• Keine Ergebnisse gefunden

Quantum Cohomology Ring on Gr(M, N )

Appendix A The Grassmannian

A.2 Quantum Cohomology Ring onGr(M, N) specific example of the Grassmannian Gr(2,4) to highlight the correspondence between 2d gauge theory and quantum cohomology.

Example: Gr(2,4)

For the Grassmannian Gr(2,4) the generators of the cohomology ring are the Schur polynomials in two variables 1, 2 ∈H2(Gr(2,4)). Note that we use for them identical terminology as for the Chern roots of the dual universal subbundle. Classically, they generate the symmetric polynomial ring C[1, 2]S2 and obeying,

σν·σµ = σν⊗µ , (A.11)

in terms of the tensor product ⊗of Young tableaux of the permutation groupS2. The kernel of the ring homomorphism from Schubert cycles to corresponding Schur polynomials is given by the two relations,

σ3(1, 2) = 31+212+122+32 = 0, σ4(1, 2) = 41+312+2122+132+42 = 0, (A.12) Here the subscripts of Schur polynomialsσ refer to the integer partition of a Young diagram.

The cohomology ring thus becomes, H(Gr(2,4),C) ' C[1, 2]S2.

3, σ4i ' C[N1, N2]

D

N1N2,−N414 +N12N2+ N422

E . (A.13) In the last step the ideal hσ3, σ4i of the kernel of symmetric polynomials is expressed in terms of theNewton polynomials N` =x`1+x`2,`= 1,2, which in turn generate the symmetric polynomial ring C[1, 2]S2.

When the quantum deformation of is applied to the Grassmannian Gr(2,4) it yields the quantum cohomology ring [69],

H?(Gr(2,4),C) ' C[N1, N2][[Q]]

D

N1N2,−N414 +N12N2+N422 +QE

, (A.14)

i.e., the latter relation generating the classical cohomology relations is deformed by a factor of Q. This is reminiscent of the deformation of the classical to the quantum cohomology ring for projective spaces. The presented formulation relates directly to the gauge theory correlators and its correlator relations, as discussed in Chapter 3. We first note that the gauge invariant insertions are canonically identified with the Newton polynomials Nr=xr1+xr2 according to,

tr(σr) ←→ Nr . (A.15)

The Schubert cycles are multiplied with theQ-dependent quantum product and then integrated over the Grassmannian Gr(2,4). Here, we have used the following relations among Newton and Schur polynomials,

N1 = σ1 , N2 = σ2−σ1,1 . (A.16)

Bibliography

[1] S. M. Carroll,Spacetime and Geometry, Cambridge University Press, 7 2019.

[2] C. W. Misner, K. Thorne, and J. Wheeler,Gravitation, W. H. Freeman, San Francisco, 1973.

[3] S. Weinberg,The Quantum Theory of Fields. Vol. 1: Foundations, Cambridge University Press, 6 2005.

[4] S. Weinberg, The Quantum Theory of Fields. Vol. 2: Modern applications, Cambridge University Press, 8 2013.

[5] S. Weinberg, The Quantum Theory of Fields. Vol. 3: Supersymmetry, Cambridge University Press, 6 2013.

[6] M. E. Peskin and D. V. Schroeder,An Introduction to Quantum Field Theory, Addison-Wesley, Reading, USA, 1995.

[7] M. B. Green, J. H. Schwarz, and E. Witten,Superstring Theory Vol. 1: 25th Anniversary Edition, Cambridge University Press, 11 2012.

[8] M. B. Green, J. H. Schwarz, and E. Witten,Superstring Theory Vol. 2: 25th Anniversary Edition, Cambridge University Press, 11 2012.

[9] J. Polchinski,String theory. Vol. 1: An Introduction to the Bosonic String, Cambridge University Press, 12 2007.

[10] J. Polchinski,String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, 12 2007.

