• Keine Ergebnisse gefunden

Reactions on streptavidin sepharose

Im Dokument Oligonucleotide-modified Nuclotides (Seite 96-117)

Streptavidin sepharose was purchased from GE Healthcare (High Performance; ligand:

streptavidin; matrix: highly cross-linked agarose, 6%; average particle size: 34 μm;

binding capacity: >300 nmol biotin/ml medium). Hemin and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) were purchased from Sigma-Aldrich.

Detection without signal amplification

10 µL streptavidin sepharose suspension was spun down and the supernatant was carefully removed. The residual was washed two times with 60µL 1x binding buffer before 5 µL immobilized primer 2 (10 µM, 50 pmol) and 5 µL 1x binding buffer were added. After 10 min the suspension was spun down and the supernatant was removed. The residual was washed with 60 µL 1x binding buffer and two times with 60 µL 1 x buffer 2.

1.2 µL template 5A/T (10 µM, 12 pmol), 1.5 µL 10x buffer 2 and 9 µL H2O were added.

After 5 min 0.3 µL KF (exo-) (5 U/µL, 1.5 U) and 3 µL G4-modified dNTP (100 µM, 300 pmol) were added and the reaction was incubated 1 h at 30°C. The suspension was spun down and the supernatant was removed. The residual was washed with 60 µL 1x buffer 2 and three times with 60 µL 1x 40K buffer.

Materials and Methods 87

5 µL 1x 40K buffer, 1.5 µL hemin (10 µM, 15 pmol), 3 µL ABTS (10 mM, 30 nmol) and 1.8 µL H2O2 (10 mM, 18 nmol) were added. For absorbance measurement a NanoDrop ND-1000 Spectrometer (ThermoScientific) was used. Pictures were taken by an iPhone4S (Apple).

Detection with signal amplification

10 µL streptavidin sepharose suspension was spun down and the supernatant was carefully removed. The residual was washed two times with 60µL 1 x binding buffer before 5 µL immobilized primer 2 (10 µM, 50 pmol) and 5 µL 1x binding buffer were added. After 10 min the suspension was spun down and the supernatant was removed.

The residual was washed with 60 µL 1 x binding buffer and two times with 60 µL 1x buffer 2.

1.2 µL template 5A/B (10 µM, 12 pmol), 1.5 µL 10 x buffer 2 and 9 µL H2O were added.

After 5 min 0.3 µL KF- (5 U/µL, 1.5 U) and 3 µL ODN-modified dNTP (100 µM, 300 pmol) were added and the reaction was incubated 1 h at 30°C. The suspension was spun down and the supernatant was removed. The residual was washed three times with 60 µL 1x buffer 2.

For signal amplification 1.2 µL circ. RCA template (10 µM, 12 pmol), 1.5 µL 10x buffer 2, 1.5 µL dNTPs (1 mM, 1.5 nmol), 10.6 µL H2O and 0.2 µL KF- (5 U/µL, 1.0 U) were added.

The reaction mixture was incubated 1 h at 30°C. The residual was washed three times with 60 µL 1x buffer 2.

15 µL DNAzyme-tagged complementary strand (0.1 nmol) in 1x buffer 2 was added and incubated for 15 min. The residual was washed with 60 µL 1x buffer 2and three times with 60 µL 1x 40K buffer.

5 µL 1x 40K buffer, 1.5 µL hemin (10 µM, 15 pmol), 3 µL ABTS (10 mM, 30 nmol) and 1.8 µL H2O2 (10 mM, 18 nmol) were added. Pictures were taken by an iPhone4S (Apple). For absorbance measurement a NanoDrop ND-1000 Spectrometer (ThermoScientific) was used.

