• Keine Ergebnisse gefunden

The simulation was performed according to Fig. E.5 using the electrostatics and creeping flow modules. A fixed velocity u= (0,v0) was prescribed on the fluid inlet (Inlet boundary condition) with v0 =Q/W/h with h =120 µm andW according to Sec. E.1. A constant pressure of p=0 bar was prescribed for the fluid outlet (Outlet boundary condition). No-slip boundary conditions (u=0) were prescribed on all walls (Wall boundary condition). Constant potentials were prescribed on the two electrodes (Φ=U0/2on the left electrode andΦ=−U0/2 on the right electrode). Zero charge boundary conditions (gradient in normal direction is zero,

∂Φ/∂nˆ =0) are applied on all other walls. 250 particles are initialized on random positions on a straight line between the electrode and the dust blockers att =0. The separation efficiency is obtained by comparing the amount of particles entering the channel with the amount of particles exiting the channel after. For the mesh generation, the maximum element size in the post array was set to the 1.2 µm. The relative tolerance of the time-dependent GMRES solver was set to 1.1×10−5. The simulation duration was chosen according to the time that the particles need to pass the post array. 200 time steps have been calculated (albeit the GMRES solver adapts the time step according to the tolerance, the output times define the first time step taken by the solver before adapting).

2V1.5, https://de.mathworks.com/matlabcentral/fileexchange/34040-simple-tracker

W

Inlet Electrode Electrode Outlet

particle inlet line (250 particles)

Fig. E.5: Outline of the simulated geometry including the boundary conditions

Bibliography

Abd Rahman, N., F. Ibrahim, and B. Yafouz (2017). Dielectrophoresis for Biomedical Sciences Appli-cations: A Review.Sensors17, 449.

Abdallah, B. G., S. Roy-Chowdhury, J. Coe, P. Fromme, and A. Ros (2015). High Throughput Protein Nanocrystal Fractionation in a Microfluidic Sorter.Analytical Chemistry87, 4159–4167.

Ai, Y. and S. Qian (2010). DC dielectrophoretic particle–particle interactions and their relative motions.

Journal of Colloid and Interface Science346, 448–454.

Ai, Y., Z. Zeng, and S. Qian (2014). Direct numerical simulation of AC dielectrophoretic particle-particle interactive motions.Journal of colloid and interface science417, 72–9.

Alnæs, M. S., A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells (2014). Unified form language.

ACM Transactions on Mathematical Software40, 1–37.

Alnæs, M., A. Logg, K. A. Mardal, O. Skavhaug, and H. Langtangen (2009). Unified framework for finite element assembly.International Journal of Computational Science and Engineering4, 231.

Aoki, R., N. Shirao, S. Uchida, and F. Tochikubo (2016). Numerical Investigation of the Correlation between Electrode Structure and Number of Captured Particles in a Dielectrophoretic Device. Elec-tronics and Communications in Japan99, 21–28.

Arcenegui, J. J., A. Ramos, P. García-Sánchez, and H. Morgan (2013). Electrorotation of titanium mi-crospheres.Electrophoresis34, 979–86.

Arnold, W. M., H. P. Schwan, and U. Zimmermann (1987). Surface conductance and other properties of latex particles measured by electrorotation.The Journal of Physical Chemistry91, 5093–5098.

Aubry, N. and P. Singh (2006). Control of electrostatic particle-particle interactions in dielectrophoresis.

Europhysics Letters (EPL)74, 623–629.

Balasubramanian, P., R. J. Kinders, S. Kummar, et al. (2017). Antibody-independent capture of circu-lating tumor cells of non-epithelial origin with the ApoStream® system.PLOS ONE12. Ed. by J.

Najbauer, e0175414.

Ballantyne, G. and P. Holtham (2010). Application of dielectrophoresis for the separation of minerals.

Minerals Engineering23, 350–358.

Ballantyne, G. and P. Holtham (2014). Evaluation of the potential for using dielectrophoresis to separate minerals.Minerals Engineering55, 75–79.

Baylon-Cardiel, J. L., B. H. Lapizco-Encinas, C. Reyes-Betanzo, A. V. Chávez-Santoscoy, and S. O.

