• Keine Ergebnisse gefunden

5.2 Identifizierung neuer Interaktionspartner von PRMTs

5.2.1 Reinigung endogener PRMT1- und PRMT4-haltiger Komplexe

5.2.1.4 Die weitere Reinigung

Für eine weitere Reinigung sollten Alternativen zu Ionentauschern, wie z. B.

Heparin-Fractogel verwendet werden. Im Batch-Verfahren konnte bereits eine Bindung von PRMT4 an dieses Material festgestellt werden (Daten nicht gezeigt).

Für PRMT4 bietet sich als einer der letzten Schritte ebenfalls die Verwendung einer MiniQ, eines noch höher auflösenderen Anionentauschers als der MonoQ an, da PRMT4 relativ konzentriert von der MonoQ eluierte. Für PRMT1 wurde dieses Material bereits getestet. Da eine Verteilung von PRMT1 über den gesamten Elutionsgradienten zu beobachten war, ist eine MiniQ Säule hier nicht zu empfehlen (Daten nicht gezeigt). Weitere Alternativen stellen z. B. die hydrophobe Interaktions-Chromatographie (HIC) dar, die Proteine nach ihrer Hydrophobizität trennt oder eine Affinitätschromatographie. In jedem Fall muss die Menge an Ausgangsmaterial deutlich erhöht werden, so dass eine der PRMT1 oder 4 entsprechende Bande in einem Silber gefärbten SDS-Gel detektiert und identifiziert

werden kann. Nur so ist gewährleistet, dass Proteine die in stöchiometrischen Verhältnissen im Komplex vorliegen ebenfalls identifizierbar sind.

6 Zusammenfassung

Die Modifikation der N-Termini von Histonen trägt zur Regulierung der Expression von Genen bei. Einzelmodifikationen oder Kombinationen regulieren den Verpackungsstatus des Chromatins. So Methylieren z. B. die Protein Arginin Methyltransferasen (PRMT) 1, 4 und 5 Arginine der Histone H2A, H3 und H4. Ziel der vorliegenden Arbeit war es, mehr über die von PRMT1 katalysierte asymmetrische Dimethylierung des Arginins 3 am Histon H4 und deren Funktion bei der Transkriptionskontrolle zu erfahren. Weiterhin sollten endogene PRMT1- und PRMT4-haltige Proteinkomplexe aus Zellextrakten chromatographisch gereinigt werden.

Mit Hilfe von Bindungsstudien mit unmodifizierten bzw. asymmetrisch an Arginin 3 dimethylierten Histon H4 Peptiden (As 1 – 15) konnten differentiell bindende Proteine aus Kernextrakten isoliert und mittels MALDI TOF analysiert werden.

Dabei wurde TAF-Iβ identifiziert, ein Bestandteil des INHAT-Komplexes, der Histonacetylierung inhibiert. TAF-Iβ, das selektiv mit dem unmodifizierten Peptid interagiert, bindet an den uninduzierten, PRMT1 abhängigen pS2 Promotor und verlässt diesen nach der Induktion des Gens durch Estradiol. Die Arginin 3 Methylierung scheint in vivo jedoch nicht allein entscheidend für das Ablösen von TAF-Iβ nach der Induktion zu sein. Die erfolgreiche Reduktion der TAF-Iβ Proteinmenge durch siRNA zeigte, dass das Fehlen von TAF-Iβ zu einer verfrühten Hyperacetylierung des pS2 Promotors führte. Dadurch wurden die Arginin 3 Methylierung und wahrscheinlich nachfolgende Ereignisse am Promotor verhindert, was negative Auswirkungen auf die Transkription des pS2 Gens hat. Die Untersuchung weiterer Estrogen induzierbarer Gene ergab, dass eine verfrühte Hyperacetylierung des ebenfalls PRMT1 abhängigen Lactoferrin Gens auch eine ineffiziente Transkription des Gens zur Folge hatte. Die Expression dieses Gens war jedoch unabhängig von TAF-Iβ, woraus geschlossen werden kann, dass die Inhibition einer verfrühten Acetylierung auch durch andere Proteine erfolgt. Im Gegensatz dazu wurden PRMT1 unabhängige Zielgene des Estrogenrezeptors bereits

ohne Hormoninduktion allein durch eine Hyperacetylierung aktiviert.

