• Keine Ergebnisse gefunden

D

STXM-FMR Additional Data

D.1. Single Strip 140

The overview data was obtained using analysis described in section3.3.3. The data is shown for two orientations of the single Py strip, easy and hard. Above each overview plot the chemical contrast of the sample obtained before the STXM-FMR measure-ments at the same set-up, to represent the exact position of the sample during the measurements. The red square shows the region, over which the averaging was done for the overview plots.

Fig. D.2: Simulated and measured FMR spectra of the Py strip in hard orientation along with overviews of an amplitude and a phase profiles along and across the strip.

The averaged area used for profiles calculation is indicated with the red square.

Bibliography

[1] A.V. Chumak, V.I. Vasyuchka, A.A. Serga, and B. Hillebrands. “Magnon spin-tronics”. In: Nature Physics 11 (2015), pp. 453–461.

doi: 10.1038/nphys3347.

[2] Q. Wang, P. Pirro, R. Verba, A. Slavin, B. Hillebrands, and A.V. Chumak.

“Reconfigurable nanoscale spin-wave directional coupler”. In: Science Advances 4 (2018), p. 1.

doi: 10.1126/sciadv.1701517.

[3] T. Br¨acher, P. Pirro, and B. Hillebrands. “Parallel pumping for magnon spin-tronics: Amplification and manipulation of magnon spin currents on the micron-scale”. In:Physics Reports 699 (2017), 1–34.

doi: 10.1016/j.physrep.2017.07.003.

[4] V. Vlaminck and M. Bailleul. “Current-Induced Spin-Wave Doppler Shift”. In:

Science 322 (5900 2008), pp. 410–413.

doi: 10.1126/science.1162843.

[5] P. Clausen, K. Vogt, H. Schultheiss, S. Sch¨afer, B. Obry, G. Wolf, P. Pirro, B.

Leven, and B. Hillebrands. “Mode conversion by symmetry breaking of propa-gating spin waves”. In: Appl. Phys. Lett.99 (2011), p. 162505.

doi: 10.1063/1.3650256.

[6] D. Grundler. “Reconfigurable magnonics heats up”. In:Nature Physics 11 (2015), 438–441.

doi: 10.1038/nphys3349.

[7] M. Vogel, R. Aßmann, P. Pirro, A. V. Chumak, B. Hillebrands, and G. Frey-mann. “Control of Spin-Wave Propagation using Magnetisation Gradients”. In:

Scientific Reports 8 (2018), p. 11099.

doi: 10.1038/s41598-018-29191-2.

[8] A.S. Savchenko and V.N. Krivoruchko. “Electric-field control of nonreciprocity of spin wave excitation in ferromagnetic nanostripes”. In:Journal of Magnetism and Magnetic Materials 474 (2019), pp. 9–13.

doi: 10.1016/j.jmmm.2018.10.093.

[9] B.A. Kalinikos and A.N. Slavin. “Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions”. In:J. Phys.

C: Solid State Phys 19 (1986), pp. 7013–7033.

doi: 10.1088/0022-3719/19/35/014.

141

Bibliography 142

[10] H. Yu, R. Huber, T. Schwarze, F. Brand, T. Rapp, P. Berberich, G. Duerr, and D. Grundler. “High propagating velocity of spin waves and temperature dependent damping in a CoFeB thin film”. In: Appl. Phys. Lett. 100 (2012), p. 262412.

doi: 10.1063/1.4731273.

[11] O. Gladii, M. Haidar, Y. Henry, M. Kostylev, and M. Bailleul. “Frequency nonreciprocity of surface spin wave in permalloy thin films”. In: Phys. Rev. B 93 (2016), p. 054430.

doi: 10.1103/PhysRevB.93.054430.

[12] M. Madami, S. Bonetti, G. Consolo, S. Tacchi, G. Carlotti, G. Gubbiotti, F.

B. Mancoff, and J. ¨Akerman M. A. Yar. “Direct observation of a propagating spin wave induced by spin-transfer torque”. In:Nature Nanotechnology 6 (2011), 635–638.

doi: 10.1038/nnano.2011.140.

[13] A. V. Chumak, P. Pirro, A. A. Serga, M. P. Kostylev, R. L. Stamps, H. Schultheiss, K. Vogt, S. J. Hermsdoerfer, B. Laegel, P. A. Beck, and B. Hillebrands. “Spin-wave propagation in a microstructured magnonic crystal”. In:Appl. Phys. Lett.

95 (2009), p. 262508.

doi: 10.1063/1.3279138.

[14] S. Neusser, G. Duerr, S. Tacchi, M. Madami, M. L. Sokolovskyy, G. Gub-biotti, M. Krawczyk, and D. Grundler. “Magnonic minibands in antidot lattices with large spin-wave propagation velocities”. In: Physical Review B 84 (2011), p. 094454.

doi: 10.1103/PhysRevB.84.094454.

[15] J. Gr¨afe, M. Weigand, C. Stahl, N. Tr¨ager, M. Kopp, G. Sch¨utz, and E. J. Go-ering. “Combined first-order reversal curve and x-ray microscopy investigation of magnetization reversal mechanisms in hexagonal antidot lattices”. In: Phys.

Rev. B 93 (2016), p. 014406.

doi: 10.1103/PhysRevB.93.014406.

[16] M. Langer, R.A. Gallardo, T. Schneider, S. Stienen, A. Rold´an-Molina, Y. Yuan, K. Lenz, J. Lindner, P. Landeros, and J. Fassbender. “Spin-wave modes in transition from a thin film to a full magnonic crystal”. In: Phys. Rev. B 99 (2019), p. 024426.

doi: 10.1103/PhysRevB.99.024426.

[17] V. E. Demidov, M. P. Kostylev, K. Rott, J. Munchenberger, G. Reiss, and S. O.