Martínez-Chapa (2009). Prediction of trapping zones in an insulator-based dielectrophoretic de-vice.Lab on a chip9, 2896–2901.

Bazant, M. Z. (2011). „Induced-Charge Electrokinetic Phenomena“. In:Electrokinetics and Electrohy-drodynamics in Microsystems. Ed. by A. Ramos. 1st ed. Wien, New York: Springer, pp. 221–297.

Becker, F. F., X. B. Wang, Y. Huang, R. Pethig, J. Vykoukal, and P. R. Gascoyne (1995). Separation of human breast cancer cells from blood by differential dielectric affinity.Proceedings of the National Academy of Sciences92, 860–864.

Benguigui, L. and I. J. Lin (1982). Dielectrophoretic Filtration of Nonconductive Liquids.Separation Science and Technology17, 1003–1017.

Bharti, B., G. H. Findenegg, and O. D. Velev (2014). Analysis of the Field-Assisted Permanent Assembly of Oppositely Charged Particles.Langmuir30, 6577–6587.

Bharti, B. and O. D. Velev (2015). Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions.Langmuir31, 7897–7908.

Bowen, W. R. and H. A. Sabuni (1994). Electroosmotic Membrane Backwashing.Ind. Eng. Chem. Res.

33, 1245–1249.

Braasch, K., M. Nikolic-Jaric, T. Cabel, E. Salimi, G. E. Bridges, D. J. Thomson, and M. Butler (2013).

The changing dielectric properties of CHO cells can be used to determine early apoptotic events in a bioprocess.Biotechnology and Bioengineering110, 2902–2914.

Braff, W., A. Pignier, and C. R. Buie (2012). High sensitivity three-dimensional insulator-based dielec-trophoresis.Lab on a chip12, 1327–31.

Castellanos, A., A. Ramos, A. González, N. G. Green, and H. Morgan (2003). Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws.Journal of Physics D: Applied Physics36, 2584–

2597.

Čemažar, J., T. A. Douglas, E. M. Schmelz, and R. V. Davalos (2016). Enhanced contactless dielec-trophoresis enrichment and isolation platform via cell-scale microstructures.Biomicrofluidics10, 014109.

Çetin, B., S. D. Öner, and B. Baranoğlu (2017). Modeling of dielectrophoretic particle motion: Point particle versus finite-sized particle.Electrophoresis38, 1407–1418.

Chaurey, V., A. Rohani, Y. H. Su, K. T. Liao, C. F. Chou, and N. S. Swami (2013). Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bioparticles in physiological media of high-conductivity.Electrophoresis34, 1097–1104.

Chen, H., Y. Liu, H. Zhang, L. Yu, Y. Zhu, and D. Li (2010). Separation and Manipulation of Rare-earth Oxide Particles by Dielectrophoresis.Chinese Journal of Chemical Engineering18, 1034–1037.

Cheng, I.-F., H.-C. Chang, D. Hou, and H.-C. Chang (2007). An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting.Biomicrofluidics1, 021503.

Cheng, I.-F., V. E. Froude, Y. Zhu, H.-C. Chang, and H.-C. Chang (2009). A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis.Lab on a Chip9, 3193.

Choongho Yu, J. Vykoukal, D. Vykoukal, J. Schwartz, Li Shi, and P. Gascoyne (2005). A three-dimensional dielectrophoretic particle focusing channel for microcytometry applications.Journal of Microelectromechanical Systems14, 480–487.

Chou, C. F. and F. Zenhausern (2003). Electrodeless Dielectrophoresis for Micro Total Analysis Systems.

IEEE Engineering in Medicine and Biology Magazine22, 62–67.

Chou, C.-F., J. O. Tegenfeldt, O. Bakajin, S. S. Chan, E. C. Cox, N. Darnton, T. Duke, and R. H.

Austin (2002). Electrodeless dielectrophoresis of single- and double-stranded DNA.Biophysical journal 83, 2170–9.

Chuang, C.-J., C.-Y. Wu, and C.-C. Wu (2008). Combination of crossflow and electric field for micro-filtration of protein/microbial cell suspensions.Desalination233, 295–302.

Crane, J. S. and H. A. Pohl (1968). A Study of Living and Dead Yeast Cells Using Dielectrophoresis.

Journal of The Electrochemical Society115, 584.