88 Materials and Methods

89

7 Abbreviations

ABTS 2,2’-azino-bis(3-ethylbenzothiozoline-6-sulfonic acid)

Ac acetyl

ACN acetonitrile

AIDS Acquired Immune Deficiency Syndrome APS ammonium peroxodisulfate

ATP adenosine triphosphates

B nucleobase

dATP 2’-deoxyadenosine triphosphate dCTP 2’-deoxycytidine triphosphate

dNTP deoxynucleotide triphosphate

dsDNA double stranded deoxyribonucleic acid dTTP thymidine triphosphate

e.g. exempli gratia (for example) EDTA ethylenediamine tetraacetic acid

EE ethyl acetate

90 Abbreviations

ESI electron spray ionization exo- exonuclease-deficient

FPLC fast performance liquid chromatography

h hour

HIV human immunodeficiency virus HPLC high pressure liquid chromatography HR high resolution

MPLC middle pressure liquid chromatography

MS mass spectrometry

NADH Nicotinamide adenine dinucleotide NMR nucleic magnetic resonance

nt nucleotides

ODN oligodeoxynucleotide

PAGE polyacrylamide gel electrophoresis PCR polymerase chain reaction

RP-MPLC reversed phase middle pressure chromatography

s singlet

sec second

Abbreviations 91

ssDNA single stranded DNA STV streptavidin

SELEX systematic enrichment of ligands by exponential amplification SNP single nucleotide polymorphism

t triplet

Taq Thermus aquaticus

TEAA triethylammonium acetate TEAB triethylammonium bicarbonate TEMED N,N,N’,N’-tetramethylethylenediamine TFA trifluoroacetic acid

TLC thin layer chromatography

tNTP α-L-threofuranosyl nucleoside triphosphate TOF time of flight

UV ultraviolet

VIS visual light

92 Abbreviations

93

8 References

1. R.E. Franklin and R.G. Gosling, Molecular configuration in sodium thymonucleate.

Nature, 1953. 171(4356): p. 740-1.

2. J.D. Watson and F.H.C. Crick, Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 1953. 171(4356): p. 737-8.

3. J.D. Watson and F.H.C. Crick, Genetical implications of the structure of deoxyribonucleic acid. Nature, 1953. 171(4361): p. 964-967.

4. M.H. Wilkins, W.E. Seeds, A.R. Stokes, and H.R. Wilson, Helical structure of crystalline deoxypentose nucleic acid. Nature, 1953. 172(4382): p. 759-62.

5. R.E. Franklin and R.G. Gosling, Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature, 1953. 172(4369): p. 156-7.

6. J.C. Venter et al., The sequence of the human genome. Science, 2001. 291(5507): p.

1304-51.

7. E.S. Lander et al., Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): p. 860-921.

8. W.E. Evans and M.V. Relling, Moving towards individualized medicine with pharmacogenomics. Nature, 2004. 429(6990): p. 464-8.

9. J.J. McCarthy and R. Hilfiker, The use of single-nucleotide polymorphism maps in pharmacogenomics. Nat. Biotechnol., 2000. 18(5): p. 505-8.

10. J. Bell, Predicting disease using genomics. Nature, 2004. 429(6990): p. 453-6.

11. Y.W. Kan and A.M. Dozy, Antenatal diagnosis of sickle-cell anaemia by D.N.A.

analysis of amniotic-fluid cells. Lancet, 1978. 2(8096): p. 910-2.

12. J. Novembre et al., Genes mirror geography within Europe. Nature, 2008.

456(7218): p. 98-101.

13. O. Lao et al., Correlation between genetic and geographic structure in Europe. Curr.

Biol., 2008. 18(16): p. 1241-8.

14. P. Yakovchuk, E. Protozanova, and M.D. Frank-Kamenetskii, Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res., 2006. 34(2): p. 564-74.

15. F.H. Crick, L. Barnett, S. Brenner, and R.J. Watts-Tobin, General nature of the genetic code for proteins. Nature, 1961. 192: p. 1227-32.

94 References

16. R.K. Saiki et al., Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988. 239(4839): p. 487-91.

17. J.H. Chen and N.C. Seeman, Synthesis from DNA of a molecule with the connectivity of a cube. Nature, 1991. 350(6319): p. 631-3.

18. D. Sen and W. Gilbert, Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature, 1988. 334(6180): p. 364-6.

19. K. Hoogsteen, Crystal and Molecular Structure of a Hydrogen-Bonded Complex between 1-Methylthymine and 9-Methyladenine. Acta Crystallographica, 1963.

16(9): p. 907-16.