Demokritov. “Excitation of short-wavelength spin waves in magnonic waveg-uides”. In: Appl. Phys. Lett.99 (2011), p. 082507.

doi: 10.1063/1.3631756.

Bibliography 143

[18] P. Klein, R. Varga, and M. V’azquez. “Enhancing the velocity of the single domain wall by current annealing in nanocrystalline FeCoMoB microwires”. In:

J. Phys. D: Appl. Phys. 47 (2014), p. 255001.

doi: 10.1088/0022-3727/47/25/255001.

[19] Z. Duan, I.N. Krivorotov, R.E. Arias, N. Reckers, S. Stienen, and J. Lind-ner. “Spin wave eigenmodes in transversely magnetized thin film ferromagnetic wires”. In:Phys. Rev. B 92 (2015), p. 104424.

doi: 10.1103/PhysRevB.92.104424.

[20] C. Bayer, J. Jorzick, B. Hillebrands, S.O. Demokritov, R. Kouba, R. Bozinoski, A.N. Slavin, K.Y. Guslienko, D.V. Berkov, N.L. Gorn, and M. P. Kostylev.

“Spin-wave excitations in finite rectangular elements of Ni80Fe20”. In: Phys.

Rev. B 72 (2005), p. 064427.

doi: 10.1103/PhysRevB.72.064427.

[21] V.E. Demidov, U.-H. Hansen, and S.O. Demokritov. “Spin-Wave Eigenmodes of a Saturated Magnetic Square at Different Precession Angles”. In: Physical Review Letters 98 (2007), p. 157203.

doi: 10.1103/PhysRevLett.98.157203.

[22] S. Pile, T. Feggeler, T. Schaffers, R. Meckenstock, M. Buchner, D. Spoddig, B. Zingsem, V. Ney, M. Farle, H. Wende, H. Ohldag, A. Ney, and K. Ollefs.

“Non-standing spin-waves in confined micrometer-sized ferromagnetic structures under uniform excitation”. In:Appl. Phys. Lett. 116 (2020), p. 072401.

doi: 10.1063/1.5139881.

[23] C. Kittel. “On the Theory of Ferromagnetic Resonance Absorption”. In:Physical Review 73 (1948), p. 155.

doi: 10.1103/PhysRev.73.155.

[24] L.R. Walker. “Magnetostatic Modes in Ferromagnetic Resonance”. In: Physical Review 105 (1957), p. 309.

doi: 10.1103/PhysRev.105.390.

[25] D. D. Stancil and A. Prabhakar.Spin Waves. Theory and Applications. Springer, 2009. isbn: 978-0-387-77864-8.

doi: 10.1007/978-0-387-77865-5.

[26] K. Y. Guslienko, R. W. Chantrell, and A. N. Slavin. “Dipolar localization of quantized spin-wave modes in thin rectangular magnetic elements”. In: Phys.

Rev. B 68 (2003), p. 024422.

doi: 10.1103/PhysRevB.68.024422.

[27] T. Sebastian, K. Schultheiss, B. Obry, B. Hillebrands, and H. Schultheiss. “Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale”. In:

Front. Phys. 3 (2015), p. 35.

doi: 10.3389/fphy.2015.00035.

Bibliography 144

[28] T. Mewes, J. Kim, D. V. Pelekhov, G. N. Kakazei, P. E. Wigen, S. Batra, and P. C. Hammel. “Ferromagnetic resonance force microscopy studies of arrays of micron size permalloy dots”. In: Phys. Rev. B 74 (2006), p. 144424.

doi: 10.1103/PhysRevB.74.144424.

[29] H. Stoll, M. Noske, M. Weigand, K. Richter, B. Kr¨uger, R.M. Reeve, M. H¨anze, C.F. Adolff, F.-U. Stein, G. Meier, M. Kl¨aui, and G. Sch¨utz. “Imaging spin dynamics on the nanoscale using X-Ray microscopy”. In: Frontiers in Physics 3 (2015), p. 26.

doi: 10.3389/fphy.2015.00026.

[30] F. Groß, N. Tr¨ager, J. F¨orster, M. Weigand, G. Sch¨utz, and J. Gr¨afe. “Nanoscale detection of spin wave deflection angles in permalloy”. In: Appl. Phys. Lett.114 (2019), p. 012406.

doi: 10.1063/1.5074169.

[31] V. Sluka, T. Schneider, R. A. Gallardo, A. K´akay, M. Weigand, T. Warnatz, R. Mattheis, A. Rold´an-Molina, P. Landeros, V. Tiberkevich, A. Slavin, G.

Sch¨utz, A. Erbe, A. Deac, J. Lindner, J. Raabe, J. Fassbender, and S. Wintz.

“Emission and propagation of 1D and 2D spin waves with nanoscale wavelengths in anisotropic spin textures”. In: Nature Nanotechnology 14 (2019), 328–333.

doi: 10.1038/s41565-019-0383-4.

[32] S. Bonetti, R. Kukreja, Z. Chen, D. Spoddig, K. Ollefs, C. Sch¨oppner, R. Meck-enstock, A. Ney, J. Pinto, R. Houanche, J. Frisch, J. St¨ohr, H. D¨urr, and H. Ohldag. “Microwave soft x-ray microscopy for nanoscale magnetization dy-namics in the 5–10 GHz frequency range”. In: Rev. Sci. Instrum. 86 (2015), p. 093703.

doi: 10.1063/1.4930007.

[33] M. Weigand.Realization of a new Magnetic Scanning X-ray Microscope and In-vestigation of Landau Structures under Pulsed Field Excitation. Cuvillier Verlag, 2015. isbn: 978-3954049912.