Crowther, C. V. and M. A. Hayes (2017). Refinement of insulator-based dielectrophoresis.The Analyst 142, 1608–1618.

Cummings, E. B. and A. K. Singh (2003). Dielectrophoresis in microchips containing arrays of insulat-ing posts: theoretical and experimental results.Analytical chemistry75, 4724–4731.

Decher, G. (1997). Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites.Science277, 1232–1237.

Delcea, M., H. Möhwald, and A. G. Skirtach (2011). Stimuli-responsive LbL capsules and nanoshells for drug delivery.Advanced Drug Delivery Reviews63, 730–747.

Ding, J., R. M. Lawrence, P. V. Jones, B. G. Hogue, and M. A. Hayes (2016). Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis. en.The Analyst141, 1997–2008.

Du, F., M. Baune, A. Kück, and J. Thöming (2008). Dielectrophoretic Gold Particle Separation. Sepa-ration Science and Technology43, 3842–3855.

Du, F., P. Ciaciuch, S. Bohlen, Y. Wang, M. Baune, and J. Thöming (2013). Intensification of cross-flow membrane filtration using dielectrophoresis with a novel electrode configuration.Journal of Membrane Science448, 256–261.

Du, F., A. Hawari, M. Baune, and J. Thöming (2009). Dielectrophoretically intensified cross-flow mem-brane filtration.Journal of Membrane Science336, 71–78.

Duffy, D. C., J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides (1998). Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).Analytical Chemistry70, 4974–4984.

Ermolina, I. and H. Morgan (2005). The electrokinetic properties of latex particles: comparison of electrophoresis and dielectrophoresis.Journal of colloid and interface science285, 419–28.

Evoy, S., N. DiLello, V. Deshpande, et al. (2004). Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry.Microelectronic Engineering 75, 31–

42.

Freer, E. M., O. Grachev, and D. P. Stumbo (2010). High-yield self-limiting single-nanowire assembly with dielectrophoresis.Nature Nanotechnology5, 525–530.

Fritsche, G. R., R. S. V. Bujas, and G. C. Caprioglio (1994). „Electrostatic separator using a bead bed“.

Gadish, N. and J. Voldman (2006). High-Throughput Positive-Dielectrophoretic Bioparticle Microcon-centrator.Analytical Chemistry78, 7870–7876.

Gallo-Villanueva, R. C., M. B. Sano, B. H. Lapizco-Encinas, and R. V. Davalos (2013). Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices.Electrophoresis.

Gan, L., T. C. Chao, F. Camacho-Alanis, and A. Ros (2013). Six-helix bundle and triangle DNA origami insulator-based dielectrophoresis.Analytical Chemistry85, 11427–11434.

Gangwal, S., O. J. Cayre, M. Z. Bazant, and O. D. Velev (2008). Induced-charge electrophoresis of metallodielectric particles.Physical review letters100, 058302.

García-Sánchez, P., Y. Ren, J. J. Arcenegui, H. Morgan, and A. Ramos (2012). Alternating Current Electrokinetic Properties of Gold-Coated Microspheres.Langmuir28, 13861–13870.

Gascoyne, P. R. C., J. Noshari, T. J. Anderson, and F. F. Becker (2009). Isolation of rare cells from cell mixtures by dielectrophoresis.Electrophoresis30, 1388–1398.

Gascoyne, P., C. Mahidol, M. Ruchirawat, J. Satayavivad, P. Watcharasit, and F. F. Becker (2002).

Microsample preparation by dielectrophoresis: isolation of malaria.Lab on a Chip2, 70.

Gascoyne, P. and S. Shim (2014). Isolation of Circulating Tumor Cells by Dielectrophoresis.Cancers6, 545–579.

Geuzaine, C. and J.-F. Remacle (2009). Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities.International Journal for Numerical Methods in Engineering79, 1309–

1331.

Gierhart, B. C., D. G. Howitt, S. J. Chen, R. L. Smith, and S. D. Collins (2007). Frequency Dependence of Gold Nanoparticle Superassembly by Dielectrophoresis.Langmuir23, 12450–12456.

Gimsa, J. (2001). A comprehensive approach to electro-orientation, electrodeformation, dielectrophore-sis, and electrorotation of ellipsoidal particles and biological cells.Bioelectrochemistry54, 23–31.