Zusammenfassend wurde in dieser Arbeit in vivo die Voraussetzung für eine effiziente Rekrutierung von PRMT1 und die nachfolgende Arginin 3 Methylierung an Estrogenrezeptor Zielgenen bestimmt. Die benötigte Hypoacetylierung der Promotoren wird durch Proteine wie TAF-Iβ vermittelt.

Im Verlauf dieser Arbeit wurde die Etablierung der chromatographischen Reinigung endogener PRMT1- und PRMT4-haltiger Komplexe über Ionenaustausch-Chromatographie im analytischen Maßstab begonnen. Die Bestimmung der Größe der PRMT1- und PRMT4-haltigen Fraktionen mittels Gelfiltration lässt auf Multiproteinkomplexe schließen. Eine nachfolgende Analyse der Proteinkomplexe soll Aufschluss über weitere Funktionen von PRMT1 und PRMT4 und deren Rekrutierung an Zielpromotoren geben.

7 Abkürzungen

α anti

°C Grad Celsius

µg Mikrogramm µl Mikroliter µM Mikromol A Adenin A Alanin a. b. Aqua bidest

AA Acrylamid

Abb. Abbildung

AF-1,2 „Activation function 1,2“

AIB1 „Amplified in breastcancer 1“

Amp. Ampicillin

APS Ammoniumpersulfat Arg Arginin

ATP Adenosintriphosphat BA Bisacrylamid Bp Basenpaar

Brg1 „Brahma-related gene 1“

BSA Rinderserumalbumin (“Bovine Serum Albumin”) BTG1 „B cell translocation gene 1”

bzw. beziehungsweise C Cytosin C Cystein

C3 Complement 3

cAMP „Cyclic AMP”

CAN „Cancer intron on nine“

CARM1 „Coactivator associated arginine methyltransferase 1“

CatD Cathepsin D

CBP „CREB binding protein“

cDNA „copy” DNA

CERC „Cyclin E1 repressor complex“

Ci Curie cm Zentimeter CoCoA „Coiled coil coactivator“

COX7RP „Cytochrome c oxidase subunit VIIa related protein”

CREB „cAMP response element binding protein”

DAL4/4.1B „differentially expressed in adenocarcinoma of the lung”

DBD DNA bindende Domäne

DEAE Diethylaminoethan DMEM „Dulbeccos modified Eagels” Medium

DNA Deoxyribonukleinsäure („acid”)

DNase Desoxyribonuklease

dNTP Desoxynukleosidtriphosphat DRBP76 „Double stranded RNA binding protein 76”

DTT Dithiothreitol E. coli Eschericia coli

E1B-AP5 „Adenovirus E1B associated protein 5“

EB1 „E. coli binding protein“

EBAG9 „ER-binding fragment-associated antigen 9“

EBNA-2 Ebstein-Barr virus nuclear antigen 2

ECL „Enhance Chemolumineszenz”

EDF EMD-DEAE Fractogel 650 (S)

EDTA Ethylendiamintetraacetat EFP Estrogen responsive finger protein

EGTA 1,2-Bis-(2-aminoethoxyethan)-N,N,N,´,N´-tetraacetat ER Estrogenrezeptor

ERE „Estrogen response element“

et al. und andere („et aliter”) EtOH Ethanol

EWS „Ewing sarcoma“

FCP1 „TFIIF-associating CTP phosphatase 1“

FCS Fötales Kälberserum („fetal calf serum”)

FCS-DCC FCS „Dextran Charcoal“ (Dextran Aktivkohle behandelt) FGF-2 „Fibroblast growth factor 2“

FKBP12 „FK506 binding protein 12“

FoxO3a „Forkhead box class O 3a”

FPLC „Fast Performance Liquid Chromatography“

FXII Faktor XII

G Guanin G Glycin

GADD45 „Growth arrest and DNA-damage inducible”

GAR Glyzin Arginin reich GFP „Green fluorescent protein”

GRIP1 „Glucocorticoidreceptor interacting protein 1“

GRP33 „Artemia saline gycine rich protein”

H3,4, 2A, 2B Histon 3, 4, 2A, 2B

HA Hämagglutinin

HAT Histone Acetyltransferase

hBrm humanes Brahma

HCl Salzsäure

HDAC Histone Deacetylase

HEK „human embryonic kidney”

HeLa Henrietta Lacks

HepC NS3 „Hepatitis C virus nonstructural protein 3“

Hepes N-(2-Hydroxyethyl)piperazin-N´-(2-ethansulfonsäure) HIC „Hydrophobic interaction chromatography“

