• Keine Ergebnisse gefunden

6 Ring extensions and equivalences

Im Dokument Static modules and equivalences (Seite 21-27)

In this section we investigate the behaviour of equivalences as considered in the previous sections under ring extensions.

6.1 Ring extensions. Let α : R → A be a morphism of associative rings with units. Related to it we have the induction functor

R-Mod→A-Mod, M 7→A⊗RM, and therestriction functor

A-Mod→R-Mod, AN 7→RN .

For a givenR-moduleP, puttingS = EndR(P) andT = EndA(A⊗RP) we have the ring morphism

β :S →T, f 7→id⊗f.

We will be interested inA-modules (resp.,T-modules) which have certain properties asR-modules (resp.,S-modules). Refining the notations introduced before we set

addAR(P) = {V ∈A-Mod |RV ∈add(P)}, AddAR(P) = {V ∈A-Mod |RV ∈Add(P)}, GenAR(P) = {V ∈A-Mod |RV ∈Gen(P)}, PresAR(P) = {V ∈A-Mod |RV ∈Pres(P)}, StatAR(P) = {V ∈A-Mod |RV ∈StatR(P)}, AdstTS(P) = {X ∈T-Mod |SX ∈Adst(P)}. It is easy to see (e.g., [13, Lemma 1.2]) that

A⊗RP ∈Gen(P) if and only if GenA(A⊗RP) = GenAR(P).

From Hom-tensor relations (e.g., [28, 15.6]) we have the 6.2 Basic isomorphisms.

(1) For any V ∈A-Mod there is a functorial S-module isomorphism ϕ : HomR(P, V)→HomA(A⊗RP, V), f 7→[a⊗p7→a·(p)f].

(2) For V =A⊗RP we get HomR(P, A⊗RP)'T and theR-module isomorphism id⊗ϕ :P ⊗SHomR(P, A⊗RP)→P ⊗ST.

Our main interest is to transfer properties of the R-module P to the A-module A⊗RP. It turns out that the conditions we are looking at can be transferred provided A⊗RP is P-static as an R-module. With the above preparations we can prove the following crucial result (see [20, Theorem 4.9, 5.5]):

6.3 Related equivalences. Assume A⊗RP ∈StatAR(P). Then:

(1) StatAR(P) = StatA(A⊗RP).

(2) AdstTS(P) = Adst(A⊗RP) and there is an equivalence HomA(A⊗RP,−) : StatAR(P)→AdstTS(P).

(3) If P is self-small then we have an equivalence

HomA(A⊗RP,−) : AddAR(P)→AddTS(S).

In each case the inverse functor is (A⊗RP)⊗T −.

Proof. A⊗RP ∈StatAR(P) means P ⊗SHomR(P, A⊗RP)'A⊗RP.

(1) Combined with an isomorphism from 6.2 we get the R-module isomorphism P ⊗ST 'A⊗RP.

This implies the isomorphisms for anyV ∈A-Mod,

(A⊗RP)⊗T HomA(A⊗RP, V) '(P ⊗ST)⊗T HomA(A⊗RP, V) 'P ⊗SHomA(A⊗RP, V)

'P ⊗SHomR(P, V).

Now V ∈ StatAR(P) means by definition that the last expression in this chain is isomorphic to V, whereas V ∈ StatA(A ⊗RP) means that the first expression is isomorphic to V.

(2) First notice the R-module isomorphisms for any T-moduleV, P ⊗SV '(P ⊗ST)⊗T V '(A⊗RP)⊗T V.

Assume V ∈AdstTS(P). Then we have the isomorphisms

V 'HomR(P, P ⊗SV) 'HomR(P,(A⊗RP)⊗T V) 'HomA(A⊗RP,(A⊗RP)⊗T V), provingV ∈AdstT(A⊗RP).

The same chain of isomorphisms shows AdstT(A⊗RP)⊂AdstTS(P).

In view of (1) and the first part of (2) the final assertion about the equivalence follows from the basic equivalence 2.4 applied to A⊗RP.

(3) We know that AddAR(P)⊂StatAR(P) = StatA(A⊗RP), and it is easy to verify that HP(AddAR(P))⊂AddTS(S)⊂AdstTS(P). 2

Combining the preceding observations we obtain:

6.4 w-Σ-quasi-projective modules. Let P be a w-Σ-quasi-projective R-module and assume A⊗RP ∈Pres(P). Then:

(1) A⊗RP is a w-Σ-quasi-projective A-module.