Green, N. G. and H. Morgan (1997). Dielectrophoretic investigations of sub-micrometre latex spheres.

Journal of Physics D: Applied Physics30, 2626–2633.

Green, N. G., A. Ramos, A. González, H. Morgan, and A. Castellanos (2000a). Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements.

Physical Review E61, 4011–4018.

Green, N. G., A. Ramos, A. González, H. Morgan, and A. Castellanos (2002a). Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation.Physical Review E66, 026305.

Green, N. G., A. Ramos, and H. Morgan (2000b). Ac electrokinetics: a survey of sub-micrometre particle dynamics. en.Journal of Physics D: Applied Physics33, 632–641.

Green, N., A. Ramos, and H. Morgan (2002b). Numerical solution of the dielectrophoretic and trav-elling wave forces for interdigitated electrode arrays using the finite element method.Journal of Electrostatics56, 235–254.

Green, N. G. (2011a). „Dielectrophoresis and AC Electrokinetics“. In:Electrokinetics and Electrohydro-dynamics in Microsystems. Ed. by Ramos. 1st ed. Wien, New York: Springer, pp. 61–84.

Green, N. G. (2011b). „Electrostatics and Quasielectrostatics“. In:Electrokinetics and Electrohydrody-namics in Microsystems. Ed. by A. Ramos. 1st ed. Wien, New York: Springer, pp. 29–59.

Green, N. G. and T. B. Jones (2007). Numerical determination of the effective moments of non-spherical particles. en.Journal of Physics D: Applied Physics40, 78–85.

Green, N. G. and H. Morgan (1999). Dielectrophoresis of Submicrometer Latex Spheres. 1. Experimen-tal Results.The Journal of Physical Chemistry B103, 41–50.

Gu, Q., M. Guezo, H. Folliot, T. Batte, S. Loualiche, and J. Stervinou (2017). Heating-Enhanced Di-electrophoresis for Aligned Single-Walled Carbon Nanotube Film of Ultrahigh Density.Nanoscale Research Letters12, 429.

Günther, S. and S. Odenbach (2016). A Method for Image Decomposition and Particle Quantification in Multiphase Systems.Transport in Porous Media112, 105–116.

Hanson, C. and E. Vargis (2017). Alternative cDEP Design to Facilitate Cell Isolation for Identification by Raman Spectroscopy.Sensors17, 327.

Hawari, A. H., F. Du, M. Baune, and J. Thöming (2015). A fouling suppression system in submerged membrane bioreactors using dielectrophoretic forces.Journal of Environmental Sciences29, 139–

145.

Hermanson, K. D., S. O. Lumsdon, J. P. Williams, E. W. Kaler, and O. D. Velev (2001). Dielec-trophoretic Assembly of Electrically Functional Microwires from Nanoparticle Suspensions.Science 294.

Hoettges, K. F., J. W. Dale, and M. P. Hughes (2007). Rapid determination of antibiotic resistance in E. coli using dielectrophoresis.Physics in Medicine and Biology52, 6001–6009.

Hölzel, R., N. Calander, Z. Chiragwandi, M. Willander, and F. F. Bier (2005). Trapping single molecules by dielectrophoresis.Physical Review Letters95, 18–21.

Honegger, T., K. Berton, E. Picard, and D. Peyrade (2011). Determination of Clausius–Mossotti factors and surface capacitances for colloidal particles.Applied Physics Letters98, 181906.

Hossan, M. R., R. Dillon, and P. Dutta (2014). Hybrid immersed interface-immersed boundary meth-ods for AC dielectrophoresis.Journal of Computational Physics270, 640–659.

Hossan, M. R., R. Dillon, A. K. Roy, and P. Dutta (2013). Modeling and simulation of dielectrophoretic particle–particle interactions and assembly.Journal of Colloid and Interface Science394, 619–629.

Huang, H. and H. D. Ou-Yang (2017). A novel dielectrophoresis potential spectroscopy for colloidal nanoparticles.Electrophoresis38, 1609–1616.

Huang, Y., R. Holzel, R. Pethig, and X.-B. Wang (1992). Differences in the AC electrodynamics of vi-able and non-vivi-able yeast cells determined through combined dielectrophoresis and electrorotation studies.Physics in Medicine and Biology37, 1499–1517.

