joyce, and W.E. Jack. Comparative kinetics of nucleotide analog incorporation by vent DNA polymerase. J Biol Chem., 279(12):11834–42, 2004.

[64] Y. Li, V. Mitaxov, and G. Waksman. Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation. PNAS, 17(24):9491 – 9496, 1999.

[65] S. Tabor and C.C. Richardson. A single residue in DNA polymerases of the Es-cherichia coli DNA polymerase I family is critical for distinguishing between deoxy-and dideoxyribonucleotides. Proc Natl Acad Sci U S A, 92(14):6339–43, 1995.

[66] A.D. Roses. Pharmacogenetics and the practice of medicine. Nature, 405(6788):857–65, 2000.

[67] A. Wartiovaara and A.C. Syvaenen. Analysis of nucleotide sequence variations by solid-phase minisequencing. Methods Mol Biol., 187:57–63, 2002.

[68] M. Ronaghi. Pyrosequencing sheds light on DNA sequencing.Genome Res., 11(1):3–11, 2001.

[69] M.V. Myakishev, Y. Khripin, S. Hu, and D.H. Hamer. High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res., 11(1):163–9, 2001.

[70] M.M. Shi, M.R. Bleavins, and F.A. de la Iglesia. Technologies for detecting genetic polymorphisms in pharmacogenomics. Mol Diagn., 4(4):343–51, 1999.

[71] T. Pastinen, M. Raitio, K. Lindroos, P. Tainola, L. Peltonen, and A.C. Syvaenen. A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res., 10(7):1031–42, 2000.

[72] H. Echols and M.F. Goodman. Fidelity mechanism in DNA replication. Annu. Rev.

Biochem., 60:477–511, 1991.

[73] J.D. Watson and F.H. Crick. Genetical implications of the structure of deoxyribonucleic acid. Nature, 171(4361):964–967, 1953.

[74] L.A. Loeb and T.A. Kunkel. Fidelity of DNA synthesis. Annu Rev Biochem, 51:429–45, 1982.

[75] V. I. Bruskov and V. I. Poltev. On molecular mechanisms of nucleic acid synthesis.

Fidelity aspects: 2. Contribution of protein-nucleotide recognition. J. Theor. Biol., 78 (1):29–41, 1979.

water, proteins, and vacuum: Model for DNA polymerase fidelity. Proc Natl Acad Sci U S A, 83(6):1559–1562, 1986.

[79] R. Knippers. Molekulare Genetik, volume 8. Thieme, 2001.

[80] D.K. Braithwaite and J. Ito. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res, 21(4):787–802, 1993.

[81] M. Delaure, O. Poch, N. Tordo, D. Moras, and P. Argos. An attempt to unify the structure of polymerases. Protein Engineering, 3(6):461–467, 1990.

[82] J. Ito and D.K. Braithwaite. Compilation and alignment of DNA polymerase sequences.

Nucleic Acids Res, 19(15):4045–57, 1991.

[83] C.M. Joyce and T.A. Steitz. Function and structure relationships in DNA polymerases.

Annu Rev Biochem, 63:777–822, 1994.

[84] J. P. Rothwell and G. Waksman. Structure and Mechanism of DNA Polymerases. Ad-vances in Protein Chemistry, 71:401–439, 2005.

[85] M. E. Dahlberg and S. J. Benkovic. Kinetic mechanism of DNA polymerase I (Klenow fragment): identification of a second conformational change and evaluation of the inter-nal equilibrium constant. Biochemistry, 30(20):4835–4843, May 1991.

[86] M. J. Donlin, S. S. Patel, and K. A. Johnson. Kinetic partitioning between the exonu-clease and polymerase sites in DNA error correction. Biochemistry, 30(2):538–546, Jan 1991.

[87] B. T. Eger and S. J. Benkovic. Minimal kinetic mechanism for misincorporation by DNA polymerase I (Klenow fragment). Biochemistry, 31(38):9227–9236, Sep 1992.

[88] R. D. Kuchta, V. Mizrahi, P. A. Benkovic, K. A. Johnson, and S. J. Benkovic. Ki-netic mechanism of DNA polymerase I (Klenow). Biochemistry, 26(25):8410–8417, Dec 1987.

[89] R. D. Kuchta, P. Benkovic, and S. J. Benkovic. Kinetic mechanism whereby DNA poly-merase I (Klenow) replicates DNA with high fidelity. Biochemistry, 27(18):6716–6725, Sep 1988.

[90] S. S. Patel, I. Wong, and K. A. Johnson. Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant.

