• Keine Ergebnisse gefunden

XDS step Input files Output files

4.2.7 Requirements for using XDSi

To run XDSi you need to have only a few things:

• You have to have a workstation running a X Window System and the wish!

• XDS, POINTLESS, XDSSTAT, gnuplot and kpdf must be installed and executable by the user!

4 XDSi - A Graphical User Interface for XDS and beyond

Figure 4.12:Plot showing I/Sigma of the final table of CORRECT.LP (Signal to noise ratio -3.0) of 2 COR-RECT.LPs. Red the I/Sigma values for the CORRECT.LP located inResultdir, green the values for the CORRECT.LP to be compared.

4.2 XDSi

Figure 4.13:Plot showing Rmeas of the final table of CORRECT.LP (Signal to noise ratio -3.0) of 2 COR-RECT.LPs. Red the Rmeasvalues for the CORRECT.LP located inResultdir, green the values for the CORRECT.LP to be compared.

4 XDSi - A Graphical User Interface for XDS and beyond

• You have to have a data set and a (writable) directory to store your results!

4.2.8 Errors

Errors using XDSi can happen at different stages of the processing. Especially plotting and spacegroup assignment are sensitive to poor data quality.

• POINTLESS:If the "quality" of the frames that are to be processed usingXDS POINT-LESS mode or XDS Fullauto mode is very poor, it can happen that POINTLESS can not process the file INTEGRATE.HKL (because of an erroneous INTEGRATE step by XDS). That leads to a stop of XDSi. This means that you can not useXDS POINTLESSto process this data set. IfXDS Fullautogets stuck because of that reason it can be restarted, giving the sameResultdirandFullautodir.XDSi Fullauto modethen ignores the already processed data sets (including the erroneous one) and goes on processing the remain-ing ones. In general, one should use XDS POINTLESS or XDS Fullauto mode only for reasonably good data sets.

• Plotting:Low data quality can lead to some "ugly" numbers within the data that shall be plotted. This can lead to empty plots or to errors that stop the whole plotting process and XDSi.

4.3 Outlook

4.3 Outlook

XDSi now can do more than was planned initially. But still there are a lot of things that could be improved or added. First of allXDS Fullautomodeshould be usable with other detectors (at the moment it just works for the PILATUS-6M Pixeldetector). The possibility to process data inFullauto modesetting Friedels Law to false also should be given.

On the other hand XDS Fullauto modecould be extended to include processing steps using the software XSCALE and/or XDSCONV, belonging to the XDS software package, to further process the result file XDSASCII.HKL generated by XDS in the CORRECT step, thus gener-ating a file readable by software used in further steps in the way of solving the threedimensional structure of the crystallized protein.

XDS mode could have the additional ability to rerun INTEGRATE and CORRECT with an automatic move of GXPARM to XPARM. It would also be helpful if XDSi offered the possi-bility to open the most important ".pck" files written in the different steps of XDS to finetune some of the parameters of XDS.INP. Also additional options of XDS.INP could be added to the

"View and change values in XDS.INP" dialogue.

As mentioned in section4.2.5, the plots are generated by extracting data from different output files. These extracted numbers are stored in files on their own and are plotted using the software gnuplot. The pictures output by gnuplot are then converted into a pdf file. Sometimes it could be useful to open plots like the scalefactors plot (described as No. 1 in section 4.2.5) or the plot of Rmeas per frame (No. 16 in section4.2.5) or any other of those plots with very many measurements separately using gnuplot because in this way one could identify the exact frame number of an "outlier" by pointing on it with the mouse. Gnuplot then shows the congruent value of the x-scale (=frame number) of this outlier. It would be even better to develop an algorithm within XDSi identifying such outliers.

If the user wants to repeat a run made in XDS mode or in XDS POINTLESS with slight changes of values in XDS.INP (e.g. changingSpot range) in a new directory he can not entrain the values of the last run but has to point once again to his first frame, leading to reading (and setting) of the values in the frameheader, again. So manual changes done during the last run are lost. The possibility to "copy" these values into a new directory would be a great feature.