HIV-1 TAT „Human immunodeficiency virus type 1 transactivator protein”

HMGA1a „High mobility group A1 protein a1”

hnRNA heterogene nukleäre RNA

hnRNP Heteronukleäres Ribonukleoprotein HPLC „High Perfomance Liquid Chromatography“

HuR Mitglied R der Hu Proteinfamilie IFN Interferon

IgG Immunglobulin G

ILF3 „Interleukin enhancer binding factor 3“

INHAT „Inhibitor of acetylation“

JAK Janus kinase

JBP1 JAK bindendes Protein 1 K Lysin Kac Kaliumacetat kBp Kilobasenpaare KCl Kaliumchlorid kDa Kilodalton

KLF „Kruppel-like factor“

L Leucin LB Medium Luria Bertoni Medium

LBD Ligand bindende Domäne

LiCl Lithiumchlorid Lsg. Lösung

LSm4 Sm-like protein 4

M Molar mA Milliampere

MALDI TOF „Matrix-assisted laser desorption ionization time-of-flight”

MAP „Mitogen-activated protein“

MBP „Myelin basic protein“

MEF-2C „Myocyte Enhancer Faktor 2C“

MEP50 „Methylosome protein 50“

mg Milligramm MHCII „Major histocompatibility class II“

Min. Minute

ml Milliliter

MOPS Na-Morpholin-Propan-Sulfonsäure Mre11 „Meiotic recombination 11“

mRNA Boten-RNA („messenger RNA“)

NaCl Natriumchlorid NaOH Natriumhydroxid N-CoR „Nuclear receptor corepressor“

NE Nukleärer Extrakt

NFAT „Nuclear factor of activated T cells”

NFκB „Nuclear factor κB“

ng Nanogramm NIP45 „NFAT interacting protein 45 kDa“

NTP Nukleosidtriphosphat Nuc E ERE enthaltendes Nukleosom

Nuc T TATA-Box enthaltendes Nukleosom

NUMAC „Nucleosomal methylation activator complex“

NuRD „Nucleosome remodeling and deacetylase”

OD Optische Dichte

ORF „Open reading frame“

P137GP1 „GPI-anchor protein p137“

PABP1,II „Poly(A)-binding protein 1,II”

PAD Peptidylarginin Deiminase

PAGE Polyacrylamid-Gelelektrophorese

PBS Phosphat-gepufferte Salzlösung („phosphate-buffered-saline“) PC Phosphocellulose

pCAF „p300/CBP-associated factor“

PCI Phenol-Chloroform-Isoamylalkohol PCR Polymerase-Kettenreaktion („polymerase chain reaction“) PCV „packed cell volume“

PEG Polyethylenglykol Pen/Strep Penicillin/Streptomycin PGC-1alpha „PPARγ coactivator 1“

pH Wasserstoffexponent pICln „Chloride conductance regulatory protein“

pmol Pikomolar

PMSF Phenylmethylsulfonylfluorid PPARγ „Peroxisome proliferator activated receptor γ“

PRMT „Protein-Arginine-Methyltransferase”

pS2 Plasmid S2

Puro Puromycin

QKI-5 „Quaking 5“

r rekombinant R Arginin RBP58 „RNA binding protein 58“

RNA Ribonukleinsäure

RNAi RNA „interference”

RNase Ribonuklease

rRNA ribosomale RNA

RT Raumtemperatur S Serin

SAF-A „Scaffold attachment factor A“

SAM S-Adenosyl-Methionin Sam68 „SRC substrate associated in mitosis of 68 kDa“

SAMT1 „Substrate of arginine methyltransferase 1“

SDS Natrium- („sodium“-) Dodecylsulfat

SET „Se translocation“

SET-Domäne „Suvar3 – 9, enhancer of zeste, Trithorax“ - Domäne siRNA „short interfering“ RNA

SLM-1,2 „Sam68 like mammalian protein 1,2“

SMN „Survival motor neuron“

SMRT „Silencing mediator for retinoid an tyhroid hormone receptors“

snRNA „Small nuclear“ RNA

snRNP „Small nuclear ribopnucleoprotein particle“

Sp1 „Specificity protein 1“

SPT5 „Suppressor of Ty 5“

SRC „Steroid receptor coactivator“

T Thymin TAF-I „Template activating factor”-I TAF-II68 TBP assoziierter Faktor II68