20. G. Laughlan et al., The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science, 1994. 265(5171): p. 520-4.

21. N.H. Campbell and S. Neidle, G-quadruplexes and metal ions. Met. Ions. Life Sci., 2012. 10: p. 119-34.

22. B. Datta, C. Schmitt, and B.A. Armitage, Formation of a PNA2-DNA2 hybrid quadruplex. J. Am. Chem. Soc., 2003. 125(14): p. 4111-8.

23. A. Randazzo, V. Esposito, O. Ohlenschlager, R. Ramachandran, and L. Mayola, NMR solution structure of a parallel LNA quadruplex. Nucleic Acids Res., 2004. 32(10): p.

3083-92.

24. S. Roe, D.J. Ritson, T. Garner, M. Searle, and J.E. Moses, Tuneable DNA-based asymmetric catalysis using a G-quadruplex supramolecular assembly. Chem.

Commun., 2010. 46(24): p. 4309-11.

25. C. Wang, Y. Li, G. Jia, Y. Liu, S. Lu, and C. Li, Enantioselective Friedel-Crafts reactions in water catalyzed by a human telomeric G-quadruplex DNA metalloenzyme. Chem.

Commun., 2012. 48(50): p. 6232-4.

26. C. Wang et al., Enantioselective Diels-Alder reactions with G-Quadruplex DNA-Based catalysts. Angew. Chem., Int. Ed. Engl., 2012. 51(37): p. 9352-5.

27. R.R. Breaker and G.F. Joyce, A DNA enzyme that cleaves RNA. Chem. Biol., 1994.

1(4): p. 223-9.

28. K. Kruger, P.J. Grabowski, A.J. Zaug, J. Sands, D.E. Gottschling, and T.R. Cech, Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 1982. 31(1): p. 147-57.

29. C. Guerrier-Takada, K. Gardiner, T. Marsh, N. Pace, and S. Altman, The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 1983. 35(3 Pt 2): p.

849-57.

30. N. Singh, A. Ranjan, S. Sur, R. Chandra, and V. Tandon, Inhibition of HIV-1 Integrase gene expression by 10-23 DNAzyme. J. Biosci., 2012. 37(3): p. 493-502.

31. D.J. Chinnapen and D. Sen, A deoxyribozyme that harnesses light to repair thymine dimers in DNA. Proc. Natl. Acad. Sci., 2004. 101(1): p. 65-9.

32. A.D. Ellington and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. Nature, 1990. 346(6287): p. 818-22.

33. Y. Yuan et al., Hemin/G-quadruplex simultaneously acts as NADH oxidase and HRP-mimicking DNAzyme for simple, sensitive pseudobienzyme electrochemical detection of thrombin. Chem. Commun., 2012. 48(38): p. 4621-3.

References 95

34. N. Carmi and R.R. Breaker, Characterization of a DNA-cleaving deoxyribozyme.

Bioorg. Med. Chem., 2001. 9(10): p. 2589-600.

35. R.R. Breaker and G.F. Joyce, A DNA enzyme with Mg(2+)-dependent RNA phosphoesterase activity. Chem. Biol., 1995. 2(10): p. 655-60.

36. Y. Li and R.R. Breaker, Phosphorylating DNA with DNA. Proc. Natl. Acad. Sci., 1999.

96(6): p. 2746-51.

37. W.E. Purtha, R.L. Coppins, M.K. Smalley, and S.K. Silverman, General deoxyribozyme-catalyzed synthesis of native 3'-5' RNA linkages. J. Am. Chem. Soc., 2005. 127(38): p.

13124-5.

38. F. Du and Z. Tang, Colorimetric detection of PCR product with DNAzymes induced by 5'-nuclease activity of DNA polymerases. Chembiochem, 2011. 12(1): p. 43-6.

39. R. Freeman, E. Sharon, C. Teller, A. Henning, Y. Tzfati, and I. Willner, DNAzyme-like activity of hemin-telomeric G-quadruplexes for the optical analysis of telomerase and its inhibitors. Chembiochem, 2010. 11(17): p. 2362-7.

40. D.M. Kong, L.L. Cai, J.H. Guo, J. Wu, and H.X. Shen, Characterization of the G-quadruplex structure of a catalytic DNA with peroxidase activity. Biopolymers, 2009. 91(5): p. 331-9.

41. I. Willner, B. Shlyahovsky, M. Zayats, and B. Willner, DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem. Soc. Rev., 2008. 37(6): p.