If a user starts XDSi on a machine where he can not execute XDSSTAT or gnuplot, XDSi fails to plot the data and the whole program stops displaying an error message. This is

disadvan-4 XDSi - A Graphical User Interface for XDS and beyond

tageous and makesXDS Fullauto modeunusable. Enabling XDSi to check the executability of these programs and enable or disable parts of the plotting according to their availability would be an enhancement.

If XDSi gets stuck, it will display an error window telling where it (the underlying Tcl script) got stuck. These error messages are not very user friendly. So the next step could be to improve error handling in a way that the messages are displayed in the infobox of XDSi and that they become more "informative". Errors occuring during an XDS Fullauto run could be ignored concerning further processing but displayed in the infobox and stored in a logfile so that the user does not have to restartXDS Fullautoafter an error to get the rest of his data sets processed.

The next step could be to redesign XDSi in a way that it is capable of being integrated into the CCP4 Graphical User Interface.

References

[1] G. E. Fox, L. J. Magrum, W. E. Balch, R. S. Wolfe, and C. R. Woese,Classification of methanogenic bacteria by 16S ribosomal RNA characterization.Proc Natl Acad Sci U S A, vol. 74, pp. 4537–4541, Oct 1977.

[2] The Prokaryotes, vol. Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes.

Springer New York, 2006.

[3] F. Sanger and H. Tuppy, The amino-acid sequence in the phenylalanyl chain of in-sulin. 2. The investigation of peptides from enzymic hydrolysates.Biochem J, vol. 49, pp. 481–490, Sep 1951.

[4] F. Sanger and E. Thompson, The amino-acid sequence in the glycyl chain of insulin.

II. The investigation of peptides from enzymic hydrolysates. Biochem J, vol. 53, pp. 366–374, Feb 1953.

[5] E. Zuckerkandl and L. Pauling, Molecules as documents of evolutionary history. J Theor Biol, vol. 8, pp. 357–366, Mar 1965.

[6] F. Sanger, G. G. Brownlee, and B. G. Barrell, A two-dimensional fractionation proce-dure for radioactive nucleotides.J Mol Biol, vol. 13, pp. 373–398, Sep 1965.

[7] C. Woese, M. Sogin, D. Stahl, B. J. Lewis, and L. Bonen, A comparison of the 16S ribosomal RNAs from mesophilic and thermophilic bacilli: some modifications in the Sanger method for RNA sequencing.J Mol Evol, vol. 7, pp. 197–213, Apr 1976.

[8] H. A. Barker, S. Ruben, and M. D. Kamen, The Reduction of Radioactive Carbon Dioxide by Methane-Producing Bacteria.Proc Natl Acad Sci U S A, vol. 26, pp. 426–

430, Jun 1940.

References

[9] M. P. Bryant, E. A. Wolin, M. J. Wolin, and R. S. Wolfe,Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Mikrobiol, vol. 59, no. 1, pp. 20–31, 1967.

[10] B. C. McBride and R. S. Wolfe, A new coenzyme of methyl transfer, coenzyme M.

Biochemistry, vol. 10, pp. 2317–2324, Jun 1971.

[11] L. D. Eirich, G. D. Vogels, and R. S. Wolfe, Proposed structure for coenzyme F420 from Methanobacterium.Biochemistry, vol. 17, pp. 4583–4593, Oct 1978.

[12] S. F. Tzeng, R. S. Wolfe, and M. P. Bryant, Factor 420-dependent tyridine nucleotide-linked hydrogenase system of Methanobacterium ruminantium. J Bac-teriol, vol. 121, pp. 184–191, Jan 1975.

[13] C. R. Woese and G. E. Fox, Phylogenetic structure of the prokaryotic domain: the primary kingdoms.Proc Natl Acad Sci U S A, vol. 74, pp. 5088–5090, Nov 1977.