[11] R. Blumenhagen, D. L¨ust, and S. Theisen,Basic concepts of string theory, Springer, Heidelberg, Germany, 2013.

[12] J. Wess and J. Bagger,Supersymmetry and Supergravity, 1992.

[13] H. P. Nilles,Supersymmetry, Supergravity and Particle Physics, Phys. Rept.110 (1984) 1–162.

[14] P. Di Francesco, P. Mathieu, and D. Senechal,Conformal Field Theory, Springer-Verlag, New York, 1997.

[15] P. H. Ginsparg,Applied Conformal Field Theory, Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena, 9 1988, pp. 1–168, arXiv:hep-th/9108028 [hep-th].

Bibliography

[16] R. Blumenhagen and E. Plauschinn,Introduction to Conformal Field Theory: with Applications to String Theory, vol. 779, 2009.

[17] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, The Heterotic String, Phys. Rev.

Lett.54(1985) 502–505.

[18] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm,Heterotic String Theory. 1. The Free Heterotic String, Nucl. Phys. B256 (1985) 253.

[19] E. Witten,String theory dynamics in various dimensions, Nucl. Phys. B443 (1995) 85–126,arXiv:hep-th/9503124.

[20] J. Polchinski, Dirichlet Branes and Ramond-Ramond charges, Phys. Rev. Lett. 75(1995) 4724–4727, arXiv:hep-th/9510017 [hep-th].

[21] M. B. Green and J. H. Schwarz, Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory, Phys. Lett. B149 (1984) 117–122.

[22] E. Witten,Phases of N=2 Theories in Two-Dimensions, AMS/IP Stud. Adv. Math. 1 (1996) 143–211,arXiv:hep-th/9301042 [hep-th].

[23] E. Witten,Topological Sigma Models, Commun. Math. Phys. 118 (1988) 411.

[24] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71–129,arXiv:0712.2824 [hep-th].

[25] N. Seiberg,Electric-Magnetic Duality in Supersymmetric Non-Abelian Gauge Theories, Nucl. Phys. B435(1995) 129–146,arXiv:hep-th/9411149 [hep-th].

[26] V. Pestun et al., Localization Techniques in Quantum Field Theories, J. Phys. A50 (2017) 440301,arXiv:1608.02952 [hep-th].

[27] E. Witten,Topological Quantum Field Theory, Commun. Math. Phys. 117(1988) 353.

[28] D. R. Morrison and M. R. Plesser,Summing the Instantons: Quantum Cohomology and Mirror Symmetry in Toric Varieties, Nucl. Phys. B440(1995) 279–354,

arXiv:hep-th/9412236 [hep-th].

[29] C. Closset, S. Cremonesi, and D. S. Park, The equivariant A-twist and gauged linear sigma models on the two-sphere, JHEP06(2015) 076, arXiv:1504.06308 [hep-th].

[30] A. Gerhardus, H. Jockers, and U. Ninad,The Geometry of Gauged Linear Sigma Model Correlation Functions, Nucl. Phys. B933 (2018) 65–133,arXiv:1803.10253 [hep-th].

[31] A. Givental,Permutation-equivariant quantum K-theory I–XI, [I 1508.02690], [II 1508.04374], [III 1508.06697], [IV 1509.00830], [V 1509.03903], [VI 1509.07852], [VII 1510.03076], [VIII 1510.06116], [IX 1709.03180], [X 1710.02376], [XI 1711.04201], 2015-2017.

[32] H. Jockers, P. Mayr, U. Ninad, and A. Tabler,Wilson loop algebras and quantum K-theory for Grassmannians,arXiv:1911.13286 [hep-th].

110

Bibliography

[33] E. Witten,Mirror Manifolds and Topological Field Theory,arXiv:hep-th/9112056 [hep-th].

[34] F. Benini and S. Cremonesi,Partition Functions of N = (2,2) Gauge Theories on S2 and Vortices, Commun. Math. Phys.334 (2015) 1483–1527,arXiv:1206.2356 [hep-th].