[34] T. Schaffers, R. Meckenstock, D. Spoddig, T. Feggeler, K. Ollefs, C. Sch¨oppner, S. Bonetti, H. Ohldag, M. Farle, and A. Ney. “The combination of micro-resonators with spatially resolved ferromagnetic resonance”. In: Rev. Sci. In-strum. 88 (2017), p. 093703.

doi: 10.1063/1.4996780.

[35] T. Schaffers, T. Feggeler, S. Pile, R. Meckenstock, M. Buchner, D. Spoddig, V.

Ney, M. Farle, H. Wende, S. Wintz, M. Weigand, H. Ohldag, K. Ollefs, and A. Ney. “Extracting the Dynamic Magnetic Contrast in Time-Resolved X-Ray Transmission Microscopy”. In: Nanomaterials 9(7) (2019), p. 940.

doi: 10.3390/nano9070940.

[36] R. Narkowicz, D. Suter, and R. Stonies. “Planar microresonators for EPR ex-periments”. In: J. Magn. Reson 175 (2005), 275–284.

doi: 10.1016/j.jmr.2005.04.014.

Bibliography 145

[37] R. Narkowicz, D. Suter, and I. Niemeyer. “Scaling of sensitivity and efficiency in planar microresonators for electron spin resonance”. In: Rev. Sci. Instrum.

79 (2008), p. 084702.

doi: 10.1063/1.2964926.

[38] A. Banholzer, R. Narkowicz, C. Hassel, R. Meckenstock, S. Stienen, O. Posth, D. Suter, M. Farle, and J. Lindner. “Visualization of spin dynamics in single nanosized magnetic elements”. In:Nanotechnology 22 (2011), p. 295713.

doi: 10.1088/0957-4484/22/29/295713.

[39] C. Sch¨oppner, K. Wagner, S. Stienen, R. Meckenstock, M. Farle, R. Narkowicz, D. Suter, and J. Lindner. “Angular dependent ferromagnetic resonance analysis in a single micron sized cobalt stripe”. In:Journal of Applied Physics116 (2014), p. 033913.

doi: 10.1063/1.4890515.

[40] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer. “Enhanced Gilbert Damping in Thin Ferromagnetic Films”. In: Phys. Rev. Lett. 88 (2002), p. 117601.

doi: 10.1103/PhysRevLett.88.117601.

[41] H. Jiao and G. E. W. Bauer. “Spin Backflow and ac Voltage Generation by Spin Pumping and the Inverse Spin Hall Effect”. In: Phys. Rev. Lett. 110 (2013), p. 217602.

doi: 10.1103/PhysRevLett.110.217602.

[42] D. Wei, M. Obstbaum, M. Ribow, C. H. Back, and G. Woltersdorf. “Spin Hall voltages from a.c. and d.c. spin currents”. In:Nature Communications 5 (2014), p. 3768.

doi: 10.1038/ncomms4768.

[43] M. M. Qaid, T. Richter, A. M¨uller, C. Hauser, C. Ballani, and G. Schmidt.

“Radiation damping in ferromagnetic resonance induced by a conducting spin sink”. In: Phys. Rev. B 96 (2017), p. 184405.

doi: 10.1038/ncomms4768.

[44] K. Ando, S. Takahashi, J. Ieda, Y. Kajiwara, H. Nakayama, T. Yoshino, K. Harii, Y. Fujikawa, M. Matsuo, S. Maekawa, and E. Saitoh. “Inverse spin-Hall effect induced by spin pumping in metallic system”. In: Journal of Applied Physics 109 (2011), p. 103913.

doi: 10.1063/1.3587173.

[45] S. Gepr¨ags, S. Meyer, S. Altmannshofer, M. Opel, F. Wilhelm, A. Rogalev, R.

Gross, and S. T. B. Goennenwein. “Investigation of induced Pt magnetic polar-ization in Pt/Y3Fe5O12 bilayers”. In:Appl. Phys. Lett. 101 (2012), p. 262407.

doi: 10.1063/1.4773509.

Bibliography 146

[46] J.-C. Rojas-S´anchez, M. Cubukcu, A. Jain, C. Vergnaud, C. Portemont, C.

Ducruet, A. Barski, A. Marty, L. Vila, J.-P. Attan´e, E. Augendre, G. Desfonds, S. Gambarelli, H. Jaffr´es, J.-M. George, and M. Jamet. “Spin pumping and inverse spin Hall effect in germanium”. In: Phys. Rev. B 88 (2013), p. 064403.

doi: 10.1103/PhysRevB.88.064403.

[47] T. Richter, M. Paleschke, M. Wahler, F. Heyroth, H. Deniz, D. Hesse, and G.

Schmidt. “Spin pumping and inverse spin Hall effect in ultrath in SrRuO3 films around the percolation limit”. In: Phys. Rev. B 96 (2017), p. 184407.

doi: 10.1103/PhysRevB.96.184407.

[48] J.-C. Lee, L.-W. Huang, D.-S. Hung, T.-H. Chiang, J. C. A. Huang, J.-Z. Liang, and S.-F. Lee. “Inverse spin Hall effect induced by spin pumping into semicon-ducting ZnO”. In: Appl. Phys. Lett.104 (2014), p. 052401.

doi: 10.1063/1.4863750.

[49] R. Urban, G. Woltersdorf, and B. Heinrich. “Gilbert Damping in Single and Multilayer Ultrathin Films: Role of Interfaces in Nonlocal Spin Dynamics”. In:

Phys. Rev. Lett. 87 (2001), p. 217204.

doi: 10.1103/PhysRevLett.87.217204.

[50] B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt, Y.-Y. Song, Y.

Sun, and M. Wu. “Spin Pumping at the Magnetic Insulator (YIG)/Normal Metal (Au) Interfaces”. In: Phys. Rev. Lett. 107 (2011), p. 066604.

doi: 10.1103/PhysRevLett.107.066604.