[14] C. R. Woese, O. Kandler, and M. L. Wheelis,Towards a natural system of organisms:

proposal for the domains Archaea, Bacteria, and Eucarya.Proc Natl Acad Sci U S A, vol. 87, pp. 4576–4579, Jun 1990.

[15] O. Kandler and H. König,Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria.Arch Microbiol, vol. 118, pp. 141–152, Aug 1978.

[16] C. R. Woese, L. J. Magrum, and G. E. Fox,Archaebacteria.J Mol Evol, vol. 11, pp. 245–

251, Aug 1978.

[17] W. Zillig, K. O. Stetter, and M. Tobien, DNA-dependent RNA polymerase from Halobacterium halobium.Eur J Biochem, vol. 91, pp. 193–199, Nov 1978.

[18] W. Zillig, K. O. Stetter, and D. Janekovic,DNA-dependent RNA polymerase from the archaebacterium Sulfolobus acidocaldarius.Eur J Biochem, vol. 96, pp. 597–604, Jun 1979.

[19] K. D. Siegmund and F. Klink, Introduction of additional charges as an aid in pro-tein purification: isolation of elongation factor 2 from Sulfolobus acidocaldarius by preparative isoelectric focusing before and after ADP-ribosylation.Protein Expr Purif, vol. 5, pp. 553–558, Dec 1994.

References

[20] M. Kessel and F. Klink, Archaebacterial elongation factor is ADP-ribosylated by diphtheria toxin.Nature, vol. 287, pp. 250–251, Sep 1980.

[21] R. Gehrmann, A. Henschen, and F. Klink, Primary structure of elongation factor 2 around the site of ADP-ribosylation is highly conserved from archaebacteria to eu-karyotes.FEBS Lett, vol. 185, pp. 37–42, Jun 1985.

[22] W. E. Balch, G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe,Methanogens:

reevaluation of a unique biological group. Microbiol Rev, vol. 43, pp. 260–296, Jun 1979.

[23] P. Laksanalamai, T. A. Whitehead, and F. T. Robb,Minimal protein-folding systems in hyperthermophilic archaea.Nat Rev Microbiol, vol. 2, pp. 315–324, Apr 2004.

[24] F. Canganella, J. M. Gonzalez, M. Yanagibayashi, C. Kato, and K. Horikoshi,Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus.Arch Microbiol, vol. 168, pp. 1–7, Jul 1997.

[25] G. Fiala and K. Stetter, Pyrococcus furisosus sp.nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100C Arch Microbiol, vol. 145:56-61, pp. 56–61, 1986.

[26] L. Achenbach-Richter, R. Gupta, W. Zillig, and C. R. Woese,Rooting the archaebac-terial tree: the pivotal role of Thermococcus celer in archaebacarchaebac-terial evolution.Syst Appl Microbiol, vol. 10, pp. 231–240, 1988.

[27] K. Takai, A. Sugai, T. Itoh, and K. Horikoshi,Palaeococcus ferrophilus gen. nov., sp.

nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney.Int J Syst Evol Microbiol, vol. 50 Pt 2, pp. 489–500, Mar 2000.

[28] R. S. Ronimus, A. Reysenbach, D. R. Musgrave, and H. W. Morgan,The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA gene sequence anal-ysis: a proposal that AN1 represents a new species, Thermococcus zilligii sp. nov.

Arch Microbiol, vol. 168, pp. 245–248, Sep 1997.

[29] K. O. Stetter, Hyperthermophiles in the history of life. Ciba Found Symp, vol. 202, pp. 1–10; discussion 11–8, 1996.

References

[30] Y. Takahata, T. Hoaki, and T. Maruyama, Starvation survivability of Thermococcus strains isolated from Japanese oil reservoirs.Arch Microbiol, vol. 176, pp. 264–270, Oct 2001.

[31] W. Zillig, D. Holtz, D. Janecovic, W. Schaefer, and W. Reiter, The archaebacterium Thermococcus celerrepresents a novel genus within the thermophilic branch of the archaebacteriaSyst Appl Microbiol, vol. 4, pp. 88–94, 1983.

