• Keine Ergebnisse gefunden

Resonance Angle Corrections due to Rising Liquid Level and Prism Tilting Angle

Im Dokument He on Silver Substrates (Seite 33-45)

As described in Section 7.2.2, there are two contributions to the shift in the reso-nance angle, θR, while the liquid helium level is rising (see Fig. D.1).

The first contribution is due to the fact that the optical path of the laser beam is modified (when the liquid level is higher than the incidence point of the laser beam, M, on the mirror1) by the refractive index of the liquid,nLiqHe. This has to be corrected until the liquid level reaches the level where the laser beam is incident on the glass prism, P. At this two particular points of incidence (i. e. Mi and Pi) the laser beam is strongly scattered due to the meniscus of the liquid helium climbing on the mirror and on the prism, respectively.

The second contribution is due to the tilting angle of the prism (the upper surface of the prism is not parallel to the liquid level). In this case, the points Mi and Pi on the incidence side of the prism will not be at the same level with Pe and Me where the laser beam emerge from the prism and is reflected by the exit mirror.

This means that, if the prism is not parallel to the liquid level, the range where the beam is disturbed by the raising liquid becomes broader. In the following we will treat these contributions separately.

At the end the way we measured the tilting angle will be described and we will es-timate the critical angle of total reflection in the case of liquid/gas helium interface.

• Rising Liquid Level. A sketch of the setup is given in Fig. D.1.

We will calculate the angular displacement, ∆θLG, of the laser beam as the difference between the angle when crossing the liquid, θL, and the angle in gas, θG,2 ∆θGLG−θL.

At point P, when only He gas is present we have

nHeGassinγ2 =nP rsinγ3, (D.1)

and θG3P r.

When the liquid reaches the Level 2, at point N, we have

nHeLiqsinγ22=nHeGassinβ2, (D.2)

1The indicesiandedenotesincidentandemerging, respectively.

2In this case,θG=θR.

and at point O,

nHeGassinβ1 =nP rsinγ32, (D.3)

with θL32P r and β222P r.

Figure D.1.: The rising helium level disturbs the measurement in an SPR setup used to measure thick helium films adsorbed on Ag (see Section 7.2.2). When the liquid level rises above the laser beam level (i. e. from Level 0 to Level 2), the resonance angle, θR, jumps to θL.

The inset at the upper right side shows a zoom in at the interface liquid-gas, and the important angles, see text for details.

The inset at the top left side shows the influence of tilting. The prism is inclined with a tilting angle ,τ, towards the side of the laser beam incidence. The vertical axis,AV, and the prism axis, AG, are shown.

The values of the following parameters are given or could be measured: nP r = 1.515, nHeGas = 1.000066,nHeLiq = 1.028, αP r = 75, α= 35.13

After a simple calculation one gets θGP r+ arcsin

whereαm is the angle of the laser beam with the mirror, which can be varied from outside3.

Thus, the angular displacement is a function of the angleαm,∆θLG =f(αm).

• Tilting of the Prism. If the prism axis, AG, is inclined with an angle towards the side where the laser beam is incident, then the angle between the AG and the vertical axis AV is the tilting angle, τ (see the left upper inset in Fig. D.1)

The procedure to determine the shift in the resonance angle is the same as in the case without tilting. The contribution to the resonance shift due to the tilting angle is given by:

θeLP r−arcsin nHeGas

nP r sin (αP r+ τ−arcsin

"

nHeLiq

nHeGascos(α+αm−τ)

#

−αP r,

(D.6)

which in the case of no tilting, τ = 0 will give the same solution as Eq. D.5.

• Measuring the Tilting Angle. We measured the tilting angle,τ = 0 using the simple setup sketched in Fig. D.2. The beam coming from a laser which was carefully horizontally levelled goes through a pinholeL made in a screen (placed in a plane perpendicular to the laser beam), is deflected by a 45

Figure D.2.: Setup for measuring the tilting angle of the prism. Sc-Screen,M-Mirror.

mirrorM (mounted outside the cryostat) and enters the glass prism from the bottom.

3The connection with the incidence angle,αi is simplyαm= 90αi.

The beam is retroreflected by the Ag film deposited onto the prism and re-flected by the same mirror on the screen. The displacement, LB, between the pinhole and the place where the laser beam hits the screen after reflection is measured . The distance, LA, from the screen to the prism surface could be measured. From the simple triangle geometry, we get

tan 2τ = LB

LA, (D.7)

hence τ = 1

2arctan LB

LA

. (D.8)

In the case of our experiment we find τ = 0.76.