[51] C. Hahn, G. de Loubens, M. Viret, O. Klein, V. V. Naletov, and J. B. Youssef.

“Detection of Microwave Spin Pumping Using the Inverse Spin Hall Effect”. In:

Phys. Rev. Lett. 111 (2013), p. 217204.

doi: 10.1103/PhysRevLett.111.217204.

[52] M. Weiler, J. M. Shaw, H. T. Nembach, and T. J. Silva. “Phase-Sensitive De-tection of Spin Pumping via the ac Inverse Spin Hall Effect”. In: Phys. Rev.

Lett. 113 (2014), p. 157204.

doi: 10.1103/PhysRevLett.113.157204.

[53] R. Kukreja, S. Bonetti, Z. Chen, D. Backes, Y. Acremann, J. A. Katine, A.

D. Kent, H. A. D¨urr, H. Ohldag, and J. St¨ohr. “X-ray Detection of Transient Magnetic Moments Induced by a Spin Current in Cu”. In: Phys. Rev. Lett.115 (2015), p. 096601.

doi: 10.1103/PhysRevLett.115.096601.

[54] J. Ding, W. Zhang, M. B. Jungfleisch, J. E. Pearson, H. Ohldag, V. Novosad, and A. Hoffmann. “Direct observation of spin accumulation in Cu induced by spin pumping”. In: Phys. Rev. Research 2 (2020), p. 013262.

doi: 10.1103/PhysRevResearch.2.013262.

Bibliography 147

[55] J. Li, L. R. Shelford, P. Shafer, A. Tan, J. X. Deng, P. S. Keatley, C. Hwang, E. Arenholz, G. van der Laan, R. J. Hicken, and Z. Q. Qiu. “Direct Detection of Pure ac Spin Current by X-Ray Pump-Probe Measurements”. In:Phys. Rev.

Lett. 117 (2016), p. 076602.

doi: 10.1103/PhysRevLett.117.076602.

[56] H. A. D¨urr, T. Eim¨uller, H. J. Elmers, S. Eisebitt, M. Farle, W. Kuch, F.

Matthes, M. Martins, H. C. Mertins, P. M. Oppeneer, L. Plucinski, C. M. Schnei-der, H. Wende, W. Wurth, and H. Zabel. “A Closer Look Into Magnetism: Op-portunities With Synchrotron Radiation”. In:IEEE Transact. Magn.45 (2009), p. 15.

doi: 10.1109/TMAG.2008.2006667.

[57] S. Pile, M. Buchner, V. Ney, T. Schaffers, J. Lumetzberger, K. Lenz, R. Narkow-icz, J. Lindner, H. Ohldag, and A. Ney. “Direct Imaging of the ac Component of Pumped Spin Polarization with Element Specificity”. In: Phys. Rev. Applied 14 (2020), p. 034005.

doi: 10.1103/PhysRevApplied.14.034005.

[58] J. M. D. Coey.Magnetism and Magnetic Materials. Cambridge University Press, 2009. isbn: 978-0-521-81614-4.

[59] T.L. Gilbert. “A Phenomenological Theory of Damping in Ferromagnetic Ma-terials”. In: IEEE Transactions on Magnetics 40.6 (2004), pp. 3443–3449.

doi: 10.1109/TMAG.2004.836740.

[60] J. St¨ohr and H.C. Siegmann. Magnetism. From Fundamentals to Nanoscale Dy-namics. Springer, 2006.isbn: 978-3-540-30282-7.

[61] C. Kittel. Kittel’s Introduction to Solid State Physics. Wiley, 2005. isbn: 978-1-119-45416-8.

[62] R. Engel-Herbert and T. Hesjedal. “Calculation of the magnetic stray field of a uniaxial magnetic domain”. In:Journal of Applied Physics 97 (2005), p. 074504.

doi: 10.1063/1.1883308.

[63] A. Smith, K. K. Nielsen, D. V. Christensen, C. R. H. Bahl, R. Bjørk, and J. Hattel. “The demagnetizing field of a nonuniform rectangular prism”. In:

Journal of Applied Physics 107 (2010), p. 103910.

doi: 10.1063/1.3385387.

[64] D.-X. Chen nad E. Pardo and A. Sanchez. “Demagnetizing Factors for Rectan-gular Prisms”. In: IEEE Transactions on Magnetics 41 (2005), pp. 2077–2088.

doi: 10.1109/TMAG.2005.847634.

[65] M. Farle. “Ferromagnetic resonance of ultrathin metallic layers”. In:Rep. Prog.

Phys. 61 (1998), pp. 755–826.

doi: 10.1088/0034-4885/61/7/001.

Bibliography 148

[66] M. Farle, T. Silva, and G. Woltersdorf. “Spin Dynamics in the Time and Fre-quency Domain”. In: Springer Tracts in Modern Physics (Sept. 2013), p. 37.

doi: 10.1007/978-3-642-32042-2_2.

[67] H. Cansever, R. Narkowicz, K. Lenz, C. Fowley, L. Ramasubramanian, O.

Yildirim, A. Niesen, T. Huebner, G. Reiss, J. Lindner, J. Fassbender, and A.

M. Deac. “Investigating spin-transfer torques induced by thermal gradients in magnetic tunnel junctions by using micro-cavity ferromagnetic resonance”. In:

Appl. Phys. 51 (2018), p. 224009.

doi: 10.1088/1361-6463/aac03d.

[68] L.D. Landau and E.M. Lifshitz. “Theory of the dispersion of magnetic perme-ability in ferromagnetic bodies”. In: Phys. Zs. Sowjet. 8 (1935), p. 153.

doi: 10.1016/B978-0-08-036364-6.50008-9.