Biochemistry, 30(2):511–525, Jan 1991.

[91] I. Wong, S. S. Patel, and K. A. Johnson. An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry, 30 (2):526–537, Jan 1991.

[92] T. L. Capson, J. A. Peliska, B. F. Kaboord, M. W. Frey, C. Lively, M. Dahlberg, and S. J.

Benkovic. Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4. Biochemistry, 31(45):10984–10994, Nov 1992.

[93] T. C. Lin, G. Karam, and W. H. Konigsberg. Isolation, characterization, and kinetic prop-erties of truncated forms of T4 DNA polymerase that exhibit 3’-5’ exonuclease activity.

J Biol Chem, 269(30):19286–19294, Jul 1994.

[94] J. Ahn, B. G. Werneburg, and M. D. Tsai. DNA polymerase beta: structure-fidelity relationship from Pre-steady-state kinetic analyses of all possible correct and incorrect base pairs for wild type and R283A mutant. Biochemistry, 36(5):1100–1107, Feb 1997.

[95] V. S. Kraynov, B. G. Werneburg, X. Zhong, H. Lee, J. Ahn, and M. D. Tsai. DNA poly-merase beta: analysis of the contributions of tyrosine-271 and asparagine-279 to substrate specificity and fidelity of DNA replication by pre-steady-state kinetics. Biochem J, 323 ( Pt 1):103–111, Apr 1997.

[96] B. G. Werneburg, J. Ahn, X. Zhong, R. J. Hondal, V. S. Kraynov, and M. D. Tsai. DNA polymerase beta: pre-steady-state kinetic analysis and roles of arginine-283 in catalysis and fidelity. Biochemistry, 35(22):7041–7050, Jun 1996.

[97] X. Zhong, S. S. Patel, B. G. Werneburg, and M. D. Tsai. DNA polymerase beta: multiple conformational changes in the mechanism of catalysis. Biochemistry, 36(39):11891–

11900, Sep 1997.

[98] K. A. Fiala and Z. Suo. Pre-steady-state kinetic studies of the fidelity of Sulfolobus solfataricus P2 DNA polymerase IV. Biochemistry, 43(7):2106–2115, Feb 2004.

[99] M. T. Washington, L. Prakash, and S. Prakash. Yeast DNA polymerase eta utilizes an induced-fit mechanism of nucleotide incorporation. Cell, 107(7):917–927, Dec 2001.

scriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors. Proc Natl Acad Sci U S A, 92(17):8046–8049, Aug 1995.

[103] B. M. Woehrl, R. Krebs, R. S. Goody, and T. Restle. Refined model for primer/template binding by HIV-1 reverse transcriptase: pre-steady-state kinetic anal-yses of primer/template binding and nucleotide incorporation events distinguish between different binding modes depending on the nature of the nucleic acid substrate. J Mol Biol, 292(2):333–344, Sep 1999.

[104] T.A. Steitz. DNA- and RNA-dependent DNA polymerases. Curr Opin Struct Biol., 3:

31–38, 1993.

[105] L.S. Beese and T.A. Steitz. Structural basis for the 3’-5’ exonuclease activity of Es-cherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J., 10(1):25–33, 1991.

[106] S. Doublie, S. Tabor, A.M. Long, C. C. Richardson, and T. Ellenberger. Crystal structure of a bacteriophage T70 DNA replication complex at 2.2 ˚A resolution. Nature, 391:251–

258, 1998.

[107] T.A. Steitz. A mechanism for all polymerases. Nature, 391(6664):231–2, 1998.

[108] E.T. Kool, J.C. Morales, and K.M. Guckian. Mimicking the Structure and Function of DNA: Insights into DNA Stability and Replication. Angew Chem Int Ed Engl., 39(6):

990–1009, 2000.

[109] P. Brick, D.L. Ollis, and T.A. Steitz. Crystallization and 7 ˚A resolution electron density map of the large fragment ofEscherichia coliDNA polymerase I. Mol. Biol., 166(257):

453–456, 1982.

[110] W.E. Brown, K.H. Stump, and W.S. Kelley. Escherichia coli DNA polymerase I. Biol.

Chem., 257:1965–1972, 1982.

[111] C.M. Joyce, W.S. Kelley, and N.D.F. Grindley. Nucleotide sequence of theEscherichia coli PolA gene and primary structure of DNA polymerase I. Biol. Chem., 172(257):

1958–1964, 1982.