• Critical Angle of Total Reflection. The critical angle of total reflection, θc, for the interface between liquid helium and helium gas is given by

θc = arcsin nHeGas nHeLiq

!

, (D.9)

which has a value of θc = 76.62.

Bibliography

[Avn84] Avnir, D., D. Farin and P. Pfeifer: Molecular Fractal Surfaces.

Nature (London) , 308, 261, (1984).

[Bea91] Beaglehole, D., E. Z. Radlinska, B. W. Nienham and H. K.

Christenson: Inadequacy of Lifshitz theory for thin liquid films. Phys.

Rev. Lett. , 66, 2084, (1991).

[Big92] Bigelow, N., P. J. Nacher and J. Dupont-Roc: Experimental Ap-proaches to the Wetting Transition with Helium–Films. J. Low Temp.

Phys. , 89, 135, (1992).

[Bot90] Bottcher, A., R. Imbeck, A. Morgante, and G. Ertl: Nonadi-abatic Surface Reaction:Mechanism of Electron Emission in the Cs+O2 System. Phys. Rev. Lett. , 65, 2035, (1990).

[Bot91] Bottcher, A., R. Grobecker, R. Imbeck, A. Morgante, and G. Ertl: Electron Emission During Oxidation of Cs–Films. J. of Chem.

Phys. , 95, 3756, (1991).

[Bra32] Brady, J. J.: The Photoelectric Properties of Alkali Metal Films as a Function of their Thickness. Phys. Rev. , 41(1), 613, (1932).

[Bra93] Bradberry, G. W.,P. S. Vukusic andJ. R. Sambles: Study of the adsorption of alkanes on a thin-metal film. J. Chem. Phys. , 98(1), 651, (1993).

[Bru38] Brunauer, S., P. H. Emmett and E. Teller. J. Am. Chem. Soc. , 60, 309, (1938).

[Bru40] Brunauer, S.,L. S. Deming,W. S. Deming andE. Teller. J. Am.

Chem. Soc. ,62, 1723, (1940).

[Bru00] Bruschi, L. and G. Mistura: Triple-Point Wetting of Argon and Methane on Gold. Phys. Rev. B , 61, 4941, (2000).

[Bus96] Bussjager, R. J. and H. A. MacLeod: Using Surface Plasmon Res-onances to the Durability of Silver-Copper Films. Appl. Opt. , 35(25), 5044, (1996).

[Cah77] Cahn, J. W.: Critical point wetting. J. Chem. Phys. , 66, 3667, (1977).

[Che88] Cheng, E. and M. W. Cole: Retardation and Many–Body Effects in Multilayer–Film Adsorption. Phys. Rev. B , 38(2), 987, (1988).

[Che91a] Cheng, E., A. Chizmeshya, M. W. Cole, J. R. Klein, J. Ma, W.

F. Saam and J. Treiner: New Phenomena Predicted for Films on Weak–Binding Surfaces. Physica A , 177, 466, (1991).

[Che91b] Cheng, E., M. W. Cole, W. F. Saam and J. Treiner: Helium Prewetting and Nonwetting on Weak-Binding Substrates. Phys. Rev.

Lett. ,67, 1007, (1991).

[Che92a] Cheng, E., M. W. Cole,W. F. Saam and J. Trainer: Phase Tran-sitions in Multilayer Helium Systems. Phys. Rev. B ,46, (1992).

[Che92b] Cheng, E., M. W. Cole, W. F. Saam and J. Treiner: Prewetting of 4He on a Layered Substrate. J. Low Temp. Phys. , 89, 657, (1992).

[Che93a] Cheng, E., M. W. Cole, J. Dupont–Roc and J. Treiner: Novel Wetting Behaviour in Quantum Films. Rev. Mod. Phys. ,65, 557, (1993).

[Che93b] Cheng, E., G. Mistura,H. C. Lee,M. H. W. Chan, M. W. Cole, C. Carraro, W. F. Saam and F. Toigo: Wetting Transitions of Liquid Hydrogen Films. Phys. Rev. Lett. , 70, 1854, (1993).

[Col74] Cole, M. W.: Electronic surface states of liquid helium. Rev. Mod.