Huang, Y., X. Wang, F. Becker, and P. Gascoyne (1997). Introducing dielectrophoresis as a new force field for field-flow fractionation.Biophysical Journal73, 1118–1129.

Hughes, M. P. and H. Morgan (1999). Dielectrophoretic Characterization and Separation of Antibody-Coated Submicrometer Latex Spheres.Analytical Chemistry71, 3441–3445.

Hughes, M. P. (2002a). Dielectrophoretic behavior of latex nanospheres: low-frequency dispersion. Jour-nal of colloid and interface science250, 291–4.

Hughes, M. P. (2002b).Nanoelectromechanics in Engineering and Biology. 1st ed. Boca Raton: CRC Press.

Hughes, M., H. Morgan, and M. Flynn (1999). The Dielectrophoretic Behavior of Submicron Latex Spheres: Influence of Surface Conductance.Journal of colloid and interface science220, 454–457.

Huotari, H., G. Trägårdh, and I. Huisman (1999). Crossflow Membrane Filtration Enhanced by an External DC Electric Field: A Review.Chemical Engineering Research and Design77, 461–468.

Iliescu, C., G. Tresset, and G. Xu (2007a). Continuous field-flow separation of particle populations in a dielectrophoretic chip with three dimensional electrodes.Applied Physics Letters90, 234104.

Iliescu, C., G. L. Xu, P. L. Ong, and K. J. Leck (2007b). Dielectrophoretic separation of biological samples in a 3D filtering chip.Journal of Micromechanics and Microengineering17, S128–S136.

Iliescu, C., G. Xu, F. C. Loe, P. L. Ong, and F. E. H. Tay (2007c). A 3-D dielectrophoretic filter chip.

Electrophoresis28, 1107–1114.

Iliescu, C., L. Yu, G. Xu, and F. E. H. Tay (2006). A Dielectrophoretic Chip With a 3-D Electric Field Gradient.Journal of Microelectromechanical Systems15, 1506–1513.

Jackson, J. D. (2013).Klassische Elektrodynamik. 5th ed. Berlin, Boston: Walter de Gruyter.

Jia, Y., Y. Ren, and H. Jiang (2015). Continuous dielectrophoretic particle separation using a microflu-idic device with 3D electrodes and vaulted obstacles.Electrophoresis36, 1744–1753.

Jones, P. V. and M. A. Hayes (2015). Development of the resolution theory for gradient insulator-based dielectrophoresis.Electrophoresis36, 1098–106.

Jones, P. V., S. Huey, P. Davis, R. McLemore, A. McLaren, and M. A. Hayes (2015). Biophysical sepa-ration of Staphylococcus epidermidis strains based on antibiotic resistance.The Analyst140, 5152–

5161.

Jones, P. V., S. J. R. Staton, and M. A. Hayes (2011). Blood cell capture in a sawtooth dielectrophoretic microchannel.Analytical and Bioanalytical Chemistry401, 2103–2111.

Jones, P. V., G. L. Salmon, and A. Ros (2017). Continuous Separation of DNA Molecules by Size Using Insulator-Based Dielectrophoresis.Analytical Chemistry89, 1531–1539.

Jones, T. and M. Washizu (1996). Multipolar dielectrophoretic and electrorotation theory.Journal of Electrostatics37, 121–134.

Jones, T. B. (1995).Electromechanics of Particles. 1st ed. Cambridge: Cambridge University Press.

Kadaksham, J., P. Singh, and N. Aubry (2005). Dielectrophoresis induced clustering regimes of viable yeast cells.Electrophoresis26, 3738–44.

Kang, H., B. Wang, S. Hong, J. J. Bae, D. Kim, C.-s. Han, Y. H. Lee, and S. Baik (2013). Dielec-trophoretic separation of metallic arc-discharge single-walled carbon nanotubes in a microfluidic channel.Synthetic Metals184, 23–28.

Kang, J., S. Hong, Y. Kim, and S. Baik (2009). Controlling the Carbon Nanotube-to-Medium Con-ductivity Ratio for Dielectrophoretic Separation.Langmuir25, 12471–12474.