1153-65.

42. D. Li, B. Shlyahovsky, J. Elbaz, and I. Willner, Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates.

J. Am. Chem. Soc., 2007. 129(18): p. 5804-5.

43. P. Travascio, Y. Li, and D. Sen, DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem. Biol., 1998. 5(9): p. 505-17.

44. Y.F. Li and D. Sen, A catalytic DNA for porphyrin metallation. Nat. Struc. Biol., 1996.

3(9): p. 743-747.

45. P. Travascio, P.K. Witting, A.G. Mauk, and D. Sen, The peroxidase activity of a hemin--DNA oligonucleotide complex: free radical damage to specific guanine bases of the DNA. J. Am. Chem. Soc., 2001. 123(7): p. 1337-48.

46. Y. Xiao, V. Pavlov, T. Niazov, A. Dishon, M. Kotler, and I. Willner, Catalytic beacons for the detection of DNA and telomerase activity. J. Am. Chem. Soc., 2004. 126(24):

p. 7430-1.

47. E. Golub, R. Freeman, and I. Willner, A hemin/G-quadruplex acts as an NADH oxidase and NADH peroxidase mimicking DNAzyme. Angew. Chem., Int. Ed. Engl., 2011. 50(49): p. 11710-4.

48. H. Abe et al., Structure formation and catalytic activity of DNA dissolved in organic solvents. Angew. Chem., Int. Ed. Engl., 2012. 51(26): p. 6475-9.

49. X. Liu, R. Freeman, E. Golub, and I. Willner, Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. ACS Nano, 2011. 5(9): p. 7648-55.

50. R. Freeman, X. Liu, and I. Willner, Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J.

Am. Chem. Soc., 2011. 133(30): p. 11597-604.

96 References

51. E. Sharon, R. Freeman, M. Riskin, N. Gil, Y. Tzfati, and I. Willner, Optical, electrical and surface plasmon resonance methods for detecting telomerase activity. Anal.

Chem., 2010. 82(20): p. 8390-7.

52. E. Sharon, R. Freeman, and I. Willner, CdSe/ZnS quantum dots-G-quadruplex/hemin hybrids as optical DNA sensors and aptasensors. Anal. Chem., 2010. 82(17): p. 7073-7.

53. G. Pelossof, R. Tel-Vered, J. Elbaz, and I. Willner, Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst. Anal. Chem., 2010. 82(11): p. 4396-402.

54. Y. Yuan et al., Electrochemical aptasensor based on the dual-amplification of G-quadruplex horseradish peroxidase-mimicking DNAzyme and blocking reagent-horseradish peroxidase. Biosens. Bioelectron., 2011. 26(10): p. 4236-40.

55. M.A. Varela and W. Amos, Heterogeneous distribution of SNPs in the human genome:

microsatellites as predictors of nucleotide diversity and divergence. Genomics, 2010.

95(3): p. 151-9.

56. A.J. Brookes, The essence of SNPs. Gene, 1999. 234(2): p. 177-86.

57. A.J. Iafrate et al., Detection of large-scale variation in the human genome. Nat Genet, 2004. 36(9): p. 949-51.

58. J. Sebat et al., Large-scale copy number polymorphism in the human genome.

Science, 2004. 305(5683): p. 525-8.

59. E.H. Corder et al., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 1993. 261(5123): p. 921-3.

60. T.A. Masoodi, S.A. Al Shammari, M.N. Al-Muammar, and A.A. Alhamdan, Screening and Evaluation of Deleterious SNPs in APOE Gene of Alzheimer's Disease. Neurol.

Res. Int., 2012. 2012: p. 480609-17.

61. L.M. Bekris et al., Multiple SNPs within and surrounding the apolipoprotein E gene influence cerebrospinal fluid apolipoprotein E protein levels. J. Alzheimers Dis., 2008. 13(3): p. 255-66.

62. R.G. Hewitt, Abacavir hypersensitivity reaction. Clin. Infect. Dis., 2002. 34(8): p.

1137-42.

63. S. Mallal et al., HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J.

Med., 2008. 358(6): p. 568-79.

64. S. Mallal et al., Association between presence of B*5701, DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet, 2002. 359(9308): p. 727-32.