TARPP „Thymocyte cyclic AMP-regulated phosphoprotein“

TBE Tris-Borat-EDTA-Puffer

TBP TATA bindendes Protein

TCA Trichloressigsäure TE Tris-EDTA-Puffer TEMED N,N,N´,N´,-Tetramethylethylendiamin TFF1 „Trefoil factor 1“

TGM2 „Tissue transglutaminase type 2“

TIS21 „Tetradecanoyl phorbol acetate-inducible sequence 21“

TLS „Translocated in liposarcoma“

Tris Tris-hydroxy-ethyl-aminomethan Tween Polyoxyethylensorbitanmonolaurat U Unit

u. a. unter anderem

üN über Nacht

UpM Umdrehungen pro Minute

UV Ultraviolett V Volt

v/v Volumen/Volumen („volume per volume”) VEGF „Vascular endothelial growth factor“

Vol. Volumen

VT Volumenteil W Watt

w/v Gewicht/Volumen („weight per volume“)

YY1 Yin Yang 1

z. B. zum Beispiel

ZF5 Zinkfinger 5

8 Literaturverzeichnis

Abramovich, C., B. Yakobson, J. Chebath, and M. Revel. 1997. A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. Embo J 16: 260-6.

Adachi, Y., G.N. Pavlakis, and T.D. Copeland. 1994. Identification and characterization of SET, a nuclear phosphoprotein encoded by the

translocation break point in acute undifferentiated leukemia. J Biol Chem 269: 2258-62.

Alao, J.P., E.W. Lam, S. Ali, L. Buluwela, W. Bordogna, P. Lockey, R. Varshochi, A.V. Stavropoulou, R.C. Coombes, and D.M. Vigushin. 2004. Histone deacetylase inhibitor trichostatin A represses estrogen receptor

alpha-dependent transcription and promotes proteasomal degradation of cyclin D1 in human breast carcinoma cell lines. Clin Cancer Res 10: 8094-104.

Amente, S., G. Napolitano, P. Licciardo, M. Monti, P. Pucci, L. Lania, and B. Majello.

2005. Identification of proteins interacting with the RNAPII FCP1

phosphatase: FCP1 forms a complex with arginine methyltransferase PRMT5 and it is a substrate for PRMT5-mediated methylation. FEBS Lett 579: 683-9.

An, W., J. Kim, and R.G. Roeder. 2004. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. In Cell, pp. 735-48.

Azzouz, T.N., R.S. Pillai, C. Dapp, A. Chari, G. Meister, C. Kambach, U. Fischer, and D. Schumperli. 2005a. Toward an assembly line for U7 snRNPs: interactions of U7-specific Lsm proteins with PRMT5 and SMN complexes. J Biol Chem 280: 34435-40.

-. 2005b. Towards an assembly line for U7 snRNPs: Interactions of U7-specific Lsm proteins with PRMT5-and SMN-complexes. J Biol Chem.

Bachand, F. and P.A. Silver. 2004. PRMT3 is a ribosomal protein methyltransferase that affects the cellular levels of ribosomal subunits. Embo J 23: 2641-50.

Bakker, W.J., M. Blazquez-Domingo, A. Kolbus, J. Besooyen, P. Steinlein, H. Beug, P.J. Coffer, B. Lowenberg, M. von Lindern, and T.B. van Dijk. 2004. FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J Cell Biol 164: 175-84.

Balint, B.L., A. Szanto, A. Madi, U.M. Bauer, P. Gabor, S. Benko, L.G. Puskas, P.J.

Davies, and L. Nagy. 2005. Arginine methylation provides epigenetic transcription memory for retinoid-induced differentiation in myeloid cells.

Mol Cell Biol 25: 5648-63.

Bannister, A.J., P. Zegerman, J.F. Partridge, E.A. Miska, J.O. Thomas, R.C. Allshire, and T. Kouzarides. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120-4.

Bauer, U.M., S. Daujat, S.J. Nielsen, K. Nightingale, and T. Kouzarides. 2002.

Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 3: 39-44.

Bedford, M.T. and S. Richard. 2005. Arginine methylation an emerging regulator of protein function. Mol Cell 18: 263-72.

Boisvert, F.M., C.A. Chenard, and S. Richard. 2005a. Protein interfaces in signaling regulated by arginine methylation. Sci STKE 2005: re2.

Boisvert, F.M., J. Cote, M.C. Boulanger, and S. Richard. 2003. A Proteomic Analysis of Arginine-methylated Protein Complexes. Mol Cell Proteomics 2: 1319-30.