[35] N. Doroud, J. Gomis, B. Le Floch, and S. Lee,Exact Results in D=2 Supersymmetric Gauge Theories, JHEP 05(2013) 093,arXiv:1206.2606 [hep-th].

[36] A. Kapustin, B. Willett, and I. Yaakov,Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP03(2010) 089, arXiv:0909.4559 [hep-th].

[37] D. L. Jafferis,The Exact Superconformal R-Symmetry Extremizes Z, JHEP05(2012) 159, arXiv:1012.3210 [hep-th].

[38] N. Hama, K. Hosomichi, and S. Lee,Notes on SUSY Gauge Theories on Three-Sphere, JHEP03(2011) 127, arXiv:1012.3512 [hep-th].

[39] N. Hama, K. Hosomichi, and S. Lee,SUSY Gauge Theories on Squashed Three-Spheres, JHEP05(2011) 014, arXiv:1102.4716 [hep-th].

[40] S. Lefschetz,Intersections and transformations of complexes and manifolds, Trans. Amer.

Math. Soc. 28(1926) 1–49.

[41] M. F. Atiyah and R. Bott,The moment map and equivariant cohomology, Topology23 (1984) 1–28.

[42] J. J. Duistermaat and G. J. Heckman,On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69(1982) 259–268.

[43] N. Berline and M. Vergne,Classes caract´eristiques ´equivariantes. Formule de localisation en cohomologie ´equivariante, C. R. Acad. Sci. Paris S´er. I Math. 295 (1982) 539–541.

[44] G. Festuccia and N. Seiberg,Rigid Supersymmetric Theories in Curved Superspace, JHEP 06(2011) 114, arXiv:1105.0689 [hep-th].

[45] Y. Imamura and S. Yokoyama,Index for three dimensional superconformal field theories with general R-charge assignments, JHEP04(2011) 007, arXiv:1101.0557 [hep-th].

[46] D. Honda and T. Okuda,Exact results for boundaries and domain walls in 2d supersymmetric theories, JHEP 09(2015) 140, arXiv:1308.2217 [hep-th].

[47] K. Hori and M. Romo,Exact Results In Two-Dimensional (2,2) Supersymmetric Gauge Theories With Boundary,arXiv:1308.2438 [hep-th].

[48] K. Hori and D. Tong,Aspects of Non-Abelian Gauge Dynamics in Two-Dimensional N=(2,2) Theories, JHEP 05(2007) 079,arXiv:hep-th/0609032 [hep-th].

[49] K. Hori,Duality In Two-Dimensional (2,2) Supersymmetric Non-Abelian Gauge Theories, JHEP10(2013) 121, arXiv:1104.2853 [hep-th].

[50] E. Witten,Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys.121 (1989) 351–399.

Bibliography

[51] O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg, and M. Strassler, Aspects of N=2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B499(1997) 67–99, arXiv:hep-th/9703110 [hep-th].

[52] N. Dorey and D. Tong,Mirror symmetry and toric geometry in three-dimensional gauge theories, JHEP 05(2000) 018,arXiv:hep-th/9911094 [hep-th].

[53] C. Beem, T. Dimofte, and S. Pasquetti,Holomorphic Blocks in Three Dimensions, JHEP 12(2014) 177,arXiv:1211.1986 [hep-th].

[54] Y. Yoshida and K. Sugiyama,Localization of 3d N = 2 Supersymmetric Theories on S1×D2,arXiv:1409.6713 [hep-th].

[55] M. T. Grisaru, W. Siegel, and M. Rocek,Improved Methods for Supergraphs, Nucl. Phys.

B159(1979) 429.

[56] N. Seiberg,Naturalness versus supersymmetric nonrenormalization theorems, Phys. Lett.

B318(1993) 469–475,arXiv:hep-ph/9309335 [hep-ph].