65. S. Hetherington et al., Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet, 2002. 359(9312): p. 1121-2.

66. A.M. Martin et al., Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic Hsp70-Hom variant. Proc. Natl. Acad. Sci., 2004. 101(12):

p. 4180-5.

67. C. Dello Russo et al., Novel sensitive, specific and rapid pharmacogenomic test for the prediction of abacavir hypersensitivity reaction: HLA-B*57:01 detection by real-time PCR. Pharmacogenomics, 2011. 12(4): p. 567-76.

References 97

68. M. Saag et al., High sensitivity of human leukocyte antigen-b*5701 as a marker for immunologically confirmed abacavir hypersensitivity in white and black patients.

Clin. Infect. Dis., 2008. 46(7): p. 1111-8.

69. P.T. Illing et al., Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature, 2012. 486(7404): p. 554-8.

70. D.A. Ostrov et al., Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc. Natl. Acad. Sci., 2012. 109(25): p. 9959-64.

71. K. Bebenek and T.A. Kunkel, Functions of DNA polymerases. Adv. Protein Chem., 2004. 69: p. 137-65.

72. T.A. Kunkel and K. Bebenek, DNA replication fidelity. Annu. Rev. Biochem., 2000.

69: p. 497-529.

73. E.T. Kool, J.C. Morales, and K.M. Guckian, Mimicking the structure and function of DNA: Insights into DNA stability and replication. Angew. Chem., Int. Ed. Engl., 2000.

39(6): p. 990-1009.

74. E.T. Kool, Active site tightness and substrate fit in DNA replication. Annu. Rev.

Biochem., 2002. 71: p. 191-219.

75. E.T. Kool, Hydrogen bonding, base stacking, and steric effects in dna replication.

Annu. Rev. Biophys. Biomol. Struct., 2001. 30: p. 1-22.

76. E.T. Kool, Replication of non-hydrogen bonded bases by DNA polymerases: a mechanism for steric matching. Biopolymers, 1998. 48(1): p. 3-17.

77. L.A. Loeb and T.A. Kunkel, Fidelity of DNA synthesis. Annu. Rev. Biochem., 1982. 51:

p. 429-57.

78. M.F. Goodman, Hydrogen bonding revisited: geometric selection as a principal determinant of DNA replication fidelity. Proc. Natl. Acad. Sci., 1997. 94(20): p.

10493-5.

79. D. Summerer and A. Marx, Differential minor groove interactions between DNA polymerase and sugar backbone of primer and template strands. J. Am. Chem. Soc., 2002. 124(6): p. 910-1.

80. J.D. Pata and J. Jaeger, Molecular machines and targeted molecular dynamics: DNA in motion. Structure, 2010. 18(1): p. 4-6.

81. C.M. Joyce and T.A. Steitz, Function and structure relationships in DNA polymerases.

Annu. Rev. Biochem., 1994. 63: p. 777-822.

82. P.J. Rothwell and G. Waksman, Structure and mechanism of DNA polymerases. Adv.

Protein Chem., 2005. 71: p. 401-40.

83. D.K. Braithwaite and J. Ito, Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res., 1993. 21(4): p. 787-802.

84. M. Delarue, O. Poch, N. Tordo, D. Moras, and P. Argos, An attempt to unify the structure of polymerases. Protein Eng., 1990. 3(6): p. 461-7.

85. J. Ito and D.K. Braithwaite, Compilation and alignment of DNA polymerase sequences. Nucleic Acids Res., 1991. 19(15): p. 4045-57.

86. T.D. Brock and H. Freeze, Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J. Bacteriol., 1969. 98(1): p. 289-97.

98 References

87. F.C. Lawyer et al., High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity. PCR Methods Appl., 1993. 2(4): p.

275-87.

88. W.M. Barnes, The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion. Gene, 1992. 112(1): p. 29-35.

89. Y. Wang, B.A. Tkachenko, P.R. Schreiner, and A. Marx, Diamondoid-modified DNA.

Org. Biomol. Chem., 2011. 9(21): p. 7482-90.

90. K.B. Sauter and A. Marx, Evolving thermostable reverse transcriptase activity in a DNA polymerase scaffold. Angew. Chem., Int. Ed. Engl., 2006. 45(45): p. 7633-5.