Phys. ,46, 451, (1974).

[Con96] Conradt, R. N. J.: Wasserstofffilme unterhalb des Tripelpunkts. PhD Thesis, University of Konstanz, , (1996).

[Dem95] Demolder, B., F. Raad and J. Dupont-Roc: Investigation of the Effect of Oxygen Impurities on the Wetting Properties of Alkali Metal Surfaces by Liquid Helium. J. Low Temp. Phys. ,101(3/4), 337, (1995).

[DR90] Dupont-Roc, J., M. Himbert, N. Pavloff and J. Treiner: Inho-mogeneous Liquid 4He: A Density Functional Approach with A Finite–

Range Interaction. J. Low Temp. Phys. , 81, 31, (1990).

[DR02] Dupont-Roc, J.: Dynamics of liquid helium wetting on real surfaces.

J. Low Temp. Phys. ,126(1), (2002).

[Dzy60] Dzyaloshinskii, I. E., E. M. Lifschitz and L. P. Pitaevskii: Van der Waals Forces in Liquid Films. Sov. Phys. J. , 37(10), 161, (1960).

Bibliography

[Dzy61] Dzyaloshinskii, I. E., E. M. Lifschitz and L. P. Pitaevskii: The General Theory of Van der Waals Forces. Advanc. Phys. ,10, 165, (1961).

[Ebn77] Ebner, C. and W. F. Saam: New Phase-Transition Phenomena in Thin Argon Films. Phys. Rev. Lett. ,38, 1486, (1977).

[Emm37] Emmett, P. H. and S. Brunauer. J. Am. Chem. Soc. , 59, 1553, (1937).

[Fre49] Frenkel, J.: Kinetic Theory of Liquids, Oxford University Press, New York. (1949).

[Fub04] Fubel, A.: Benetzungsstudien von Quantenflussigkeiten auf Alkalimet-alloberflächen unterschiedlicher Rauigkeit. Diplomarbeit, University of Konstanz, , (2004).

[Gre75] Gregory, P. E., P. Chye,H. Sunami and W. E. Spicer: The Oxi-dation of Cs–UV Photoemission Studies. J. of Appl. Phys. , 46(8), 3525, (1975).

[Hal48] Halsey, G. D.: Physical Adsorption on Non–Uniform Surfaces. J.

Chem. Phys. , 16(10), 931, (1948).

[Hal95] Hallock, R. B.: Review of Some of the Experimental Evidence for the Novel Wetting of Helium on Alkali Metals. J. Low Temp. Phys. , 101(1/2), 31, (1995).

[Hau83] Hauge, E.H. and M. Schick: Continous and first–order wetting tran-sition from van der Waals theory of fluids. Phys. Rev. B , 27(7), 4288, (1983).

[Hil49] Hill, T. E.: Physical Adsorption and the Free Volume Model for Liquids.

Journ. Chem. Phys. , 17, 590, (1949).

[Hor74] Hornauer, D.,H. KapitzaandH. Raether: The dispersion relation of Surface Plasmons on rough surfaces. J. Phys. D ,1, (1974).

[Iin86] Iino, M., M. Suzuki and A. J. Ikushima. Can. J. Phys. , 65, 155, (1986).

[Ive37] Ives, H. E. and H. B. Briggs: Optical Constants of Rubidium and Cesium. J.O.S.A. , 27, 395, (1937).

[Joh72] Johnson, P. B. and R. W. Christy: Optical Constants of Noble Met-als. Phys. Rev. B , 6, 4370, (1972).

[Kar90] Kardar, M.andJ. O.. Indekeu: Wetting of Fractally Rough Surfaces.

Phys. Rev. Lett. ,65(5), 662, (1990).

[Kel93] Kellay, H.,D. BonnandJ. Meunier: Prewetting in a Binary Liquid Mixture. Phys. Rev. Lett. ,71, 2607, (1993).

[Ket92] Ketola, K. S.,S. Wang andR. B. Hallock: Anomalous Wetting of Helium on Cesium. Phys. Rev. Lett. ,68, 201, (1992).

[Kli95] Klier, J., P. Stefanyiand A. F. G. Wyatt: Contact angle of liquid

4He on a Cs surface. Phys. Rev. Lett. ,75, 3709, (1995).