[112] V. Derbyshire, M. Astatke, and C.M. Joyce. Re-engineering the polymerase domain of Klenow fragment and evaluation of overproduction and purification strategies. Nucleic Acids Res., 21(23):5439–48, 1993.

[113] P.S. Freemont, D.L. Ollis, T.A. Steitz, and C.M. Joyce. A domain of the Klenow frag-ment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity.

Proteins, 1(1):66–73, 1986.

[114] H. Klenow and I. Henningsen. Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proc Natl Acad Sci U S A, 65(1):168–175, Jan 1970.

[115] A. Kornberg. DNA Replication. W.H. Freeman, San Francisco, 1980.

[116] F.C. Lawyer, S. Stoffel, R.K. Saiki, K. Myambo, R. Dummond, and D.H. Gelfand. Iso-lation, characterization and expression in Escherichia coli of the DNA Polymerase gene from Thermus aquaticus. J. Biol. Chem, 264:6427–6437, 1989.

[117] S.H. Eom, H.K. Song, and S.W. Suh. Crystallization and preliminary X-ray crystallo-graphic analysis of DNA polymerase from Thermus aquaticus. Acta Cryst., D51:1086–

1088, 1995.

[118] S.H. Eom, J. Wang, and T.A. Steitz. Structure of Taq polymerase with DNA at the polymerase active site. Nature, 382:278–281, 18. July 1996.

[119] Y. Kim, S.H. Eom, J. Wang, D.S. Lee, S.W. Suh, and T.A. Steitz. Crystal structure of Thermus aquaticus DNA polymerase. Nature, 376(6541):612–616, 17 Aug 1995.

[120] S. Korolev, M. Nayal, W. M. Barnes, E. Di Cera, and G. Waksman. Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5- ˚A resolution: struc-tural basis for thermostability. Proc Natl Acad Sci U S A, 92(20):9264–9268, Sep 1995.

[121] M. Astatke, N. D. Grindley, and C. M. Joyce. Deoxynucleoside triphosphate and py-rophosphate binding sites in the catalytically competent ternary complex for the poly-merase reaction catalyzed by DNA polypoly-merase I (Klenow fragment). J Biol Chem, 270 (4):1945–1954, Jan 1995.

and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I:

structural basis for nucleotide incorporation. EMBO J., 17(24):7514–25, 1998.

[125] M. Strerath, C. Gloeckner, D. Liu, A. Schnur, and A. Marx. Directed DNA polymerase evolution: effects of mutations in motif C on the mismatch-extension selectivity of ther-mus aquaticus DNA polymerase. Chembiochem, 8(4):395–401, Mar 2007.

[126] E. Loh and L. A. Loeb. Mutability of DNA polymerase I: implications for the creation of mutant DNA polymerases. DNA Repair (Amst), 4(12):1390–1398, Dec 2005.

[127] D. T. Minnick, K. Bebenek, W. P. Osheroff, R. M. Turner, M. Astatke, L. Liu, T. A.

Kunkel, and C. M. Joyce. Side chains that influence fidelity at the polymerase active site of Escherichia coli DNA polymerase I (Klenow fragment). J Biol Chem, 274(5):

3067–3075, Jan 1999.

[128] D. Summerer, N. Z. Rudinger, I. Detmer, and A. Marx. Enhanced fidelity in mismatch extension by DNA polymerase through directed combinatorial enzyme design. Angew Chem Int Ed Engl, 44(30):4712–4715, Jul 2005.

[129] W.L. DeLano. The PyMOL Molecular Graphics System. DeLano Scientific, Palo Alto, CA, USA, 2002.

[130] C. Gloeckner. Gerichtete Evolution und Charkterisierung einer thermostabilen DNA-Polymerase mit erh¨ohter Akzeptanz f¨ur gesch¨adigte DNA. PhD thesis, Universit¨at Kon-stanz, 2008.

[131] S. Vichier-Guerre, S. Ferris, N. Auberger, K. Mahiddine, and J. Jestin. A population of thermostable reverse transcriptases evolved from Thermus aquaticus DNA polymerase I by phage display. Angew Chem Int Ed Engl, 45(37):6133–6137, Sep 2006.

[132] H. Zhao and F. H. Arnold. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng, 12(1):47–53, Jan 1999.

[133] R. C. Cadwell and G. F. Joyce. Mutagenic PCR. PCR Methods Appl, 3(6):S136–S140, Jun 1994.

[134] Myron F Goodman. Error-prone repair DNA polymerases in prokaryotes and eukaryotes.

Annu Rev Biochem, 71:17–50, 2002.