Boisvert, F.M., U. Dery, J.Y. Masson, and S. Richard. 2005b. Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control. Genes Dev 19: 671-6.

Boisvert, F.M., M.J. Hendzel, J.Y. Masson, and S. Richard. 2005c. Methylation of MRE11 Regulates its Nuclear Compartmentalization. Cell Cycle 4.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-54.

Brahms, H., L. Meheus, V. de Brabandere, U. Fischer, and R. Luhrmann. 2001.

Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm-like protein LSm4, and their interaction with the SMN protein. Rna 7: 1531-42.

Branscombe, T.L., A. Frankel, J.H. Lee, J.R. Cook, Z. Yang, S. Pestka, and S. Clarke.

2001. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J Biol Chem 276: 32971-6.

Caplen, N.J., S. Parrish, F. Imani, F. A., and R.A. Morgan. 2001. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and

vertebrate systems. Proc Natl Acad Sci U S A 98: 9742-9747.

Chen, D., H. Ma, H. Hong, S.S. Koh, S.M. Huang, B.T. Schurter, D.W. Aswad, and M.R. Stallcup. 1999. Regulation of transcription by a protein

methyltransferase. Science 284: 2174-7.

Chen, S.L., K.A. Loffler, D. Chen, M.R. Stallcup, and G.E. Muscat. 2002. The coactivator-associated arginine methyltransferase is necessary for muscle differentiation: CARM1 coactivates myocyte enhancer factor-2. J Biol Chem 277: 4324-33.

Chen, Y.H., J.H. Kim, and M.R. Stallcup. 2005. GAC63, a GRIP1-dependent nuclear receptor coactivator. Mol Cell Biol 25: 5965-72.

Chevillard-Briet, M., D. Trouche, and L. Vandel. 2002. Control of CBP co-activating activity by arginine methylation. Embo J 21: 5457-66.

Choi, I., C. Ko, O.K. Park-Sarge, R. Nie, R.A. Hess, C. Graves, and B.S.

Katzenellenbogen. 2001. Human estrogen receptor beta-specific monoclonal antibodies: characterization and use in studies of estrogen receptor beta protein expression in reproductive tissues. Mol Cell Endocrinol 181: 139-50.

Choi, Y.B., K. Kyoung, and J. Shin. 2004. The Transcriptional Corepressor, PELP1, Recruits HDAC2 and Masks Histones Using Two Separate Domains. J Biol Chem 279: 50930-50941.

Cote, J., F.M. Boisvert, M.C. Boulanger, M.T. Bedford, and S. Richard. 2003. Sam68 RNA binding protein is an in vivo substrate for protein arginine

N-methyltransferase 1. Mol Biol Cell 14: 274-87.

Couse, J.F. and K.S. Korach. 1999. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev 20: 358-417.

Covic, M., P.O. Hassa, S. Saccani, C. Buerki, N.I. Meier, C. Lombardi, R. Imhof, M.T.

Bedford, G. Natoli, and M.O. Hottiger. 2005. Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression. Embo J 24: 85-96.

Cui, X., I. De Vivo, R. Slany, A. Miyamoto, R. Firestein, and M.L. Cleary. 1998.

Association of SET domain and myotubularin-related proteins modulates growth control. Nat Genet 18: 331-7.

Cuthbert, G.L., S. Daujat, A.W. Snowden, H. Erdjument-Bromage, T. Hagiwara, M.

Yamada, R. Schneider, P.D. Gregory, P. Tempst, A.J. Bannister, and T.

Kouzarides. 2004. Histone deimination antagonizes arginine methylation.

Cell 118: 545-53.

Daujat, S., U.M. Bauer, V. Shah, B. Turner, S. Berger, and T. Kouzarides. 2002.

Crosstalk between CARM1 methylation and CBP acetylation on histone H3.

Curr Biol 12: 2090-7.

de la Cruz, X., S. Lois, S. Sanchez-Molina, and M.A. Martinez-Balbas. 2005. Do protein motifs read the histone code? Bioessays 27: 164-75.

Dignam, J.D., R.M. Lebovitz, and R.G. Roeder. 1983. Accurate transcription initiation by RNA-polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475-1489.

Fabbrizio, E., S. El Messaoudi, J. Polanowska, C. Paul, J.R. Cook, J.H. Lee, V. Negre, M. Rousset, S. Pestka, A. Le Cam, and C. Sardet. 2002. Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep 3: 641-5.