Kang, K. H., Y. Kang, X. Xuan, and D. Li (2006a). Continuous separation of microparticles by size with Direct current-dielectrophoresis.Electrophoresis27, 694–702.

Kang, K. H., X. Xuan, Y. Kang, and D. Li (2006b). Effects of dc-dielectrophoretic force on particle trajectories in microchannels.Journal of Applied Physics99, 064702.

Kang, S. (2014). Dielectrophoretic motion of two particles with diverse sets of the electric conductivity under a uniform electric field.Computers & Fluids.

Kang, Y., D. Li, S. A. Kalams, and J. E. Eid (2008). DC-Dielectrophoretic separation of biological cells by size.Biomedical Microdevices10, 243–249.

Kawabata, T. and M. Washizu (2001). Dielectrophoretic detection of molecular bindings.IEEE Trans-actions on Industry Applications37, 1625–1633.

Kawale, D., E. Marques, P. L. J. Zitha, M. T. Kreutzer, W. R. Rossen, and P. E. Boukany (2017). Elastic instabilities during the flow of hydrolyzed polyacrylamide solution in porous media: effect of pore-shape and salt.Soft Matter13, 765–775.

Kim, B. C., S. W. Park, and D. G. Lee (2008a). Fracture toughness of the nano-particle reinforced epoxy composite.Composite Structures86, 69–77.

Kim, S., Y. Xuan, P. Ye, S. Mohammadi, and S. Lee (2008b). Single-walled carbon nanotube transistors fabricated by advanced alignment techniques utilizing CVD growth and dielectrophoresis. Solid-State Electronics52, 1260–1263.

Kim, U., J. Qian, S. A. Kenrick, P. S. Daugherty, and H. T. Soh (2008c). Multitarget Dielectrophoresis Activated Cell Sorter.Analytical Chemistry80, 8656–8661.

Kirby, R. C. (2004). Algorithm 839.ACM Transactions on Mathematical Software30, 502–516.

Kirby, R. C. and A. Logg (2006). A compiler for variational forms.ACM Transactions on Mathematical Software32, 417–444.

Koh, J. B. Y. and Marcos (2014). Effect of dielectrophoresis on spermatozoa.Microfluidics and Nanoflu-idics17, 613–622.

Kralj, J. G., M. T. W. Lis, M. A. Schmidt, and K. F. Jensen (2006). Continuous Dielectrophoretic Size-Based Particle Sorting.Analytical Chemistry78, 5019–5025.

Krupke, R., F. Hennrich, H. v. Löhneysen, and M. M. Kappes (2003). Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes.Science301.

Kumar, S., S. Rajaraman, R. A. Gerhardt, Z. L. Wang, and P. J. Hesketh (2005). Tin oxide nanosensor fabrication using AC dielectrophoretic manipulation of nanobelts.Electrochimica Acta 51, 943–

951.

LaLonde, A., A. Gencoglu, M. F. Romero-Creel, K. S. Koppula, and B. H. Lapizco-Encinas (2014).

Effect of insulating posts geometry on particle manipulation in insulator based dielectrophoretic devices.Journal of Chromatography A1344, 99–108.

LaLonde, A., M. F. Romero-Creel, and B. H. Lapizco-Encinas (2015a). Assessment of cell viability after manipulation with insulator-based dielectrophoresis.Electrophoresis36, 1479–1484.

LaLonde, A., M. F. Romero-Creel, M. A. Saucedo-Espinosa, and B. H. Lapizco-Encinas (2015b). Isola-tion and enrichment of low abundant particles with insulator-based dielectrophoresis. Biomicroflu-idics9, 064113.

Lapizco-Encinas, B. H., B. A. Simmons, E. B. Cummings, and Y. Fintschenko (2004a). Dielec-trophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators.

Analytical Chemistry76, 1571–1579.

Lapizco-Encinas, B. H., B. A. Simmons, E. B. Cummings, and Y. Fintschenko (2004b). Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Elec-trophoresis25, 1695–1704.

Lee, J.-W., K.-J. Moon, M.-H. Ham, and J.-M. Myoung (2008). Dielectrophoretic assembly of GaN nanowires for UV sensor applications.Solid State Communications148, 194–198.