[135] U. H¨ubscher, G. Maga, and S. Spadari. Eukaryotic DNA polymerases. Annu Rev Biochem, 71:133–163, 2002.

[136] W. Yang and R. Woodgate. What a difference a decade makes: insights into translesion DNA synthesis. Proc Natl Acad Sci U S A, 104(40):15591–15598, Oct 2007.

[137] S. Prakash, R. E. Johnson, and L. Prakash. Eukaryotic translesion synthesis DNA poly-merases: specificity of structure and function. Annu Rev Biochem, 74:317–353, 2005.

[138] A. Marx and D. Summerer. Molecular insights into error-prone DNA replication and error-free lesion bypass. Chembiochem, 3(5):405–407, May 2002.

[139] B. S. Plosky and R. Woodgate. Switching from high-fidelity replicases to low-fidelity lesion-bypass polymerases. Curr Opin Genet Dev, 14(2):113–119, Apr 2004.

[140] R. Peist, A. Koch, P. Bolek, S. Sewitz, T. Kolbus, and W. Boos. Characterization of the aes gene of Escherichia coli encoding an enzyme with esterase activity. J. Bacteriol., 179 (24):7679–7686, 1997.

[141] Y. Li and G. Waksman. Crystal structures of a ddATP-, ddTTP-, ddCTP, and ddGTP-trapped ternary complex of Klentaq1: insights into nucleotide incorporation and selec-tivity. Protein Sci., 10(6):1225–33, 2001.

[142] W. Kabsch. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst., 26:795–800, 1993.

[143] E. Potterton, P. Briggs, M. Turkenburg, and E. Dodson. A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr, 59(Pt 7):1131–1137, Jul 2003.

[144] A. Vagin and A..Teplyakov. MOLREP: an automated program for molecular replace-ment. J. Appl. Cryst., 30:1022–1025, 1997.

[145] A. Vagin and A. Teplyakov. An approach to multi-copy search in molecular replacement.

Acta Crystallogr D Biol Crystallogr, 56(Pt 12):1622–1624, Dec 2000.

[146] A. A. Vagin. New translation and packing functions. Newsletter on protein crystallogra-phy, Daresbury Laboratory, 24:117–121, 1989.

1996.

[150] G. N. Murshudov, A. A. Vagin, and E. J. Dodson. Refinement of macromolecular struc-tures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr, 53(Pt 3):240–255, May 1997.

[151] G. N. Murshudov, A. A. Vagin, A. Lebedev, K. S. Wilson, and E. J. Dodson. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr D Biol Crystallogr, 55(Pt 1):247–255, Jan 1999.

[152] N. S. Pannu, G. N. Murshudov, E. J. Dodson, and R. J. Read. Incorporation of prior phase information strengthens maximum-likelihood structure refinement. Acta Crystallogr D Biol Crystallogr, 54(Pt 6 Pt 2):1285–1294, Nov 1998.

[153] M. D. Winn, M. N. Isupov, and G. N. Murshudov. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr D Biol Crys-tallogr, 57(Pt 1):122–133, Jan 2001.

[154] P. Emsley and K. Cowtan. Coot: model-building tools for molecular graphics. Acta Cryst, D60:2126–2132, 2004.

[155] Z. S. Derewenda. The use of recombinant methods and molecular engineering in protein crystallization. Methods, 34(3):354–363, Nov 2004.

[156] M. Carson, D. H. Johnson, H. McDonald, C. Brouillette, and L. J. Delucas. His-tag impact on structure. Acta Crystallogr D Biol Crystallogr, 63(Pt 3):295–301, Mar 2007.

[157] H. Pelletier, M.R. Sawaya, A. Kumar, S.H. Wilson, and J. Kraut. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science, 264(5167):1891–1903, 1994.

[158] S. J. Johnson, J. S. Taylor, and L. S. Beese. Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations.

Proc Natl Acad Sci U S A, 100(7):3895–3900, Apr 2003.

[159] E. Krissinel and K. Henrick. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr, 60 (Pt 12 Pt 1):2256–2268, Dec 2004.

[160] N.A. Baker, D. Sept, S. Joseph, Holst M.J., and J.A. McCammon. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 98:10037–10041, 2001.

[161] S. J. Johnson and L. S. Beese. Structures of mismatch replication errors observed in a DNA polymerase. Cell, 116(6):803–816, Mar 2004.

[162] G. W. Hsu, M. Ober, T. Carell, and L. S. Beese. Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase. Nature, 431(7005):217–221, Sep 2004.