[57] E. A. Rødland,The Pfaffian Calabi-Yau, its mirror, and their link to the Grassmannian G(2,7), Compositio Math.122 (2000) 135–149,arXiv:math/9801092 [math.AG].

[58] L. Borisov and A. C˘ald˘araru, The Pfaffian-Grassmannian derived equivalence, J.

Algebraic Geom.18(2009) 201–222, arXiv:math/0608404 [math.AG].

[59] A. Kuznetsov,Homological projective duality for Grassmannians of lines, arXiv:math/0610957 [math.AG].

[60] H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison, and M. Romo,Two-Sphere Partition Functions and Gromov-Witten Invariants, Commun. Math. Phys. 325(2014) 1139–1170, arXiv:1208.6244 [hep-th].

[61] N. A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys.7 (2003) 831–864,arXiv:hep-th/0206161 [hep-th].

[62] N. Nekrasov and A. Okounkov,Seiberg-Witten theory and random partitions, Prog. Math.

244 (2006) 525–596,arXiv:hep-th/0306238 [hep-th].

[63] C. Closset and S. Cremonesi,Comments on N = (2, 2) supersymmetry on two-manifolds, JHEP 07(2014) 075,arXiv:1404.2636 [hep-th].

[64] P. Goddard, J. Nuyts, and D. I. Olive, Gauge Theories and Magnetic Charge, Nucl. Phys.

B125(1977) 1–28.

[65] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, Inc., New York, 1994.

[66] S. Cecotti and C. Vafa, Topological antitopological fusion, Nucl. Phys.B367(1991) 359–461.

[67] H. Kluberg-Stern and J. B. Zuber,Ward Identities and Some Clues to the Renormalization of Gauge Invariant Operators, Phys. Rev. D12 (1975) 467–481.

112

Bibliography

[68] M. Henneaux and C. Teitelboim,Quantization of gauge systems, Princeton University Press, 1992.

[69] B. Siebert and G. Tian,On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, Asian J. Math.1 (1997) 679–695,arXiv:alg-geom/9403010 [math.AG].

[70] V. Batyrev, I. Ciocan-Fontanine, B. Kim, and D. van Straten,Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians, Nucl. Phys. B 514 (1998) 640–666,arXiv:alg-geom/9710022 [math.AG].

[71] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, and E. Zaslow, Mirror symmetry, Clay mathematics monographs, vol. 1, AMS, Providence, USA, 2003.

[72] B. R. Greene,String theory on Calabi-Yau manifolds, Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 96): Fields, Strings, and Duality, 6 1996, pp. 543–726, arXiv:hep-th/9702155 [hep-th].

[73] D. Cox and S. Katz,Mirror symmetry and algebraic geometry, 2000.

[74] T. Hubsch,Calabi-Yau manifolds: A Bestiary for physicists, World Scientific, Singapore, 1994.

[75] S. Hosono, A. Klemm, and S. Theisen,Lectures on mirror symmetry, Lect. Notes Phys.

436(1994) 235–280,arXiv:hep-th/9403096 [hep-th].

[76] S. T. Yau,On the Ricci curvature of a compact K¨ahler manifold and the complex Monge-Amp`ere equation. I, Comm. Pure Appl. Math.31(1978) 339–411.

[77] P. Candelas, X. C. De La Ossa, P. S. Green, and L. Parkes,A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys.B359(1991) 21–74.

[78] D. R. Morrison, Picard-Fuchs equations and mirror maps for hypersurfaces, vol. 9, 185–199, 1998, pp. 185–199, arXiv:hep-th/9111025 [hep-th].

[79] A. Klemm and S. Theisen,Considerations of one modulus Calabi-Yau compactifications:

Picard-Fuchs equations, Kahler potentials and mirror maps, Nucl. Phys. B389 (1993) 153–180, arXiv:hep-th/9205041 [hep-th].

[80] V. V. Batyrev and D. van Straten,Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties, Commun. Math. Phys.168 (1995) 493–534,arXiv:alg-geom/9307010 [math.AG].