[32] K. L. Britton, P. J. Baker, K. M. Borges, P. C. Engel, A. Pasquo, D. W. Rice, F. T. Robb, R. Scandurra, T. J. Stillman, and K. S. Yip, Insights into thermal stability from a comparison of the glutamate dehydrogenases from Pyrococcus furiosus and Ther-mococcus litoralis.Eur J Biochem, vol. 229, pp. 688–695, May 1995.

[33] A. Neuner, H. Jannasch, S. Belkinn, and K. Stetter, thermococcus litoralis sp. nov.:

a new species of extremely thermophilic marine archaebacteria Arch Microbiol, vol. 153, pp. 205–207, 1990.

[34] M. L. Miroshnichenko, G. M. Gongadze, F. A. Rainey, A. S. Kostyukova, A. M. Ly-senko, N. A. Chernyh, and E. A. Bonch-Osmolovskaya, Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol, vol. 48 Pt 1, pp. 23–29, Jan 1998.

[35] M. L. Miroshnichenko, H. Hippe, E. Stackebrandt, N. A. Kostrikina, N. A. Chernyh, C. Jeanthon, T. N. Nazina, S. S. Belyaev, and E. A. Bonch-Osmolovskaya,Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir.Extremophiles, vol. 5, pp. 85–91, Apr 2001.

[36] K. F. Biller, I. Kato, and H. Märkl, Effect of glucose, maltose, soluble starch, and CO2 on the growth of the hyperthermophilic archaeon Pyrococcus furiosus. Ex-tremophiles, vol. 6, pp. 161–166, Apr 2002.

[37] H. R. Costantino, S. H. Brown, and R. M. Kelly, Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 degrees C. J Bacteriol, vol. 172, pp. 3654–3660, Jul 1990.

References

[38] S. W. Kengen, E. J. Luesink, A. J. Stams, and A. J. Zehnder,Purification and character-ization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus.Eur J Biochem, vol. 213, pp. 305–312, Apr 1993.

[39] I. I. Blumentals, S. H. Brown, R. N. Schicho, A. K. Skaja, H. R. Costantino, and R. M.

Kelly,The hyperthermophilic archaebacterium, Pyrococcus furiosus. Development of culturing protocols, perspectives on scaleup, and potential applications.Ann N Y Acad Sci, vol. 589, pp. 301–314, 1990.

[40] P. Schoenheit and T. Schaefer, Metabolism of hyperthermophilesWorld J. Microbiol Biotechnol, vol. 11, pp. 26–57, 1995.

[41] R. Horlacher, K. B. Xavier, H. Santos, J. DiRuggiero, M. Kossmann, and W. Boos, Archaeal binding protein-dependent ABC transporter: molecular and biochemi-cal analysis of the trehalose/maltose transport system of the hyperthermophilic ar-chaeon Thermococcus litoralis.J Bacteriol, vol. 180, pp. 680–689, Feb 1998.

[42] L. Aravind and E. V. Koonin,DNA-binding proteins and evolution of transcription regulation in the archaea.Nucleic Acids Res, vol. 27, pp. 4658–4670, Dec 1999.

[43] E. Pérez-Rueda, J. Collado-Vides, and L. Segovia,Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea. Comput Biol Chem, vol. 28, pp. 341–350, Dec 2004.

[44] T. K. Kim, R. H. Ebright, and D. Reinberg,Mechanism of ATP-dependent promoter melting by transcription factor IIH.Science, vol. 288, pp. 1418–1422, May 2000.

[45] S. D. Bell and S. P. Jackson,Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features.Trends Microbiol, vol. 6, pp. 222–228, Jun 1998.

[46] D. Langer, J. Hain, P. Thuriaux, and W. Zillig,Transcription in archaea: similarity to that in eucarya.Proc Natl Acad Sci U S A, vol. 92, pp. 5768–5772, Jun 1995.

[47] W. D. Reiter, U. Hüdepohl, and W. Zillig, Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro.Proc Natl Acad Sci U S A, vol. 87, pp. 9509–9513, Dec 1990.