[69] C. Kittel. “Interpretation of Anomalous Larmor Frequencies in Ferromagnetic Resonance Experiment”. In: Phys. Rev. 71 (1947), p. 270.

doi: 10.1103/PhysRev.71.270.2.

[70] K. Lenz. “Magnetische Anisotropie und D¨ampfungsmechanismen in ultrad¨unnen 3d-Ferromagneten: eine FMR-Studie”. Dissertation. 2005.

[71] C. Kittel. “Theory of Antiferromagnetic Resonance”. In: Phys. Rev.82 (1951), p. 565.

doi: 10.1103/PhysRev.82.565.

[72] J. Smit and H.G. Beljers. “Ferromagnetic resonance absorption in BaFe12O19, a highly anisotropic crystal”. In: Phillips Res. Rep. 10 (1955), pp. 113–130.

[73] L. Baselgia, M. Warden, F. Waldner, S. L. Hutton, J. E. Drumheller, Y. Q. He, P. E. Wigen, and M. Maryˇsko. “Derivation of the resonance frequency from the free energy of ferromagnets”. In: Phys. Rev. B 38 (1988), p. 2237.

doi: 10.1103/PhysRevB.38.2237.

[74] J. Lindner, K. Lenz, E. Kosubek, K. Baberschke, D. Spoddig, R. Meckenstock, J.

Pelzl, Z. Frait, and D. L. Mills. “Non-Gilbert-type damping of the magnetic re-laxation in ultrathin ferromagnets: Importance of magnon-magnon scattering”.

In: Phys. Rev. B 68 (2003), 060102(R).

doi: 10.1103/PhysRevB.68.060102.

[75] S. Takahashi. “Physical Principles of Spin Pumping”. In:Handbook of Spintron-ics. Ed. by Y. Xu, D. Awschalom, and J. Nitta. Springer, Dordrecht, 2016.

doi: 10.1007/978-94-007-6892-5_51.

[76] M. Buchner, J. Lumetzberger, V. Ney, T. Schaffers, N. Daff´e, and A. Ney. “Spin pumping from permalloy into uncompensated antiferromagnetic Co doped zinc oxide”. In: Journal of Applied Physics 127 (2020), p. 043901.

doi: 10.1063/1.5131719.

Bibliography 149

[77] J. Lumetzberger, M. Buchner, S. Pile, V. Ney, W. Gaderbauer, N. Daff´e, M.

V. Moro, D. Primetzhofer, K. Lenz, and A. Ney. “Influence of structure and cation distribution on magnetic anisotropy and damping in Zn/Al doped nickel ferrites”. In: Phys. Rev. B 102 (2020), p. 054402.

doi: 10.1103/PhysRevB.102.054402.

[78] C. Kittel. “Excitation of Spin Waves in a Ferromagnet by a Uniform rf Field”.

In: Physical Review 110 (1958), p. 6.

doi: 10.1103/PhysRev.110.1295.

[79] K. Yu. Guslienko, S. O. Demokritov, B. Hillebrands, and A. N. Slavin. “Effec-tive dipolar boundary conditions for dynamic magnetization in thin magnetic stripes”. In: Phys. Rev. B 66 (2002), p. 132402.

doi: 10.1103/PhysRevB.66.132402.

[80] H. H¨olscher. “AFM, Tapping Mode”. In: Encyclopedia of Nanotechnology. Ed.

by B. Bhushan. Springer, Dordrecht, 2012.

doi: 10.1007/978-90-481-9751-4_33.

[81] Allresist. E-Beam Resist AR-P 7400 series.

url: https://www.allresist.com/portfolio-item/e-beam-resist-ar-p-7400-series/ (visited on 07/28/2020).

[82] S. A. Campbell. The Science and Engineering of Microelectronic Fabrication.

Oxford University Press, 1996. isbn: 978-0-195-13605-0.

[83] M. J. Madou. Fundamentals of Microfabrication. The Science of Miniaturiza-tion, Second Edition. CRC Press, 2002.

doi: 10.1201/9781482274004.

[84] K. Lenz, R. Narkowicz, and J. Lindner. “Private communication”. Helmholtz-Zentrum Dresden-Rossendorf, Germany. 2019-2020.

[85] M. Azadi and G. G. Lopez. Spin Curves for MicroChem S1800 (1805, 1813, 1818) Series Positive Resist. 2016.

url:https://repository.upenn.edu/scn_tooldata/1/(visited on 07/28/2020).

[86] Raith. eLINE Plus. 2016.

url: https : / / www . raith . com / products / eline - plus . html (visited on 07/29/2020).

[87] L. Reimer.Scanning Electron Microscopy. Physics of Image Formation and Mi-croanalysis. Springer, 1998. isbn: 978-3-540-63976-3.

[88] K. Burgholzer and V. Bauernfeind. “Advanced Microscopy. Lecture Notes”. Lec-tured by DI Dr. Heiko Groiß. 2017.

[89] Inc. Micro Magnetics. Magnetron Sputtering Technology.

url: http://www.directvacuum.com/sputter.asp(visited on 07/28/2020).

Bibliography 150

[90] S. Parmar, A. Biswas, S. K. Singh, B. Ray, S. Parmar, S. Gosavi, V. Sathe, R. J.

Choudhary, S. Datar, and S. Ogale. “Coexisting 1T/2H polymorphs, reentrant resistivity behavior, and charge distribution in MoS2-hBN 2D/2D composite thin films”. In: Phys. Rev. Materials 3 (2019), p. 074007.

doi: 10.1103/PhysRevMaterials.3.074007.