(2) If P is P-self-static we have an equivalence

HomA(A⊗RP,−) : PresAR(P)→AdstTS(P), with inverse functor (A⊗RP)⊗T −.

(3) If P is a self-small R-module then A⊗RP is a self-small A-module.

Proof. (1) By [30, 3.2], factor modules of P-presented modules by P-generated modules are P-presented. This implies

PresA(A⊗RP)⊂PresAR(P),

and by the functorial isomorphism in 6.2 we conclude that A⊗R P is w-Σ-quasi-projective as anA-module.

(2) By 4.5, P-presented modules are P-static and so A⊗RP ∈ Pres(P) implies A⊗RP ∈StatAR(P). Hence by 6.3, we have the inclusions

PresA(A⊗RP)⊂PresAR(P) = StatAR(P) = StatA(A⊗RP)⊂PresA(A⊗RP).

From this and 2.4 we obtain the equivalence as given.

(3) By [30, 5.1], forP self-small and w-Σ-quasi-projective, HomR(P,−) commutes with direct limits of P-presented modules. Since A⊗RP ∈ Pres(P), any infinite direct sum (A⊗RP)(Λ) is the direct limit of its finite partial sums and hence

HomA(A⊗RP,(A⊗RP)(Λ)) ' HomR(P,(A⊗RP)(Λ)) ' HomR(P, A⊗RP)(Λ)

' HomA(A⊗RP, A⊗RP)(Λ).

2 6.5 Self-tilting modules. Let P be a self-tilting and P-self-static R-module, and assume A⊗RP ∈Gen(P). Then A⊗RP is a self-tilting A-module and we have an equivalence

HomA(A⊗RP,−) : GenAR(P)→AdstTS(P), with inverse functor (A⊗RP)⊗T −.

Proof. By 6.4, we have the equalities

GenA(A⊗RP) = GenAR(P) = PresAR(P) = PresA(A⊗RP) = StatA(A⊗RP).

2 Recall that P is a tilting module in R-Mod if it is self-tilting and a subgenerator inR-Mod. We consider some special cases of this.

6.6 Corollary. Assume A⊗RP ∈Gen(P). Then:

(1) IfP is a projective generator in σ[P], thenA⊗RP is a projective generator in σA[A⊗RP].

(2) IfP is self-tilting andGen(P)is closed under extensions inR-Mod, thenA⊗RP is self-tilting and GenA(A⊗RP) is closed under extensions in A-Mod.

(3) Assume that P is P-self-static and (i) AR is flat or (ii) AA is finitely cogen-erated andA⊗RP is a faithful A-module.

If P is tilting in R-Mod, then A⊗RP is tilting in A-Mod.

Proof. (1) Recall thatP is a projective generator inσ[P] if and only if it is self-tilting and a generator in σ[P].

Let P be a projective generator in σ[P]. Then P is P-self-static by 3.4, and by 6.5, A⊗RP is self-tilting. Since σA[A⊗RP] ⊂ GenAR(P) = GenA(A⊗RP) we see that A⊗RP is a generator in σA[A⊗RP].

(2) Suppose Gen(P) is closed under extensions inR-Mod. Since GenA(A⊗RP) = GenAR(P) this implies that GenA(A⊗RP) is closed under extensions in A-Mod.

(3) Suppose R∈ σ[P], i.e., there is a monomorphism R →Pk, for some k ∈IN. IfAR is flat, thenA'A⊗RR→A⊗RPk is a monomorphism and henceA⊗RP is a subgenerator inA-Mod. If AA is finitely cogenerated and A⊗RP is faithful, then A⊂(A⊗RP)k, for some k ∈IN. Now the assertions follow from 6.5. 2 Remarks. Let P be finitely generated. IfP is self-tilting then it is a ∗-module and 6.5 implies Fuller [13, Theorem 2.2]. Condition (1) in 6.6 corresponds to [13, Corollary 2.4]. If P satisfies the condition in 6.6(2) then P is called quasi-tilting in R-Mod (see [8]) and we obtain [13, Corollary 2.5].

Acknowledgements. The author is very indebted to John Clark for helpful discussions on the subject.