References

[48] W. Hausner, G. Frey, and M. Thomm, Control regions of an archaeal gene. A TATA box and an initiator element promote cell-free transcription of the tRNA(Val) gene of Methanococcus vannielii.J Mol Biol, vol. 222, pp. 495–508, Dec 1991.

[49] M. Thomm,Archaeal transcription factors and their role in transcription initiation.

FEMS Microbiol Rev, vol. 18, pp. 159–171, May 1996.

[50] S. D. Bell, P. L. Kosa, P. B. Sigler, and S. P. Jackson,Orientation of the transcription preinitiation complex in archaea.Proc Natl Acad Sci U S A, vol. 96, pp. 13662–13667, Nov 1999.

[51] S. A. Qureshi and S. P. Jackson, Sequence-specific DNA binding by the S. shibatae TFIIB homolog, TFB, and its effect on promoter strength.Mol Cell, vol. 1, pp. 389–

400, Feb 1998.

[52] S. A. Qureshi, S. D. Bell, and S. P. Jackson,Factor requirements for transcription in the Archaeon Sulfolobus shibatae.EMBO J, vol. 16, pp. 2927–2936, May 1997.

[53] D. B. Nikolov, S. H. Hu, J. Lin, A. Gasch, A. Hoffmann, M. Horikoshi, N. H. Chua, R. G.

Roeder, and S. K. Burley, Crystal structure of TFIID TATA-box binding protein.

Nature, vol. 360, pp. 40–46, Nov 1992.

[54] B. S. DeDecker, R. O’Brien, P. J. Fleming, J. H. Geiger, S. P. Jackson, and P. B. Sigler, The crystal structure of a hyperthermophilic archaeal TATA-box binding protein.J Mol Biol, vol. 264, pp. 1072–1084, Dec 1996.

[55] J. Soppa,Transcription initiation in Archaea: facts, factors and future aspects.Mol Microbiol, vol. 31, pp. 1295–1305, Mar 1999.

[56] A. J. Hickey, E. C. de Macario, and A. J. L. Macario, Transcription in the archaea:

basal factors, regulation, and stress-gene expression. Crit Rev Biochem Mol Biol, vol. 37, pp. 537–599, Dec 2002.

[57] C. Ouzounis and C. Sander, TFIIB, an evolutionary link between the transcription machineries of archaebacteria and eukaryotes.Cell, vol. 71, pp. 189–190, Oct 1992.

References

[58] R. Creti, P. Londei, and P. Cammarano,Complete nucleotide sequence of an archaeal (Pyrococcus woesei) gene encoding a homolog of eukaryotic transcription factor IIB (TFIIB).Nucleic Acids Res, vol. 21, p. 2942, Jun 1993.

[59] W. Hausner, J. Wettach, C. Hethke, and M. Thomm,Two transcription factors related with the eucaryal transcription factors TATA-binding protein and transcription fac-tor IIB direct promoter recognition by an archaeal RNA polymerase.J Biol Chem, vol. 271, pp. 30144–30148, Nov 1996.

[60] S. Buratowski and H. Zhou,Functional domains of transcription factor TFIIB.Proc Natl Acad Sci U S A, vol. 90, pp. 5633–5637, Jun 1993.

[61] S. D. Bell and S. P. Jackson, The role of transcription factor B in transcription ini-tiation and promoter clearance in the archaeon Sulfolobus acidocaldarius. J Biol Chem, vol. 275, pp. 12934–12940, Apr 2000.

[62] C. Hethke, A. C. Geerling, W. Hausner, W. M. de Vos, and M. Thomm,A cell-free tran-scription system for the hyperthermophilic archaeon Pyrococcus furiosus. Nucleic Acids Res, vol. 24, pp. 2369–2376, Jun 1996.

[63] H. Sumimoto, Y. Ohkuma, E. Sinn, H. Kato, S. Shimasaki, M. Horikoshi, and R. G.