[81] V. V. Batyrev,Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom.3 (1994) 493–545, arXiv:alg-geom/9310003 [math.AG].

[82] S. Hosono, A. Klemm, S. Theisen, and S.-T. Yau,Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces, Nucl. Phys.B433(1995) 501–554,arXiv:hep-th/9406055 [hep-th].

Bibliography

[83] A. Givental,A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math., vol. 160, Birkh¨auser Boston, Boston, MA, 1998, pp. 141–175.

[84] K. Ueda and Y. Yoshida,Equivariant A-twisted GLSM and Gromov–Witten invariants of CY 3-folds in Grassmannians, JHEP09 (2017) 128,arXiv:1602.02487 [hep-th].

[85] B. Kim, J. Oh, K. Ueda, and Y. Yoshida,Residue mirror symmetry for Grassmannians, arXiv:1607.08317 [math.AG].

[86] P. Candelas, X. De La Ossa, A. Font, S. H. Katz, and D. R. Morrison, Mirror symmetry for two parameter models. 1., Nucl. Phys.B416(1994) 481–538, arXiv:hep-th/9308083 [hep-th].

[87] I. t. Ciocan-Fontanine, B. Kim, and D. Maulik,Stable quasimaps to GIT quotients, J.

Geom. Phys.75 (2014) 17–47,arXiv:1106.3724 [math.AG].

[88] A. Gerhardus, String Compactifications from the Worldsheet and Target Space Point of View, Ph.D. thesis, U. Bonn (main), 2019.

[89] K. Hori and C. Vafa,Mirror symmetry,arXiv:hep-th/0002222 [hep-th].

[90] T. Coates and A. Givental,Quantum Riemann-Roch, Lefschetz and Serre, Ann. of Math.

(2)165 (2007) 15–53,arXiv:math/0110142 [math.AG].

[91] J. de Boer, K. Hori, Y. Oz, and Z. Yin, Branes and mirror symmetry in N=2

supersymmetric gauge theories in three-dimensions, Nucl. Phys. B502(1997) 107–124, arXiv:hep-th/9702154 [hep-th].

[92] O. Aharony,IR duality in d = 3 N=2 supersymmetric USp(2N(c)) and U(N(c)) gauge theories, Phys. Lett. B404 (1997) 71–76, arXiv:hep-th/9703215 [hep-th].

[93] K. A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B387(1996) 513–519, arXiv:hep-th/9607207 [hep-th].

[94] A. Hanany and E. Witten,Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B 492(1997) 152–190,arXiv:hep-th/9611230 [hep-th].

[95] J. de Boer, K. Hori, H. Ooguri, Y. Oz, and Z. Yin,Mirror symmetry in three-dimensional theories, SL(2,Z) and D-brane moduli spaces, Nucl. Phys. B493 (1997) 148–176,

arXiv:hep-th/9612131 [hep-th].

[96] J. de Boer, K. Hori, H. Ooguri, and Y. Oz,Mirror symmetry in three-dimensional gauge theories, quivers and D-branes, Nucl. Phys. B493 (1997) 101–147,

arXiv:hep-th/9611063 [hep-th].

[97] H. Jockers and P. Mayr, A 3d Gauge Theory/Quantum K-Theory Correspondence, arXiv:1808.02040 [hep-th].

[98] N. Nekrasov,Four Dimensional Holomorphic Theories, Ph.D. thesis, Princeton University, 1996, http://scgp.stonybrook.edu/people/faculty/bios/nikita-nekrasov.

114

Bibliography

[99] N. A. Nekrasov and S. L. Shatashvili,Quantization of Integrable Systems and Four Dimensional Gauge Theories, Proceedings, 16th International Congress on Mathematical Physics (ICMP09): Prague, Czech Republic, August 3-8, 2009, 2009, pp. 265–289, arXiv:0908.4052 [hep-th].