[163] Gerald W Hsu, James R Kiefer, Dominique Burnouf, Olivier J Becherel, Robert P P Fuchs, and Lorena S Beese. Observing translesion synthesis of an aromatic amine DNA adduct by a high-fidelity DNA polymerase. J Biol Chem, 279(48):50280–50285, Nov 2004.

[164] G. W. Hsu, X. Huang, N. P. Luneva, N. E. Geacintov, and L. S. Beese. Structure of a high fidelity DNA polymerase bound to a benzo[a]pyrene adduct that blocks replication.

J Biol Chem, 280(5):3764–3770, Feb 2005.

[165] P. H. Patel, H. Kawate, E. Adman, M. Ashbach, and L. A. Loeb. A single highly mutable catalytic site amino acid is critical for DNA polymerase fidelity. J Biol Chem, 276(7):

5044–5051, Feb 2001.

[166] C. Combet, C. Blanchet, C. Geourjon, and G. Del´eage. NPS@: network protein sequence analysis. Trends Biochem Sci, 25(3):147–150, Mar 2000.

[167] John-Stephen Taylor. New structural and mechanistic insight into the A-rule and the instructional and non-instructional behavior of DNA photoproducts and other lesions.

Mutat Res, 510(1-2):55–70, Dec 2002.

[168] Bernard S Strauss. The ”A” rule revisited: polymerases as determinants of mutational specificity. DNA Repair (Amst), 1(2):125–135, Feb 2002.

[169] L. C. Storoni, A. J. McCoy, and R. J. Read. Likelihood-enhanced fast rotation functions.

Acta Crystallogr D Biol Crystallogr, 60(Pt 3):432–438, Mar 2004.

[172] S. C. Lovell, I. W. Davis, W. B. Arendall, P. I. W. de Bakker, J. M. Word, M. G. Prisant, J. S. Richardson, and D. C. Richardson. Structure validation by C-alpha geometry: phi, psi, and C-beta deviation. Proteins: Structure, Function, and Genetics, 50:437–450, 2003.

[173] A. Schnur, C. Gloeckner, R. Kranaster, N. Staiger, K. Diederichs, W. Welte, and A. Marx.

Translesion Synthesis of a Non-Instructive Abasic DNA Lesion by DNA Polymerase.

tba, tba:tba, 2009.

[174] Eric T Kool. Active site tightness and substrate fit in DNA replication. Annu Rev Biochem, 71:191–219, 2002.

[175] M. F. Goodman, H. Cai, L. B. Bloom, and R. Eritja. Nucleotide insertion and primer extension at abasic template sites in different sequence contexts. Ann N Y Acad Sci, 726:

132–42; discussion 142–3, Jul 1994.

[176] S. Avkin, S. Adar, G. Blander, and Z. Livneh. Quantitative measurement of translesion replication in human cells: evidence for bypass of abasic sites by a replicative DNA polymerase. Proc Natl Acad Sci U S A, 99(6):3764–3769, Mar 2002.

[177] V. Pag`es, R. E. Johnson, L. Prakash, and S. Prakash. Mutational specificity and genetic control of replicative bypass of an abasic site in yeast. Proc Natl Acad Sci U S A, 105(4):

1170–1175, Jan 2008.

[178] M. Warkentin, V. Berejnov, N. S. Husseini, and R. E. Thorne. Hyperquenching for pro-tein cryocrystallography. J. Appl. Cryst., 39:805–811, 2006.

[179] M. Warkentin and R. E. Thorne. A general method for hyperquenching protein crystals.

J Struct Funct Genomics, 8(4):141–144, Dec 2007.

[180] M. Suzuki, D. Baskin, L. Hood, and L. A. Loeb. Random mutagenesis of Thermus aquaticus DNA polymerase I: concordance of immutable sites in vivo with the crystal structure. Proc Natl Acad Sci U S A, 93(18):9670–9675, Sep 1996.

[181] J. B. Bell, K. A. Eckert, C. M. Joyce, and T. A. Kunkel. Base miscoding and strand misalignment errors by mutator Klenow polymerases with amino acid substitutions at tyrosine 766 in the O helix of the fingers subdomain. J Biol Chem, 272(11):7345–7351,

[181] J. B. Bell, K. A. Eckert, C. M. Joyce, and T. A. Kunkel. Base miscoding and strand misalignment errors by mutator Klenow polymerases with amino acid substitutions at tyrosine 766 in the O helix of the fingers subdomain. J Biol Chem, 272(11):7345–7351,