Roeder, Conserved sequence motifs in the small subunit of human general tran-scription factor TFIIE.Nature, vol. 354, pp. 401–404, Dec 1991.

[64] Y. Ohkuma, Multiple functions of general transcription factors TFIIE and TFIIH in transcription: possible points of regulation by trans-acting factors. J Biochem, vol. 122, pp. 481–489, Sep 1997.

[65] T. Watanabe, K. Hayashi, A. Tanaka, T. Furumoto, F. Hanaoka, and Y. Ohkuma,The car-boxy terminus of the small subunit of TFIIE regulates the transition from transcrip-tion initiatranscrip-tion to elongatranscrip-tion by RNA polymerase II.Mol Cell Biol, vol. 23, pp. 2914–

2926, Apr 2003.

[66] D. Forget, M.-F. Langelier, C. Thérien, V. Trinh, and B. Coulombe,Photo-cross-linking of a purified preinitiation complex reveals central roles for the RNA polymerase II mobile clamp and TFIIE in initiation mechanisms. Mol Cell Biol, vol. 24, pp. 1122–

1131, Feb 2004.

References

[67] Y. Ohkuma, S. Hashimoto, C. K. Wang, M. Horikoshi, and R. G. Roeder,Analysis of the role of TFIIE in basal transcription and TFIIH-mediated carboxy-terminal domain phosphorylation through structure-function studies of TFIIE-alpha.Mol Cell Biol, vol. 15, pp. 4856–4866, Sep 1995.

[68] N. H. Kuldell and S. Buratowski,Genetic analysis of the large subunit of yeast tran-scription factor IIE reveals two regions with distinct functions.Mol Cell Biol, vol. 17, pp. 5288–5298, Sep 1997.

[69] A. Meinhart, J. Blobel, and P. Cramer,An extended winged helix domain in general transcription factor E/IIE alpha.J Biol Chem, vol. 278, pp. 48267–48274, Nov 2003.

[70] T. Rowlands, P. Baumann, and S. P. Jackson, The TATA-binding protein: a general transcription factor in eukaryotes and archaebacteria.Science, vol. 264, pp. 1326–

1329, May 1994.

[71] O. Littlefield, Y. Korkhin, and P. B. Sigler,The structural basis for the oriented assem-bly of a TBP/TFB/promoter complex.Proc Natl Acad Sci U S A, vol. 96, pp. 13668–

13673, Nov 1999.

[72] P. F. Kosa, G. Ghosh, B. S. DeDecker, and P. B. Sigler,The 2.1-A crystal structure of an archaeal preinitiation complex: TATA-box-binding protein/transcription factor (II)B core/TATA-box.Proc Natl Acad Sci U S A, vol. 94, pp. 6042–6047, Jun 1997.

[73] G. A. Patikoglou, J. L. Kim, L. Sun, S. H. Yang, T. Kodadek, and S. K. Burley,TATA el-ement recognition by the TATA box-binding protein has been conserved throughout evolution.Genes Dev, vol. 13, pp. 3217–3230, Dec 1999.

[74] Y. Liu and A. Schepartz, Kinetic preference for oriented DNA binding by the yeast TATA-binding protein TBP.Biochemistry, vol. 40, pp. 6257–6266, May 2001.

[75] S. D. Bell and S. P. Jackson,Mechanism and regulation of transcription in archaea.

Curr Opin Microbiol, vol. 4, pp. 208–213, Apr 2001.

[76] M. Ouhammouch, Transcriptional regulation in Archaea. Curr Opin Genet Dev, vol. 14, pp. 133–138, Apr 2004.

References

[77] E. P. Geiduschek and M. Ouhammouch, Archaeal transcription and its regulators.

Mol Microbiol, vol. 56, pp. 1397–1407, Jun 2005.

[78] A. B. Lassar, P. L. Martin, and R. G. Roeder,Transcription of class III genes: forma-tion of preinitiaforma-tion complexes.Science, vol. 222, pp. 740–748, Nov 1983.