[Kli96] Klier, J. and A. F. G. Wyatt: Excitations at the liquid 4He–Cs in-terface. Czech. J. Phys. , 46(1), 439, (1996).

[Kli98a] Klier, J. and A. F. G. Wyatt: Contact Angle of Liquid 4He on Cs:

Evidence for Ripplons at the He–Cs Interface. J. Low Temp. Phys. , 110(3/4), 919, (1998).

[Kli98b] Klier, J. and A. F. G. Wyatt: The ´thin–film´ state of 4He on Cs and Rb. J. Low Temp. Phys. , 113(5/6), 817, (1998).

[Kli03] Klier, J.,F. Schletterer,P. LeidererandV. Shikin: Equilibrium helium film in the thick film limit. Low Temp. Phys. , 29, 957, (2003).

[Kre68] Kretschmann, E. and H. Raether: Radiative Decay of Non–

Radiative Surface Plasmons Excited by Light. Z. Naturforsch. , A23, 2135, (1968).

[Kri84] Krimm, J.,J. G. DashandJ. Suzanne: Triple–Point Wetting of Light Molecular Gases on Au(111) Surfaces. Phys. Rev. Lett. , 52(8), 640, (1984).

[Lan16] Langmuir, I. J. Amer. Chem. Soc. ,38, 2221, (1916).

[Lan18] Langmuir, I. J. Amer. Chem. Soc. ,40, 1761, (1918).

[Lan87] Landau, L. D. and E. M. Lifschitz: Lehrbuch der Theoretischen Physik, III Quantenmechanik, Kap. 25. (1987).

[Lap07] Laplace, P. S. de: Supplement a la Theorie de l’Action Capillaire.

(1807).

[Lyn85] Lynch, D. W.and W. R. Hunter: Handbook of Optical Constants of Solids. (1985).

Bibliography

[Man77] Mandelbrot, B.: Fractals - Form, Chance and Dimensions. Freeman, San Francisco , , (1977).

[Man82] Mandelbrot, B.: Fractal Geometry of Nature. Freeman, San Fran-cisco , , (1982).

[Mec99] Mecke, K. R. and S. Dietrich: Effective Hamiltonian for Liquid-Vapor Interfaces. Phys. Rev. E , 59, 6766, (1999).

[Mec01] Mecke, K. R.: Thermal Fluctuations of thin liquid films. J. Phys.:

Cond. Matter , 13, 4615, (2001).

[Mec04] Mecke, K. R.: Thermal Fluctuations of helium thin liquid films. Private Communication, , (2004).

[Mis94] Mistura, G., H. C. Lee and M. H. W. Chan: Quartz microbalance study of Hydrogen and Helium adsorbed on a Rubidium Surface. Physica B , 194, 661, (1994).

[Mol80] Moldover, M. R. and J. W. Cahn: An Interface Phase Transition:

Complete to Partial Wetting. Science , 207, 1073, (1980).

[Mug98] Mugele, F., A. Rettenberger, J. Boneberg and P. Leiderer: New design of a variable-temperature ultrahigh vacuum scanning tun-nelling microscope. Rev. Sci. Inst. ,69, 1765, (1998).

[Nac91] Nacher, P.J. and J.Dupont–Roc: Experimental Evidence for Non-wetting with Superfluid Helium. Phys. Rev. Lett. , 67(21), 2966, (1991).

[Och97] Ochmann, M.: Ein Spezieller Probenträger für ein Tieftemperatur-Tunnelmikroskop. , (1997).

[Och98] Ochmann, M.: Computerprogramm: Transfermatrizen zur Reflexions-berechnung an Schichtsystemen. , (1998).

[Ott68] Otto, A.: Eine Neue Methode der Anregung Nichtstrahlender Ober-flächenplasmaschwingungen. phys. stat. sol. , 26, K99, (1968).

[Pan83] Pandit, R. and M. E. Fischer: Wetting Transitions near Bulk Triple Points. Phys. Rev. Lett. ,51, 1772, (1983).

[Pfe88] Pfeiffer, P. and P. W. Schmidt: Pfeiffer and Schmidt Reply. Phys.

Rev. Lett. , 60, 1345, (1988).

[Pfe89] Pfeiffer, P., Y. J. Wu, M. W. Cole and J. Krim: Multilayer Ad-sorption on a Fractally Rough Surface. Phys. Rev. Lett. , 62, 1997, (1989).