[91] A. Anders, J. Pelletier, D. M. Goebel, B. P. Wood, I. G. Brown, W. Ensinger, and M. Tuszewski. “Plasma Sources”. In: Handbook of Plasma Immersion Ion Implantation and Deposition. Ed. by A. Anders. London: John Wiley and Sons, 2000. Chap. 7, pp. 381–465. isbn: 978-0-471-24698-5.

[92] M. Braun. “Magnetron Sputtering Technique”. In: Handbook of Manufacturing Engineering and Technology. Ed. by A. Nee. London: Springer, 2015. Chap. 81, pp. 2929–2957.

doi: 10.1007/978-1-4471-4670-4_28.

[93] M. Buchner. “Static and dynamic magnetic coupling in a Co doped ZnO -Permalloy heterostructure”. Doctoral Thesis. 2019.

[94] B. Henne, V. Ney, J. Lumetzberger, K. Ollefs, F. Wilhelm, A. Rogalev, and A.

Ney. “Local structure and magnetism of Co3+ in wurtzite Co:ZnO”. In: Phys.

Rev. B 95 (2017), p. 054406.

doi: 10.1103/PhysRevB.95.054406.

[95] M. Buchner, B. Henne, V. Ney, J. Lumetzberger, F. Wilhelm, A. Rogalev, A.

Hen, and A. Ney. “Pinned orbital moments in uncompensated antiferromagnetic Co doped ZnO”. In: Journal of Applied Physics 123 (2018), p. 203905.

doi: 10.1063/1.5023898.

[96] M. Buchner, B. Henne, V. Ney, and A. Ney. “Transition from a hysteresis-like to an exchange-bias-like response of an uncompensated antiferromagnet”. In:

Phys. Rev. B 99 (2019), p. 064409.

doi: 10.1103/PhysRevB.99.064409.

[97] S. Amoruso. “Plume characterization in pulsed laser deposition of metal oxide thin films”. In: Metal Oxide-Based Thin Film Structures. Formation, Charac-terization and Application of Interface-Based Phenomena. Ed. by N. Pryds and V. Esposito. Elsevier, 2018. Chap. 6, pp. 133–160. isbn: 978-0-12-811166-6.

[98] B. Stuhrmann. “Self-OrganizedActive Biopolymer Networks inMigrating Living Cells”. Dissertation. 2009.

[99] Quantel. Q-smart (850 mJ). Lamp pumped solid state laser.

url: https://www.quantel-laser.com/en/products/item/q-smart-850-mj-.html (visited on 07/30/2020).

[100] M.J. Donahue and D.G. Porter. “OOMMF User’s Guide, Version 1.0”. Inter-agency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD. September 1999.

url: http://math.nist.gov/oommf.

Bibliography 151

[101] S. Stienen. “Spin-dynamik und -manipulation an nanostrukturierten Systemen in Simulation und Experiment”. Doctoral Thesis. 2013.

[102] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge. “The design and verification of MuMax3”. In: AIP AD-VANCES 4 (2014), p. 107133.

doi: 10.1063/1.4899186.

[103] WOLFRAM.Wolfram Language and System Documentation Center. MeanFil-ter.

url: https : / / reference . wolfram . com / language / ref / MeanFilter . html (visited on 10/12/2020).

[104] WOLFRAM.Wolfram Language and System Documentation Center. MeanFil-ter.

url: https://reference.wolfram.com/language/ref/Fourier.html (vis-ited on 10/12/2020).

[105] R.D. McMichael and B.B. Maranville. “Edge saturation fields and dynamic edge modes in ideal and nonideal magnetic film edges”. In: Phys. Rev. B 74 (2006), p. 024424.

doi: 10.1103/PhysRevB.74.024424.

[106] K. Lenz, T. Schneider, G. Hlawacek, R. Narkowicz, S. Stienen, M. Lenz, R.

H¨ubner, J. Fassbender, and J. Lindner. “Successive trimming of a permalloy stripe to enchance the localized edge mode spectrum probed by FMR”. Poster presented at the International Conference on Magnetism, San Francisco, CA, USA. July 2018.

[107] V.E. Demidov, S.O. Demokritov, K. Rott, P. Krzysteczko, and G. Reiss. “Mode interference and periodic self-focusing of spin waves in permalloy microstripes”.

In: Phys. Rev. B 77 (2008), p. 064406.

doi: 10.1103/PhysRevB.77.064406.

[108] Z. Zhang, M. Vogel, J. Holanda, J. Ding, M.B. Jungfleisch, Y. Li, J.E. Pearson, R. Divan, W. Zhang, A. Hoffmann, Y. Nie, and V. Novosad. “Controlled inter-conversion of quantized spin wave modes via local magnetic fields”. In: Phys.

Rev. B 100 (2019), p. 014429.

doi: 10.1103/PhysRevB.100.014429.

[109] F. M. R¨omer, M. M¨oller, K. Wagner, L. Gathmann, R. Narkowicz, H. Z¨ahres, B. R. Salles, P. Torelli, R. Meckenstock, J. Lindner, and M. Farle. “In situ multifrequency ferromagnetic resonance and x-ray magnetic circular dichroism investigations on Fe/GaAs(110): Enhanced g-factor”. In: Appl. Phys. Lett. 100 (2012), p. 092402.

doi: 10.1063/1.3687726.

Bibliography 152

[110] V. Ney, B. Henne, J. Lumetzberger, F. Wilhelm, K. Ollefs, A. Rogalev, A.

Kovacs, M. Kieschnick, and A. Ney. “Coalescence-driven magnetic order of the uncompensated antiferromagnetic Co doped ZnO”. In:Phys. Rev. B 94 (2016), p. 224405.

doi: 10.1103/PhysRevB.94.224405.

[111] D.F. Swinehart. “The Beer-Lambert Law”. In:J. Chem. Educ.39 (1962), p. 333.

doi: 10.1021/ed039p333.