[79] M. F. Trendelenburg and J. B. Gurdon, Transcription of cloned Xenopus ribosomal genes visualised after injection into oocyte nuclei.Nature, vol. 276, pp. 292–294, Nov 1978.

[80] K. Struhl, Fundamentally different logic of gene regulation in eukaryotes and prokaryotes.Cell, vol. 98, pp. 1–4, Jul 1999.

[81] V. Epshtein and E. Nudler,Cooperation between RNA polymerase molecules in tran-scription elongation.Science, vol. 300, pp. 801–805, May 2003.

[82] S. D. Bell, Archaeal transcriptional regulation–variation on a bacterial theme?

Trends Microbiol, vol. 13, pp. 262–265, Jun 2005.

[83] A. B. Brinkman, T. J. G. Ettema, W. M. de Vos, and J. van der Oost,The Lrp family of transcriptional regulators.Mol Microbiol, vol. 48, pp. 287–294, Apr 2003.

[84] D. W. Schwartzman and C. H. Lineweaver,The hyperthermophilic origin of life revis-ited.Biochem Soc Trans, vol. 32, pp. 168–171, Apr 2004.

[85] E. B. Newman and R. Lin,Leucine-responsive regulatory protein: a global regulator of gene expression in E. coli.Annu Rev Microbiol, vol. 49, pp. 747–775, 1995.

[86] P. M. Leonard, S. H. Smits, S. E. Sedelnikova, A. B. Brinkman, W. M. de Vos, J. van der Oost, D. W. Rice, and J. B. Rafferty,Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus.EMBO J, vol. 20, pp. 990–997, Mar 2001.

[87] H. Koike, S. A. Ishijima, L. Clowney, and M. Suzuki,The archaeal feast/famine reg-ulatory protein: potential roles of its assembly forms for regulating transcription.

Proc Natl Acad Sci U S A, vol. 101, pp. 2840–2845, Mar 2004.

References

[88] Y. Cui, Q. Wang, G. D. Stormo, and J. M. Calvo,A consensus sequence for binding of Lrp to DNA.J Bacteriol, vol. 177, pp. 4872–4880, Sep 1995.

[89] M. Ouhammouch and E. P. Geiduschek,A thermostable platform for transcriptional regulation: the DNA-binding properties of two Lrp homologs from the hyperther-mophilic archaeon Methanococcus jannaschii. EMBO J, vol. 20, pp. 146–156, Jan 2001.

[90] S. Chen, M. Iannolo, and J. M. Calvo, Cooperative binding of the leucine-responsive regulatory protein (Lrp) to DNA.J Mol Biol, vol. 345, pp. 251–264, Jan 2005.

[91] E. Peeters, T.-L. Thia-Toong, D. Gigot, D. Maes, and D. Charlier,Ss-LrpB, a novel Lrp-like regulator of Sulfolobus solfataricus P2, binds cooperatively to three conserved targets in its own control region.Mol Microbiol, vol. 54, pp. 321–336, Oct 2004.

[92] M. Ouhammouch, G. E. Langham, W. Hausner, A. J. Simpson, N. M. A. El-Sayed, and E. P. Geiduschek,Promoter architecture and response to a positive regulator of ar-chaeal transcription.Mol Microbiol, vol. 56, pp. 625–637, May 2005.

[93] R. E. Dickerson, H. R. Drew, B. N. Conner, R. M. Wing, A. V. Fratini, and M. L. Kopka, The anatomy of A-, B-, and Z-DNA.Science, vol. 216, pp. 475–485, Apr 1982.

[94] C. Branden and J. Tooze,Introduction to protein structure. Garland Publishing, 1998.

[95] D. H. Ohlendorf, W. F. Anderson, R. G. Fisher, Y. Takeda, and B. W. Matthews, The molecular basis of DNA-protein recognition inferred from the structure of cro

[95] D. H. Ohlendorf, W. F. Anderson, R. G. Fisher, Y. Takeda, and B. W. Matthews, The molecular basis of DNA-protein recognition inferred from the structure of cro