[Poc77] Pockrand, I., J. D. Swalen, J. G. Gordon and M. R. Philpott: Surface Plasmon Spectroscopy of Organic Monolayers Assemblies. Surf.

Sci. ,74, 237, (1977).

[Pri94] Pricaupenko, L.and J. Treiner: Excitations of Inhomogeneous Liq-uid 4He: A Density Functional Study. J. Low Temp. Phys. , 94, 19, (1994).

[Rae88] Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Band 111. (1988).

[Rei98] Reinelt, D.,J. KlierandP. Leiderer: Wetting studies of liquid 4He on various Cs surfaces. J. Low Temp. Phys. , 113, 805, (1998).

[Rei99] Reinelt, D.: Benetzungsverhalten von 4He auf Cäsiumsubstraten. Dok-torarbeit, Universtity of Konstanz, , (1999).

[Rei00] Reinelt, D., A. Engel and J. Klier: Dewetting of helium films on cesiated surfaces. Physica B , 284, 149, (2000).

[Rol97] Rolley, E.and C. Guthmann: Optical Measurements of Contact An-gle of Liquid Helium on Cesium. J. Low Temp. Phys. , 108(1/2), 1, (1997).

[Ros98] Ross, D., P. Taborek and J. E. Rutledge: Contact angle of super-fluid Helium droplets on a Cesium surface. J. Low Temp. Phys. , 111, 1, (1998).

[Row82] Rowlinson, J. S. and B. Widom: Molecular Theory of Capillarity.

(1982).

[Rut92] Rutledge, J. E.and P. Taborek: Prewetting Phase Diagram of 4He on Cesium. Phys. Rev. Lett. ,69, 937, (1992).

[Rut95] Rutledge, J. E.,D. RossandP. Taborek: The Solid–Liquid Surface Tension at Helium/Cesium Interface. J. Low Temp. Phys. , 101(1/2), 216, (1995).

[Rut98] Rutledge, J. E.,D. RossandP. Taborek: Direct optical imaging of superfluid4He droplets on cesium surface. J. Low Temp. Phys. ,113(5/6), 811, (1998).

[Saa92] Saam, W. F.,J. Treiner,E. Chengand M. W. Cole: Helium Wet-ting and PrewetWet-ting Phenomena at Finite Temperatures. J. Low Temp.

Phys. ,89, 637, (1992).

Bibliography

[Sab73] Sabisky, E. S. and C. H. Anderson: Verification of the Lifshitz The-ory of the van der Waals Potential Using Liquid–Helium Films. Phys.

Rev. A , 7, 790, (1973).

[Ste94] Stefanyi, P.,J. Klier and A. F. G. Wyatt: Residual Mass Flow of

4He on a Nonwetted Cs Surface. Phys. Rev. Lett. , 73, 692, (1994).

[Tab92] Taborek, P. and J. E. Rutledge: Novel Wetting Behaviour of 4He on Cesium. Phys. Rev. Lett. , 68, 2184, (1992).

[Tab93] Taborek, P. and J. E. Rutledge: Tuning the Wetting Transition:

Prewetting and Superfluidity of 4He on Thin Cesium Substrates. Phys.

Rev. Lett. , 71(2), 263, (1993).

[Tab94] Taborek, P. and J. E. Rutledge: Wetting Transitions of Helium on Weak Binding Substrates. Physica B, 197, 283, (1994).

[Vor01] Vorberg, J.,S. HerminghausandK. Mecke: Adsorption Isotherms of Hydrogen: The Role of Thermal Fluctuations. Phys. Rev. Lett. , 87, 196105, (2001).

[Wel88] Wellford, K.: The Method of Attenuated Total Reflection. in Surface Plasmon Polaritons, Band 9 IOP Short Meetings, Page 25, (1988).

[Wil88] Wilson, P. W.: Determining optical properties of thin films by modi-fied attenuated total reflection with a charge coupled device. J. Vac. Sci.

Technol. A , 6(4), 2386, (1988).

[You05] Young, T.: An Essay on the Cohesion of Fluids. Phil. Trans. Royal Soc. , 95, 65, (1805).

[Zar77] Zaremba, E. and W. Kohn: Theory of helium adsorption on simple and noble-metal surfaces. Phys. Rev. B ,15, 1769, (1977).

Im Dokument He on Silver Substrates (Seite 33-45)