[112] S. Stienen. “Private communication”. Helmholtz-Zentrum Dresden-Rossendorf, Germany. 2019-2020.

[113] J. F¨orster. “Private communication”. Max Planck Institute for Intelligent Sys-tems, Stuttgart, Germany. 2019.

Acknowledgment

First of all I want to thank my supervisor and first evaluator, Univ.-Prof. Dr. Andreas Ney, for accepting me as a PhD student, giving me an opportunity to conduct such an interesting research and to be a part of a friendly and hard working research group, for always supporting and giving extremely valuable inputs in the moments of struggle and for guiding so skillfully in the right direction. I have learned a lot from him.

Also I want to thank the second evaluator Univ.-Prof. Dr. Andrii Chumak for evalu-ating this thesis.

My special gratitude is to Dr. Verena Ney or teaching me a lot, for productive discus-sions and the warmth she brings to our research group.

I want to thank my fellow PhD students (current and former) from our research group, Dr. Tadd¨aus Schaffers, Dr. Martin Buchner and Dipl. Ing. Julia Lumetzberger for being very friendly and for helping from time to time with the samples growth, with the STXM-FMR, conventional FMR, XRD and SQUID measuremens.

I am very thankful to Evelyn Rund for being so professional and patient, and for the delightful free time that we have spent together.

I want to thank very much our technical stuff, Sonja Roters, Ekkehard Nusko, Philip Lindner, Stephan Br¨auer, Ursula Kainz, Albin Schwarz, Ernst Vorhauer for being so responsive and fast, when it was needed.

Especially, I want to thank Alma Halilovic for teaching me so thoroughly, for her input and for the occasional help with the lithography process.

Additionally, I want to thank Univ.-Prof. Dr. Thomas Fromherz, Univ.-Prof. Dr.

Gunther Springholz, Assist.-Prof. Dr. Moritz Brehm and Dipl. Ing. DI Jeffrey Schus-ter.

Special thanks to our colleagues from Helmholtz-Zentrum Dresden-Rossendorf, Dres-den, Germany, Dr. J¨urgen Lindner, Dr. Kilian Lenz, Dr. Ryszard Narkowicz and Dr.

Sven Stienen, for the productive collaboration, discussions and their support with the microresonator/microantenna based FMR measurements.

Great thanks to Dr. Sebastian Wintz from Max Planck Institute for Intelligent Sys-tems, Stuttgart, Germany for his help with the multiple beam-times and for our very interesting discussions.

Big thanks to Dr. Sven Stienen and Dr. Thomas Fegeller for helping me to learn mi-cromagnetic simulations (MuMax3 and OOMMF) and Thomas additionally for helping during the beam-times.

Also I want to thank our collaborators from the University of Duisburg-Essen, Duis-burg, Germany, Dr. Ralf Meckenstock, Dr. Detlef Spoddig, Prof. Dr. Michael Farle, Dr. Katharina Ollefs, Prof. Dr. Heiko Wende.

I want to thank all the colleagues, who assisted during multiple beam-times: Dr. Hen-153

Bibliography 154

drik Ohldag from Lawrence Berkeley National Laboratory, US, Dr. Markus Weigand and Johannes F¨oster from Max Planck Institute for Intelligent Systems, Stuttgart, Germany and Sina Mayr from Paul Scherrer Institute, Villigen, Switzerland.

Finally, I want to thank my dear husband Oleg for his amazing patience, for his great support, for always being there for me, in person and distantly, for being so wise, listening and always finding the right words and, off course, for helping me to learn programming even better. I also want to thank my parents who inspired me to study physics and my parents-in-law who always supported me as their own daughter.

Curriculum Vitae

Academic CV

Address: Institute of Semiconductor and Solid State Physics, JKU Linz Tel.: +43 732 2468 9651

Fax: +43 732 2468 9696 E-mail: santa.pile@jku.at URL: www.jku.at Personal information:

• Date and place of birth: August 12th, 1986, Latvia

• Marital status: married Academic career:

since 2017 PhD Student (doctoral degree is planned for October-November 2020), Solid State Physics Division, Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Austria

2011 – 2017 Non-academic gap: 1 year worked as a project-manager in a web-sites developing company, after that for 5 years as an analyst in a software developing company.

2010 – 2011 Master of Science Degree, Faculty of Physics, University of Duisburg-Essen, Duisburg, Germany

2005 – 2011 Diploma Thesis, Magnetism Division, Physics Department, Lomonosov Moscow State University, Moscow, Russia

Research interests: Ferromagnetic thin films, X-ray absorption spectroscopy, Element-selective structure and magnetism, Magnetization dynamics.

Publications (ORCID: 0000-0001-7854-847X)

1. S. Pile, M. Buchner, V. Ney, T. Schaffers, J. Lumetzberger, K. Lenz, R. Narkow-icz, J. Lindner, H. Ohldag, and A. Ney. “Direct Imaging of the ac Component of Pumped Spin Polarization with Element Specificity”. In: Phys. Rev. Applied 14 (2020), pp. 034005.

doi: 10.1103/PhysRevApplied.14.034005.

155

Curriculum Vitae 156

2. S. Pile, T. Feggeler, T. Schaffers, R. Meckenstock, M. Buchner, D. Spoddig, B.

Zingsem, V. Ney, M. Farle, H. Wende, H. Ohldag, A. Ney, and K. Ollefs. “Non-standing spin-waves in confined micrometer-sized ferromagnetic structures under uniform excitation”. In: Appl. Phys. Lett. 116 (2020), pp. 072401.

doi: 10.1063/1.5139881.

3. J. Lumetzberger, M. Buchner, S. Pile, V. Ney, W. Gaderbauer, N. Daff´e, M.

V. Moro, D. Primetzhofer, K. Lenz, A. Ney. “Influence of structure and cation distribution on magnetic anisotropy and damping in Zn/Al doped nickel ferrites”.