Lewpiriyawong, N. and C. Yang (2014). Continuous separation of multiple particles by negative and positive dielectrophoresis in a modified H-filter.Electrophoresis35, 714–20.

Lewpiriyawong, N., C. Yang, and Y. C. Lam (2008). Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks.Biomicrofluidics2, 034105.

Lewpiriyawong, N., C. Yang, and Y. C. Lam (2012). Electrokinetically driven concentration of particles and cells by dielectrophoresis with DC-offset AC electric field.Microfluidics and Nanofluidics12, 723–733.

Li, J., Q. Zhang, D. Yang, and J. Tian (2004). Fabrication of carbon nanotube field effect transistors by AC dielectrophoresis method.Carbon42, 2263–2267.

Liao, K.-T., M. Tsegaye, V. Chaurey, C.-F. Chou, and N. S. Swami (2012). Nano-constriction device for rapid protein preconcentration in physiological media through a balance of electrokinetic forces.

Electrophoresis33, 1958–66.

Lin, I. J. and L. Benguigui (1982). Dielectrophoretic Filtration of Liquids. II. Conducting Liquids.

Separation Science and Technology17, 645–654.

Lin, I. J. and L. Benguigui (1985). Dielectrophoretic Filtration in Time-Dependent Fields.Separation Science and Technology20, 359–376.

Liu, L., C. Xie, B. Chen, and J. Wu (2015). Iterative dipole moment method for calculating dielec-trophoretic forces of particle-particle electric field interactions.Applied Mathematics and Mechanics 36, 1499–1512.

Liu, W., C. Wang, H. Ding, J. Shao, and Y. Ding (2016). AC Electric field Induced Dielectrophoretic Assembly Behaviour of Gold Nanoparticles in a Wide Frequency Range.Applied Surface Science 370, 184–192.

Liu, X., J. L. Spencer, A. B. Kaiser, and W. M. Arnold (2006). Selective purification of multiwalled carbon nanotubes by dielectrophoresis within a large array.Current Applied Physics6, 427–431.

Liu, X., J. L. Spencer, A. B. Kaiser, and W. Arnold (2004). Electric-field oriented carbon nanotubes in different dielectric solvents.Current Applied Physics4, 125–128.

Logg, A., K.-A. Mardal, and G. N. Wells, eds. (2012a).Automated Solution of Differential Equations by the Finite Element Method. 1st ed. Heidelberg, Dordrecht, London, New York: Springer.

Logg, A., K.-A. Mardal, and G. Wells, eds. (2012b).Automated Solution of Differential Equations by the Finite Element Method. Vol. 84. Lecture Notes in Computational Science and Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg.

Logg, A. and G. N. Wells (2010). DOLFIN: Automated finite element computing.ACM Transactions on Mathematical Software37, 1–28.

Loginov, M., M. Citeau, N. Lebovka, and E. Vorobiev (2013). Electro-dewatering of drilling sludge with liming and electrode heating.Separation and Purification Technology104, 89–99.

Lucci, M., P. Regoliosi, A. Reale, et al. (2005). Gas sensing using single wall carbon nanotubes ordered with dielectrophoresis.Sensors and Actuators B: Chemical111-112, 181–186.

Lungu, M. (2006). Separation of small metallic nonferrous particles in low concentration from mineral wastes using dielectrophoresis.International Journal of Mineral Processing78, 215–219.

Markx, G. H., P. A. Dyda, and R. Pethig (1996). Dielectrophoretic separation of bacteria using a con-ductivity gradient.Journal of Biotechnology51, 175–180.

Markx, G. H. and R. Pethig (1995). Dielectrophoretic separation of cells: Continuous separation.

Biotechnology and Bioengineering45, 337–343.

Markx, G. H., R. Pethig, and J. Rousselet (1997a). The dielectrophoretic levitation of latex beads, with reference to field-flow fractionation.Journal of Physics D: Applied Physics30, 2470–2477.

Markx, G. H., J. Rousselet, and R. Pethig (1997b). DEP-FFF: Field-Flow Fractionation Using Non-Uniform Electric Fields.Journal of Liquid Chromatography & Related Technologies20, 2857–2872.

Markx, G. H., M. S. Talary, and R. Pethig (1994). Separation of viable and non-viable yeast using dielectrophoresis.Journal of Biotechnology32, 29–37.