[100] N. A. Nekrasov and S. L. Shatashvili, Supersymmetric Vacua and Bethe Ansatz, Nuclear Physics B Proceedings Supplements 192(2009) 91–112,arXiv:0901.4744 [hep-th].

[101] A. Gadde, S. Gukov, and P. Putrov,Walls, Lines, and Spectral Dualities in 3d Gauge Theories, JHEP05 (2014) 047,arXiv:1302.0015 [hep-th].

[102] T. Dimofte, D. Gaiotto, and N. M. Paquette, Dual boundary conditions in 3d SCFT’s, JHEP05(2018) 060, arXiv:1712.07654 [hep-th].

[103] K. Intriligator and N. Seiberg,Aspects of 3d N=2 Chern-Simons-Matter Theories, JHEP 07(2013) 079, arXiv:1305.1633 [hep-th].

[104] J. Gates, S.James and H. Nishino, Remarks on the N=2 supersymmetric Chern-Simons theories, Phys. Lett. B281 (1992) 72–80.

[105] B. Zupnik and D. Pak, Topologically Massive Gauge Theories in Superspace, Sov. Phys. J.

31(1988) 962–965.

[106] E. Ivanov, Chern-Simons matter systems with manifest N=2 supersymmetry, Phys. Lett.

B268 (1991) 203–208.

[107] D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-Matter theories, JHEP 08(2007) 056, arXiv:0704.3740 [hep-th].

[108] S. Deser, R. Jackiw, and S. Templeton,Three-Dimensional Massive Gauge Theories, Phys. Rev. Lett.48 (1982) 975–978.

[109] A. Redlich, Gauge Noninvariance and Parity Violation of Three-Dimensional Fermions, Phys. Rev. Lett.52 (1984) 18.

[110] A. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions, Phys. Rev. D 29(1984) 2366–2374.

[111] H. Jockers, P. Mayr, U. Ninad, and A. Tabler, to appear.

[112] S. Galkin, V. Golyshev, and H. Iritani, Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures, Duke Math. J.165 (2016) 2005–2077, arXiv:1404.6407 [math.AG].

[113] S. Martin, Symplectic quotients by a nonabelian group and by its maximal torus, arXiv:math/0001002 [math.SG].

[114] M. F. Atiyah, K-theory, , Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989, Notes by D. W. Anderson.

[115] M. Karoubi,K-theory, an elementary introduction, Cohomology of groups and algebraic K-theory, Adv. Lect. Math. (ALM), vol. 12, Int. Press, Somerville, MA, 2010,

pp. 197–215.

Bibliography

[116] M. F. Atiyah and F. Hirzebruch,Vector bundles and homogeneous spaces, Proc. Sympos.

Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7–38.

[117] Y. Lee, Quantum k-theory I: foundations,arXiv:math/0105014 [math.AG].

[118] A. Givental,Explicit reconstruction in quantum cohomology and K-theory, Ann. Fac. Sci.

Toulouse Math. (6) 25(2016) 419–432,arXiv:1506.06431 [math.AG].

[119] A. Givental and V. Tonita,The Hirzebruch-Riemann-Roch theorem in true genus-0 quantum K-theory, Symplectic, Poisson, and noncommutative geometry, Math. Sci. Res.

Inst. Publ., vol. 62, Cambridge Univ. Press, New York, 2014, pp. 43–91, arXiv:1106.3136 [math.AG].

[120] A. S. Buch and L. C. Mihalcea,Quantum K-theory of Grassmannians, Duke Math. J.

156(2011) 501–538,arXiv:0810.0981 [math.AG].

[121] Y. Ruan and M. Zhang,The level structure in quantum K-theory and mock theta functions,arXiv:1804.06552 [math.AG].

[122] Y. Ruan and M. Zhang,Verlinde/Grassmannian Correspondence and Rank 2 δ-wall-crossing,arXiv:1811.01377 [math.AG].