References

[1] U. Albrecht, Endomorphism rings of faithfully flat abelian groups, Results in Math.17, 179-201 (1990).

[2] U. Albrecht, The construction of A-solvable abelian groups, Czech. Math. J. 44(119), 413-430 (1994).

[3] J.L. Alperin, Static modules and non-normal subgroups, J. Austral. Math. Soc. (Series A) 49, 347-353 (1990).

[4] D.M. Arnold, C.E. Murley, Abelian groups, A, such that Hom(A,-) pre-serves direct sums of copies ofA,Pacific J. Math. 56, 7-20 (1975).

[5] R.R. Colby, K.R. Fuller, Tilting, cotilting, and serially tilted rings, Comm. Algebra 18 (5), 1585-1615 (1990).

[6] R. Colpi, Some remarks on equivalences between categories of modules, Comm. Algebra 18 (6), 1935-1951 (1990).

[7] R. Colpi, Tiltings in Grothendieck categories, Preprint (1997).

[8] R. Colpi, G. D’Este, A. Tonolo, Quasi-tilting modules and counter equiv-alences,J. Algebra 191, 461-494 (1997).

[9] R. Colpi, C. Menini, On the structure of∗-modules, J. Algebra158, 400-419 (1993).

[10] R. Colpi and J. Trlifaj, Tilting modules and tilting torsion theories, J. Algebra178 (2), 614-634 (1995).

[11] N.V. Dung, D.V. Huynh, P. Smith, R. Wisbauer, Extending modules, Pitman Research Notes Math. 313 (1994).

[12] T.G. Faticoni, Categories of modules over endomorphism rings, Memoirs AMS 492 (1993).

[13] K.R. Fuller, ∗-Modules over Ring Extensions, Comm. Algebra 25(9), 2839-2860 (1997).

[14] D.K. Harrison, Infinite abelian groups and homological methods, Ann. Math 69, 366-391 (1959).

[15] A.I. Kashu, Radicals and torsions in modules (Russian), Shtiinza, Kishinev (1983).

[16] A.I. Kashu, Duality between localization and colocalization in adjoint situa-tions (Russian),Mat. Issled. 65, 71-87 (1982).

[17] A.I. Kashu, Module classes and torsion theories in Morita contexts (Russian), Mat. Issled.: Strongly regular algebras and PI-algebras, 3-14 (1987).

[18] T. Kato, Duality between colocalization and localization, J. Algebra55, 351-374 (1978).

[19] C. Menini and A. Orsatti, Representable equivalences between categories of modules and applications,Rend. Sem. Mat. Univ. Padova 82, 203-231 (1989).

[20] S.K. Nauman, Static modules and stable Clifford theory, J. Algebra128, 497-509 (1990).

[21] T. Onodera, Codominant dimensions and Morita equivalences, Hokkaido Math. J. 6, 169-182 (1977).

[22] A. Orsatti, Equivalenze rappresentabili tra categorie di moduli, Rend. Sem. Mat. Fiz. 60, 243-260 (1990).

[23] P. Rothmaler, Mittag-Leffler modules and positive atomicity, manuscript (1994).

[24] M. Sato, Fuller’s theorem on equivalences, J. Algebra 52, 274-284 (1978).

[25] M. Sato, On equivalences between module categories, J. Algebra59, 412-420 (1979).

[26] F. Ulmer, Localizations of endomorphism rings and fixpoints, J. Algebra43, 529-551 (1976).

[27] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading (1991).

[28] R. Wisbauer, Modules and algebras: Bimodule structure and group actions on algebras, Longman, Pitman Monographs81 (1996).

[29] R. Wisbauer, On module classes closed under extensions, Rings and radicals, B. Gardner, Liu Shaoxue, R. Wiegandt (ed.), Pitman RN 346, 73-97 (1996).

[30] R. Wisbauer, Tilting in module categories, Abelian groups, module theory, and topology, D. Dikranjan, L. Salce (ed.), Marcel Dekker LNPAM 201, 421-444 (1998).

[31] W. Zimmermann, Modules with chain conditions for finite matrix subgroups, J. Algebra190, 68-87 (1997).

[32] B. Zimmermann-Huisgen, Endomorphism rings of self-generators, Pacific J. Math. 61, 587-602 (1975).

Im Dokument Static modules and equivalences (Seite 21-27)