Mata-Gómez, M. A., R. C. Gallo-Villanueva, J. González-Valdez, S. O. Martínez-Chapa, and M. Rito-Palomares (2016a). Dielectrophoretic behavior of PEGylated RNase A inside a microchannel with diamond-shaped insulating posts.Electrophoresis37, 519–528.

Mata-Gómez, M. A., V. H. Perez-Gonzalez, R. C. Gallo-Villanueva, J. Gonzalez-Valdez, M. Rito-Palomares, and S. O. Martinez-Chapa (2016b). Modelling of electrokinetic phenomena for cap-ture of PEGylated ribonuclease A in a microdevice with insulating struccap-tures.Biomicrofluidics10, 033106.

Mernier, G., N. Piacentini, R. Tornay, N. Buffi, and P. Renaud (2011). Cell viability assessment by flow cytometry using yeast as cell model.Sensors and Actuators B: Chemical154, 160–163.

Miloh, T. (2011). Dipolophoresis of interacting conducting nano-particles of finite electric double layer thickness.Physics of Fluids23, 122002.

Mohammadi, M., M. J. Zare, H. Madadi, J. Sellarès, and J. Casals-Terré (2016). A new approach to design an efficient micropost array for enhanced direct-current insulator-based dielectrophoretic trapping.Analytical and bioanalytical chemistry.

Molla, S. H., J. H. Masliyah, and S. Bhattacharjee (2005). Simulations of a dielectrophoretic membrane filtration process for removal of water droplets from water-in-oil emulsions.Journal of Colloid and Interface Science287, 338–350.

Molla, S. and S. Bhattacharjee (2007). Dielectrophoretic levitation in the presence of shear flow: im-plications for colloidal fouling of filtration membranes.Langmuir : the ACS journal of surfaces and colloids23, 10618–27.

Moncada-Hernandez, H., J. L. Baylon-Cardiel, V. H. Pérez-González, and B. H. Lapizco-Encinas (2011). Insulator-based dielectrophoresis of microorganisms: Theoretical and experimental results.

Electrophoresis32, 2502–2511.

Morgan, H. and N. G. Green (2002).AC Electrokinetics: colloids and nanoparticles. 1st ed. Baldock:

Research Studies Press.

Morgan, H., A. G. Izquierdo, D. Bakewell, N. G. Green, and A. Ramos (2001). The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series.Journal of Physics D: Applied Physics34, 1553–1561.

Nerowski, A., M. Poetschke, M. Bobeth, J. Opitz, and G. Cuniberti (2012). Dielectrophoretic Growth of Platinum Nanowires: Concentration and Temperature Dependence of the Growth Velocity.

Langmuir28, 7498–7504.

Nikolic-Jaric, M., T. Cabel, E. Salimi, A. Bhide, K. Braasch, M. Butler, G. E. Bridges, and D. J. Thom-son (2013). Differential electronic detector to monitor apoptosis using dielectrophoresis-induced translation of flowing cells (dielectrophoresis cytometry).Biomicrofluidics7, 024101.

Nili, H. and N. G. Green (2014). Higher-order dielectrophoresis of nonspherical particles. Physical Review E89, 063302.

Oh, K., J.-H. Chung, J. J. Riley, Y. Liu, and W. K. Liu (2007). Fluid flow-assisted dielectrophoretic assembly of nanowires.Langmuir : the ACS journal of surfaces and colloids23, 11932–40.

O’Konski, C. T. (1960). Electric properties of macromolecules. V. Theory of ionic polarization in poly-electrolytes.The Journal of Physical Chemistry64, 605–619.

Olariu, M., A. Arcire, and M. E. Plonska-Brzezinska (2017). Controlled Trapping of Onion-Like Car-bon (OLC) via Dielectrophoresis.Journal of Electronic Materials46, 443–450.

Park, S., Y. Zhang, T.-H. Wang, and S. Yang (2011). Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity.Lab on a Chip11, 2893.

Patel, S., D. Showers, P. Vedantam, T.-R. Tzeng, S. Qian, and X. Xuan (2012). Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis.Biomicrofluidics6, 034102.

Perez, F. and B. E. Granger (2007). IPython: A System for Interactive Scientific Computing.Computing in Science & Engineering9, 21–29.