91. C. Gloeckner, K.B. Sauter, and A. Marx, Evolving a thermostable DNA polymerase that amplifies from highly damaged templates. Angew. Chem., Int. Ed. Engl., 2007.

46(17): p. 3115-7.

92. Y. Li, S. Korolev, and G. Waksman, Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J., 1998. 17(24):

p. 7514-25.

93. J. Liu and M.D. Tsai, DNA polymerase beta: pre-steady-state kinetic analyses of dATP alpha S stereoselectivity and alteration of the stereoselectivity by various metal ions and by site-directed mutagenesis. Biochemistry, 2001. 40(30): p. 9014-22.

94. T.A. Steitz, DNA-Dependent and RNA-Dependent DNA-Polymerases. Curr. Op. Struc.

Biol., 1993. 3(1): p. 31-38.

95. C. Castro et al., Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases. Proc. Natl. Acad.

Sci., 2007. 104(11): p. 4267-72.

96. V.K. Batra, W.A. Beard, D.D. Shock, J.M. Krahn, L.C. Pedersen, and S.H. Wilson, Magnesium-induced assembly of a complete DNA polymerase catalytic complex.

Structure, 2006. 14(4): p. 757-66.

97. C. Castro et al., Nucleic acid polymerases use a general acid for nucleotidyl transfer.

Nat. Struct. Mol. Biol., 2009. 16(2): p. 212-8.

98. A.F. Gardner and W.E. Jack, Acyclic and dideoxy terminator preferences denote divergent sugar recognition by archaeon and Taq DNA polymerases. Nucleic Acids Research, 2002. 30(2): p. 605-613.

99. M.W. Southworth, H. Kong, R.B. Kucera, J. Ware, H.W. Jannasch, and F.B. Perler, Cloning of thermostable DNA polymerases from hyperthermophilic marine Archaea with emphasis on Thermococcus sp. 9 degrees N-7 and mutations affecting 3'-5' exonuclease activity. Proc. Natl. Acad. Sci., 1996. 93(11): p. 5281-5.

100. A.F. Gardner and W.E. Jack, Acyclic and dideoxy terminator preferences denote divergent sugar recognition by archaeon and Taq DNA polymerases. Nucleic Acids Res., 2002. 30(2): p. 605-13.

101. D. Loakes and P. Holliger, Polymerase engineering: towards the encoded synthesis of unnatural biopolymers. Chem. Commun., 2009(31): p. 4619-31.

102. J.K. Ichida, A. Horhota, K. Zou, L.W. McLaughlin, and J.W. Szostak, High fidelity TNA synthesis by Therminator polymerase. Nucleic Acids Res., 2005. 33(16): p. 5219-25.

References 99

103. S. Obeid, M. Yulikov, G. Jeschke, and A. Marx, Enzymatic synthesis of multiple spin-labeled DNA. Angew. Chem., Int. Ed. Engl., 2008. 47(36): p. 6782-5.

104. H. Klenow and I. Henningsen, Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis.

Proc. Natl. Acad. Sci., 1970. 65(1): p. 168-75.

105. J. Petruska, M.J. Hartenstine, and M.F. Goodman, Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease. J. Biol. Chem., 1998. 273(9): p. 5204-10.

106. J.S. Hartig and E.T. Kool, Small circular DNAs for synthesis of the human telomere repeat: varied sizes, structures and telomere-encoding activities. Nucleic Acids Res., 2004. 32(19): p. e152.

107. A. Baccaro and A. Marx, Enzymatic synthesis of organic-polymer-grafted DNA.

Chemistry, 2010. 16(1): p. 218-26.

108. D. Liu, S.L. Daubendiek, M.A. Zillman, K. Ryan, and E.T. Kool, Rolling Circle DNA Synthesis: Small Circular Oligonucleotides as Efficient Templates for DNA Polymerases. J. Am. Chem. Soc., 1996. 118(7): p. 1587-1594.

109. A. Fire and S.Q. Xu, Rolling replication of short DNA circles. Proc. Natl. Acad. Sci., 1995. 92(10): p. 4641-5.

110. D.R. Bentley et al., Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 2008. 456(7218): p. 53-9.

111. J. Bowers et al., Virtual terminator nucleotides for next-generation DNA sequencing.

Nat. Methods, 2009. 6(8): p. 593-5.