Fan, Z., P.J. Beresford, D.Y. Oh, D. Zhang, and J. Lieberman. 2003. Tumor

suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112:

659-72.

Friesen, W.J., S. Paushkin, A. Wyce, S. Massenet, G.S. Pesiridis, G. Van Duyne, J.

Rappsilber, M. Mann, and G. Dreyfuss. 2001. The methylosome, a 20S

complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21: 8289-300.

Friesen, W.J., A. Wyce, S. Paushkin, L. Abel, J. Rappsilber, M. Mann, and G.

Dreyfuss. 2002. A novel WD repeat protein component of the methylosome binds Sm proteins. J Biol Chem 277: 8243-7.

Fukukawa, C., N. Tanuma, T. Okada, K. Kikuchi, and H. Shima. 2005. pp32/ I-1(PP2A) negatively regulates the Raf-1/MEK/ERK pathway. Cancer Lett 226:

155-60.

Gamble, M.J., H. Erdjument-Bromage, P. Tempst, L.P. Freedman, and R.P. Fisher.

2005. The histone chaperone TAF-I/SET/INHAT is required for transcription in vitro of chromatin templates. Mol Cell Biol 25: 797-807.

Germain, P., L. Altucci, W. Bourguet, C. Rochette-Egly, and H. Gronemeyer. 2003.

Nuclear receptor superfamily: Prinicples of signaling. Pure Appl. Chem. 75:

1619 - 1664.

Grimmler, M., L. Bauer, M. Nousiainen, R. Korner, G. Meister, and U. Fischer. 2005.

Phosphorylation regulates the activity of the SMN complex during assembly of spliceosomal U snRNPs. EMBO Rep 6: 70-6.

Hall, J.M. and D.P. McDonnell. 1999. The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens.

Endocrinology 140: 5566-5578.

Heery, D.M., E. Kalkhoven, S. Hoare, and M.G. Parker. 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Natu e 387: 733-736.

r Herrmann, F., J. Lee, M.T. Bedford, and F.O. Fackelmayer. 2005. Dynamics of

human protein arginine methyltransferase 1 (PRMT1) in vivo. J Biol Chem. Huang, S., M. Litt, and G. Felsenfeld. 2005. Methylation of histone H4 by arginine

methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications. Genes Dev 19: 1885-93.

Jenuwein, T. and C.D. Allis. 2001. Translating the histone code. Science 293: 1074-80.

Jepsen, K., O. Hermanson, T.M. Onami, A.S. Gleiberman, V. Lunyak, R.J. McEvilly, R. Kurokawa, V. Kumar, F. Liu, E. Seto, S.M. Hedrick, G. Mandel, C.K. Glass, D.W. Rose, and M.G. Rosenfeld. 2000. Combinatorial Roles of the Nuclear Receptor Corepressor in Transcription an Development. Cell 102: 753-763.

Jiang, S., R. Meyer, K. Kang, C. Kent Osborne, J. Wong, and S. Oesterreich. 2005a.

Scaffold attachment factor SAFB1 suppresses ER{alpha}-mediated transcription in part via interaction with N-CoR. Mol Endocrinol. Jiang, W., M.E. Roemer, and I.F. Newsham. 2005b. The tumor suppressor

DAL-1/4.1B modulates protein arginine N-methyltransferase 5 activity in a substrate-specific manner. Biochem Biophys Res Commun 329: 522-30.

Kamei, Y., L. Xu, T. Heinzel, J. Torchia, R. Kurokawa, B. Gloss, S.C. Lin, R.A.

Heyman, D.W. Rose, C.K. Glass, and M.G. Rosenfeld. 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85: 403-14.

Karetsou, Z., G. Martic, G. Sflomos, and T. Papamarcaki. 2005. The histone chaperone SET/TAF-Ibeta interacts functionally with the CREB-binding protein. Biochem Biophys Res Commun 335: 322-7.

Kato, S., H. Endoh, Y. Masuhiro, T. Kitamoto, S. Uchiyama, H. Sasaki, S. Masushige, Y. Gotoh, E. Nishida, H. Kawashima, D. Metzger, and P. Chambon. 1995.

Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270: 1491-4.

Kim, J., L.N. Petz, Y.S. Ziegler, J.R. Wood, S.J. Potthoff, and A.M. Nardulli. 2000.

Regulation of the estrogen-responsive pS2 gene in MCF-7 human breast cancer cells. J Steroid Biochem Mol Biol 74: 157-68.