[123] C. Vafa, Topological mirrors and quantum rings, Mirror Symmetry. I, AMS/IP Stud. Adv.

Math., vol. 9, Amer. Math. Soc., Providence, RI, 1998, pp. 97–120, arXiv:hep-th/9111017 [hep-th].

[124] K. A. Intriligator,Fusion residues, Mod. Phys. Lett. A6(1991) 3543–3556, arXiv:hep-th/9108005 [hep-th].

[125] E. Witten,The Verlinde algebra and the cohomology of the Grassmannian, 1993, arXiv:hep-th/9312104 [hep-th].

[126] E. P. Verlinde, Fusion Rules and Modular Transformations in 2D Conformal Field Theory, Nucl. Phys.B300(1988) 360–376.

[127] C. Lenart,Combinatorial aspects of the K-theory of Grassmannians, Ann. Comb. 4 (2000) 67–82.

[128] A. Lascoux and M.-P. Sch¨utzenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une vari´et´e de drapeaux, C. R. Acad. Sci. Paris S´er. I Math.

295 (1982) 629–633.

[129] H. Jockers and P. Mayr,Quantum K-Theory of Calabi-Yau Manifolds, JHEP 11(2019) 011,arXiv:1905.03548 [hep-th].

[130] A. Givental,On the WDVV equation in quantum K-theory, Michigan Math. J.48 (2000) 295–304, Dedicated to William Fulton on the occasion of his 60th birthday,

arXiv:math/0003158 [math.AG].

[131] H. Iritani, T. Milanov, and V. Tonita,Reconstruction and convergence in quantum K-theory via difference equations, Int. Math. Res. Not. IMRN (2015) 2887–2937, arXiv:1309.3750 [math.AG].

116

Bibliography

[132] A. Kapustin and B. Willett,Wilson loops in supersymmetric Chern-Simons-matter theories and duality,arXiv:1302.2164 [hep-th].

[133] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions, Adv. Math. 84(1990) 255–271.

[134] W. Lerche, C. Vafa, and N. P. Warner, Chiral Rings in N=2 Superconformal Theories, Nucl. Phys. B324 (1989) 427–474.

[135] M. Kontsevich, Homological Algebra of Mirror Symmetry,arXiv:alg-geom/9411018 [math.AG].

[136] K. Hori, A. Iqbal, and C. Vafa,D-branes and mirror symmetry,arXiv:hep-th/0005247 [hep-th].

[137] M. R. Douglas,D-branes, categories and N=1 supersymmetry, J. Math. Phys. 42(2001) 2818–2843,arXiv:hep-th/0011017 [hep-th].

[138] I. Brunner, M. R. Douglas, A. E. Lawrence, and C. Romelsberger, D-branes on the quintic, JHEP 08(2000) 015, arXiv:hep-th/9906200 [hep-th].

[139] D. Orlov, Derived Categories of Coherent Sheaves and Triangulated Categories of Singularities,arXiv:math/0503632 [math.AG].

[140] M. Herbst, K. Hori, and D. Page, Phases Of N=2 Theories In 1+1 Dimensions With Boundary,arXiv:0803.2045 [hep-th].

[141] P. S. Aspinwall, The Landau-Ginzburg to Calabi-Yau dictionary for D-branes, J. Math.

Phys. 48(2007) 082304,arXiv:hep-th/0610209 [hep-th].

[142] P. S. Aspinwall,D-branes on Calabi-Yau manifolds, Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2003): Recent Trends in String Theory, 3 2004, pp. 1–152,arXiv:hep-th/0403166 [hep-th].

[143] C. V. Johnson, D-brane primer, Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 99): Strings, Branes, and Gravity, 7 2000, pp. 129–350, arXiv:hep-th/0007170 [hep-th].

[144] M. Nakahara,Geometry, topology and physics, 2003.

[145] A. Bertram, Quantum Schubert calculus, Adv. Math. 128(1997) 289–305.