112. H. Ruparel et al., Design and synthesis of a 3'-O-allyl photocleavable fluorescent nucleotide as a reversible terminator for DNA sequencing by synthesis. Proc. Natl.

Acad. Sci., 2005. 102(17): p. 5932-7.

113. T.D. Harris et al., Single-molecule DNA sequencing of a viral genome. Science, 2008.

320(5872): p. 106-9.

114. S.H. Weisbrod and A. Marx, Novel strategies for the site-specific covalent labelling of nucleic acids. Chem. Commun., 2008(44): p. 5675-85.

115. A.J. Cobb, Recent highlights in modified oligonucleotide chemistry. Org. Biomol.

Chem., 2007. 5(20): p. 3260-75.

116. E. Saxon and C.R. Bertozzi, Cell surface engineering by a modified Staudinger reaction. Science, 2000. 287(5460): p. 2007-10.

117. H. Staudinger and J. Meyer, On new organic phosphorus bonding III Phosphine methylene derivatives and phosphinimine. Helv. Chim. Acta, 1919. 2: p. 635-646.

118. R. Huisgen, 1,3-Dipolar Cycloadditions. Angew. Chem., Int. Ed. Engl., 1963. 2: p. 565-98.

119. V.V. Rostovtsev, L.G. Green, V.V. Fokin, and K.B. Sharpless, A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew. Chem., Int. Ed. Engl., 2002. 41(14): p. 2596-9.

120. C.W. Tornoe, C. Christensen, and M. Meldal, Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002. 67(9): p. 3057-64.

100 References

121. P.M. Gramlich, S. Warncke, J. Gierlich, and T. Carell, Click-click-click: single to triple modification of DNA. Angew. Chem., Int. Ed. Engl., 2008. 47(18): p. 3442-4.

122. O. Diels and K. Alder, Synthesis in the hydro-aromatic tier. Justus Liebigs Annalen der Chemie, 1928. 460: p. 98-122.

123. K.W. Hill et al., Diels-Alder bioconjugation of diene-modified oligonucleotides. J. Org.

Chem., 2001. 66(16): p. 5352-8.

124. S. Jager, G. Rasched, H. Kornreich-Leshem, M. Engeser, O. Thum, and M. Famulok, A versatile toolbox for variable DNA functionalization at high density. J. Am. Chem.

Soc., 2005. 127(43): p. 15071-82.

125. O. Thum, S. Jager, and M. Famulok, Functionalized DNA: A New Replicable Biopolymer We thank Dr. Andreas Marx, University of Bonn, for helpful advice and discussions. This work was supported by the Fonds der Chemischen Industrie, the Karl-Ziegler Stiftung, and the Deutsche Forschungsgemeinschaft. Angew. Chem., Int.

Ed. Engl., 2001. 40(21): p. 3990-3993.

126. M.M. Masud, A. Ozaki-Nakamura, F. Satou, T. Ohbayashi, H. Ozaki, and H. Sawai, Enzymatic synthesis of modified DNA by PCR. Nucleic Acids Res. Suppl., 2001(1): p.

21-2.

127. P. Capek, H. Cahova, R. Pohl, M. Hocek, C. Gloeckner, and A. Marx, An efficient method for the construction of functionalized DNA bearing amino acid groups through cross-coupling reactions of nucleoside triphosphates followed by primer extension or PCR. Chemistry, 2007. 13(21): p. 6196-203.

128. H. Cahova, R. Pohl, L. Bednarova, K. Novakova, J. Cvacka, and M. Hocek, Synthesis of 8-bromo-, 8-methyl- and 8-phenyl-dATP and their polymerase incorporation into DNA. Org. Biomol. Chem., 2008. 6(20): p. 3657-60.

129. C. Lam, C. Hipolito, and D.M. Perrin, Synthesis and Enzymatic Incorporation of Modified Deoxyadenosine Triphosphates. Eur. J. Org. Chem., 2008(29): p. 4915-23.

130. P. Brazdilova et al., Ferrocenylethynyl derivatives of nucleoside triphosphates:

synthesis, incorporation, electrochemistry, and bioanalytical applications. Chemistry, 2007. 13(34): p. 9527-33.