In: Phys. Rev. B 102 (2020).

doi: 10.1103/PhysRevB.102.054402.

4. T. Schaffers, T. Feggeler, S. Pile, R. Meckenstock, M. Buchner, D. Spoddig, V.

Ney, M. Farle, H. Wende, S. Wintz, M. Weigand, H. Ohldag, K. Ollefs and A. Ney. “Extracting the Dynamic Magnetic Contrast in Time-Resolved X-ray Transmission Microscopy”. In: Nanomaterials 9 (2019), pp. 940.

doi: 10.3390/nano9070940.

5. B. Zingsem, T. Feggeler, R. Meckenstock, T. Schaffers, S. Pile, H. Ohldag, M.

Farle, H. Wende, A. Ney, K. Ollefs. “Evaluation protocol for revealing magnonic contrast in STXM-FMR measurements”. In: arXiv (2019).

https://arxiv.org/abs/1901.10595.

6. K.A. Bagdasarova, N.S. Perov, G.P. Karpacheva, S.E. Pile, and E.L. Dzidziguri.

“Magnetic Behavior of Carbon–Metal Nanocomposites”. In: Solid State Phenom-ena 168-169 (2011), pp. 349-352.

doi: 10.4028/www.scientific.net/SSP.168-169.349.

Participation in Conferences

Contributed Talks:

• S. Pile, T. Schaffers, S. Stienen, M. Buchner, S. Wintz, S. Mayr, J. F¨orster, V.

Ney, R. Narkowicz, K. Lenz, M. Weigand, J. Lindner, and A. Ney “Non-standing spin-waves in confined micron-sized structures imaged with time-resolved STXM”.

65th Annual Conference on Magnetism and Magnetic Materials (2020 MMM) 2020, November 2020, Virtual.

• S. Pile, T. Feggeler, T. Schaffers, R. Meckenstock, M. Buchner, D. Spoddig, V.

Ney, M. Farle, H. Wende, R. Narkowicz, K. Lenz, J. Lindner, H. Ohldag, K.

Ollefs, and A. Ney. “Spin wave modes in Ni80Fe20 micro stripes imaged using time-resolved X-ray microscopy”. Joint European Magnetic Symposia (JEMS) 2019, August 2019, Uppsala, Sweden.

• S. Pile, T. Feggeler, T. Schaffers, R. Meckenstock, M. Buchner, D. Spoddig, V.

Ney, M. Farle, H. Wende, R. Narkowicz, K. Lenz, J. Lindner, H. Ohldag, K.

Curriculum Vitae 157

Ollefs, and A. Ney. “Uniform and spin wave FMR modes in Ni80Fe20 micro stripes investigated by spatially and time-resolved X-ray detected ferromagnetic resonance”. The 40th International Conference on Vacuum Ultraviolet and X-ray Physics (VUVX 2019), June-July 2019, San Francisco, USA.

• S. Pile, T. Schaffers, T. Feggeler, R. Meckenstock, D. Spoddig, M. Buchner, K.

Ollefs, V. Ney, H. Ohldag, R. Narkowicz, K. Lenz, S. Wintz, J. Lindner, M.

Farle, H. Wende and A. Ney. “Investigation of the spin-waves using spatially and time-resolved X-ray detected ferromagnetic resonance in permalloy micro stripes”.

NANOFORUM 2019, May 2019, Linz, Austria.

• S. Pile, T. Schaffers, T. Feggeler, R. Meckenstock, D. Spoddig, M. Buchner, K.

Ollefs, V. Ney, H. Ohldag, R. Narkowicz, K. Lenz, J. Lindner, M. Farle, H.

Wende and A. Ney. “Magnetic behaviour investigation using simulations, con-ventional and space-time-resolved X-ray detected FMR”. Deutsche Physikalische Gesellschaft (DPG Spring Meeting 2019), March 2019, Regensburg, Germany.

• S. Pile, T. Schaffers, T. Feggeler, R. Meckenstock, D. Spoddig, M. Buchner, K. Ollefs, V. Ney, H.. Ohldag, M. Farle, H. Wende and A. Ney. “Dynamic magnetic behaviour investigation using spatially and time-resolved x-ray detected ferromagnetic resonance”. At: 14th Joint MMM-Intermag Conference (MMM 2019), January 2019, Washington, D.C., USA.

• Pile S.E.

“Dependence of Carbon–Metal Nanocomposites Properties with Synthesis Con-dition”.

XVII International student, postgraduate and young scientist conference ”Lomonosov”

– 2010, April 2010, Moscow, Russian Federation.

• Pile S.E., Anisonyan K.G., Kopiev D.U. “Magnetic properties of titanium oxide with iron oxide impurities”. XVI International student, postgraduate and young scientist conference “Lomonosov” – 2009, April 2009, Moscow, Russian Federa-tion. Marked as the best talk of the session.

Poster Presentations:

• S. Pile, T. Feggeler, T. Schaffers, R. Meckenstock, M. Buchner, D. Spoddig, V.

Ney, H. Wende, R. Narkowicz, K. Lenz, J. Lindner, H. Ohldag, K. Ollefs and A.

Ney. “Direct imaging of the localized spin dynamics in confined micro structures using time-resolved STXM”.WE-Heraeus-Seminar, January 2020, Physikzentrum Bad Honnef, Germany.

• S. Pile, T. Feggeler, T. Schaffers, R. Meckenstock, D. Spoddig, K. Ollefs, H.

Ohldag, M. Farle, H. Wende and A. Ney. “Magnetic behaviour of micron-sized objects using simulations, conventional and spatially resolved FMR techniques”.