Kim, J.H., H. Li, and M.R. Stallcup. 2003. CoCoA, a nuclear receptor coactivator which acts through an N-terminal activation domain of p160 coactivators.

Mol Cell 12: 1537-49.

Klinge, C.M. 2001. Estrogen receptor interaction with estrogen response elements.

Nucleic Acids Res 29: 2905-19.

Klinge, C.M., S.C. Jernigan, K.A. Mattingly, K.E. Risinger, and J. Zhang. 2004.

Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors alpha and beta by coactivators and corepressors. Mol Endocrinol 33: 387-410.

J Koh, S.S., D. Chen, Y.H. Lee, and M.R. Stallcup. 2001. Synergistic enhancement of

nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem 276: 1089-98.

Koh, S.S., H. Li, Y.H. Lee, R.B. Widelitz, C.M. Chuong, and M.R. Stallcup. 2002.

Synergistic coactivator function by coactivator-associated arginine

methyltransferase (CARM) 1 and beta-catenin with two different classes of DNA-binding transcriptional activators. J Biol Chem 277: 26031-5.

Kuiper, G.G., E. Enmark, M. Pelto-Huikko, S. Nilsson, and J.A. Gustafsson. 1996.

Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 93: 5925-30.

Kutney, S.N., R. Hong, T. Macfarlan, and D. Chakravarti. 2004. A signaling role of histone-binding proteins and INHAT subunits pp32 and Set/TAF-Ibeta in integrating chromatin hypoacetylation and transcriptional repression. J Biol Chem 279: 30850-5.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-5.

Lee, J., J. Sayegh, J. Daniel, S. Clarke, and M.T. Bedford. 2005a. PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. J Biol Chem.

Lee, J.H., J.R. Cook, Z.H. Yang, O. Mirochnitchenko, S.I. Gunderson, A.M. Felix, N.

Herth, R. Hoffmann, and S. Pestka. 2005b. PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine. J Biol Chem 280: 3656-64.

Lee, Y.H., H.D. Campbell, and M.R. Stallcup. 2004. Developmentally essential protein flightless I is a nuclear receptor coactivator with actin binding activity. Mol Cell Biol 24: 2103-17.

Lee, Y.H., S.S. Koh, X. Zhang, X. Cheng, and M.R. Stallcup. 2002. Synergy among nuclear receptor coactivators: selective requirement for protein

methyltransferase and acetyltransferase activities. Mol Cell Biol 22: 3621-32.

Li, M., A. Makkinje, and Z. Damuni. 1996. The Myeloid Leukemia-associated

Protein SET is a Potent Inhibitor of Protein Phophatase 2A. J Biol Chem 271:

11059-11062.

Lieberman, J. and Z. Fan. 2003. Nuclear war: the granzyme A-bomb. Curr Opin Immunol 15: 553-9.

Lin, W.J., J.D. Gary, M.C. Yang, S. Clarke, and H.R. Herschman. 1996. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J Biol Chem 271: 15034-44.

Loven, M.A., R.E. Davis, C.D. Curtis, N. Muster, J.R. Yates, and A.M. Nardulli. 2004.

A novel estrogen receptor alpha-associated protein alters receptor-deoxyribonucleic acid interactions and represses receptor-mediated transcription. Mol Endocrinol 18: 2649-59.

Lu, Q., H.K. Surks, H. Ebling, W.E. Baur, D. Brown, D.C. Pallas, and R.H. Karas.

2003. Regulation of estrogen receptor alpha-mediated transcription by a direct interaction with protein phosphatase 2A. J Biol Chem 278: 4639-45.

Luger, K., A.W. Mader, and T.J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251-260.

Ma, H., C.T. Baumann, H. Li, B.D. Strahl, R. Rice, M.A. Jelinek, D.W. Aswad, C.D.

Allis, G.L. Hager, and M.R. Stallcup. 2001. Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter. Curr Biol 11: 1981-5.

Mangelsdorf, D.J., C. Thummel, M. Beato, P. Herrlich, G. Schutz, K. Umesono, B.

Blumberg, P. Kastner, M. Mark, P. Chambon, and R.M. Evans. 1995. The nuclear receptor superfamiliy: the second decade. Cell 83: 835-839.

Margueron, R., P. Trojer, and D. Reinberg. 2005. The key to development:

interpreting the histone code? Curr Opin Genet Dev 15: 163-76.