131. A.R. Kore, Solid-phase synthesis of new ribo and deoxyribo BrdU probes for labeling and detection of nucleic acids. Tetrahedron Let., 2009. 50: p. 793-795.

132. T. Ohbayashi, M. Kuwahara, M. Hasegawa, T. Kasamatsu, T. Tamura, and H. Sawai, Expansion of repertoire of modified DNAs prepared by PCR using KOD Dash DNA polymerase. Org. Biomol. Chem., 2005. 3(13): p. 2463-8.

133. T. Konishi, A. Takeyasu, T. Natsume, Y. Furusawa, and K. Hieda, Visualization of heavy ion tracks by labeling 3'-OH termini of induced DNA strand breaks. J. Radiat.

Res., 2011. 52(4): p. 433-40.

134. M. Legraverend, Recent advances in the synthesis of purine derivatives and their precursors. Tetrahedron, 2008. 64(37): p. 8585-8603.

135. L. Kalachova, R. Pohl, L. Bednarova, J. Fanfrlik, and M. Hocek, Synthesis of nucleosides and dNTPs bearing oligopyridine ligands linked through an octadiyne tether, their incorporation into DNA and complexation with transition metal cations.

Org. Biomol. Chem., 2012.

136. S.H. Weisbrod and A. Marx, A nucleoside triphosphate for site-specific labelling of DNA by the Staudinger ligation. Chem. Commun., 2007(18): p. 1828-30.

References 101

137. S. Ikonen, H. Macickova-Cahova, R. Pohl, M. Sanda, and M. Hocek, Synthesis of nucleoside and nucleotide conjugates of bile acids, and polymerase construction of bile acid-functionalized DNA. Org. Biomol. Chem., 2010. 8(5): p. 1194-201.

138. J. Riedl et al., Tetrathiafulvalene-Labelled Nucleosides and Nucleoside Triphosphates:

Synthesis, Electrochemistry and the Scope of Their Polymerase Incorporation into DNA. Eur. J. Org. Chem., 2009(21): p. 3519-25.

139. M.F. Templin, D. Stoll, M. Schrenk, P.C. Traub, C.F. Vohringer, and T.O. Joos, Protein microarray technology. Drug Discovery Today, 2002. 7(15): p. 815-822.

140. M. Schena, D. Shalon, R.W. Davis, and P.O. Brown, Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995.

270(5235): p. 467-70.

141. www.affymetix.com (08 September 2013).

142. G. Gitlin, E.A. Bayer, and M. Wilchek, Studies on the biotin-binding site of streptavidin. Tryptophan residues involved in the active site. Biochem J, 1988.

256(1): p. 279-82.

143. N.M. Green, Avidin. Adv. Protein Chem., 1975. 29: p. 85-133.

144. C.E. Chivers, A.L. Koner, E.D. Lowe, and M. Howarth, How the biotin-streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer. Biochem. J., 2011. 435(1): p. 55-63.

145. A. Chilkoti and P.S. Stayton, Molecular-Origins of the Slow Streptavidin-Biotin Dissociation Kinetics. J. Am. Chem. Soc., 1995. 117(43): p. 10622-8.

146. N.C. Pagratis, Rapid Preparation of Single Stranded DNA from PCR Products by Streptavidin Induced Electrophoretic Mobility Shift. Nucl. Acid Res., 1996. 24(18): p.

3645-3646.

147. K. Bergen et al., Structures of KlenTaq DNA Polymerase Caught While Incorporating C5-Modified Pyrimidine and C7-Modified 7-Deazapurine Nucleoside Triphosphates. J.

Am. Chem. Soc., 2012. 134(29): p. 11840-3.

148. E.W. Brown, J.E. LeClerc, M.L. Kotewicz, and T.A. Cebula, Three R's of bacterial evolution: how replication, repair, and recombination frame the origin of species.

148. E.W. Brown, J.E. LeClerc, M.L. Kotewicz, and T.A. Cebula, Three R's of bacterial evolution: how replication, repair, and recombination frame the origin of species.

Im Dokument Oligonucleotide-modified Nuclotides (Seite 96-117)