Mateescu, B., P. England, F. Halgand, M. Yaniv, and C. Muchardt. 2004. Thethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3. EMBO Rep 5: 490-496.

Mathelin, C., C. Tomasetto, and M.C. Rio. 2005. [Trefoil factor 1 (pS2/TFF1), a peptide with numerous functions]. Bull Cancer 92: 773-81.

Matsumoto, K., K. Nagata, M. Okuwaki, and M. Tsujimoto. 1999. Histone- and chromatin-binding activity of template activating factor-I. FEBS Lett 463:

285-8.

Matsumoto, K., K. Nagata, M. Ui, and F. Hanaoka. 1993. Template activating factor I, a novel host factor required to stimulate the adenovirus core DNA

replication. J Biol Chem 268: 10582-7.

Mazumdar, A., R.A. Wang, S.K. Mishra, L. Adam, R. Bagheri-Yarmand, M. Mandal, R.K. Vadlamudi, and A. Kumar. 2001. Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat Cell Biol 3: 30-37.

McKenna, N.J., R.B. Lanz, and B.E. O´Malley. 1999. Nuclear Receptor Coregulators:

Cellular and Molecular Biology. Endocrine Reviews 20: 321-344.

Meister, G., C. Eggert, D. Buhler, H. Brahms, C. Kambach, and U. Fischer. 2001.

Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol 11: 1990-4.

Meister, G. and U. Fischer. 2002. Assisted RNP assembly: SMN and PRMT5

complexes cooperate in the formation of spliceosomal UsnRNPs. Embo J 21:

5853-63.

Metivier, R., G. Penot, M.R. Hubner, G. Reid, H. Brand, M. Kos, and F. Gannon.

2003. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115: 751-63.

Miranda, T.B., P. Khusial, J.R. Cook, J.H. Lee, S.I. Gunderson, S. Pestka, G.W. Zieve, and S. Clarke. 2004. Spliceosome Sm proteins D1, D3, and B/B' are

asymmetrically dimethylated at arginine residues in the nucleus. Biochem Biophys Res Commun 323: 382-7.

Miyaji-Yamaguchi, M., M. Okuwaki, and K. Nagata. 1999. Coiled-coil structure-mediated dimerization of template activating factor-I is critical for its chromatin remodeling activity. J Mol Biol 290: 547-57.

Miyamoto, S., T. Suzuki, S. Muto, K. Aizawa, A. Kimura, Y. Mizuno, T. Nagino, Y.

Imai, N. Adachi, M. Horikoshi, and R. Nagai. 2003. Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain. Mol Cell Biol 23: 8528-41.

Nagata, K., H. Kawase, H. Handa, K. Yano, M. Yamasaki, Y. Ishimi, A. Okuda, A.

Kikuchi, and K. Matsumoto. 1995. Replication factor encoded by a putative oncogene, set, associated with myeloid leukemogenesis. Proc Natl Acad Sci U S A 92: 4279-83.

Nagata, K., S. Saito, M. Okuwaki, H. Kawase, A. Furuya, A. Kusano, N. Hanai, A.

Okuda, and A. Kikuchi. 1998. Cellular localization and expression of

template-activating factor I in different cell types. Exp Cell Res 240: 274-81.

Ohkura, N., M. Takahashi, H. Yaguchi, Y. Nagamura, and T. Tsukada. 2005.

Coactivator-associated Arginine Methyltransferase 1, CARM1, Affects Pre-mRNA Splicing in an Isoform-specific Manner. J Biol Chem 280: 28927-35.

Okuwaki, M. and K. Nagata. 1998. Template activating factor-I remodels the chromatin structure and stimulates transcription from the chromatin template. J Biol Chem 273: 34511-8.

Paik, M.K. and S. Kim. 1967. Enzymatic methylation of protein fractions from calf thymus nuclei. Biochem Biophys Res Commun 29: 14-20.

Paik, W.K. and S. Kim. 1968. Protein methylase I. Purification and properties of the enzyme. J Biol Chem 243: 2108-14.

Pal, S., S.N. Vishwanath, H. Erdjument-Bromage, P. Tempst, and S. Sif. 2004.

Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes.

Mol Cell Biol 24: 9630-45.

Pal, S., R. Yun, A. Datta, L. Lacomis, H. Erdjument-Bromage, J. Kumar, P. Tempst, and S. Sif. 2003. mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad.

Mol Cell Biol 23: 7475-87.