• Keine Ergebnisse gefunden

In this section, we give the proof of Theorem 4.1.1.

Proof. (I) The first step is to prove that if the Dynkin diagramDofM appears in one of the listed tables then the set of roots∆[M]of Nichols algebraB(V) is finite.

Assume thatDappears in rowr of one of the Tables (5.1-5.8). ThenM ad-mits all reflections. Indeed, by Lemma 2.1.4 one obtains thatM isi-finite for all i ∈ I. For i ∈ I, one can determine the Dynkin diagram ofRi(M) by Lemma 2.1.7. One observes that it appears in the same row asD. Do the same for all the Dynkin diagrams in the same row ofD. It implies thatMadmits all reflections by Lemma 2.1.4. HenceC(M)is a well-defined Semi-Cartan graph by Theorem 2.1.9. Assume thatC =C(I,X, R,(AX)X∈X)is the semi-Cartan graph attached toM. Notice that C(M)is connected. Now, we identify the objects ofC(M)with their Dynkin diagrams. The above calculations imply

4.2. The proof of Theorem 4.1.1 35

that the exchange graph ofC(M)appears in rowrof Table 5.10 and Table 5.11 for rank 2 and rank 3, respectively.

Ifθ = 2, then we calculate the smallest integern with(R2R1)n(D) = D and we observe that the integernappears in the third column andrth row of Table 5.9. Then we compute the characteristic sequence(ck)k≥1with respect to the first Dynkin diagram in rowrand the label1. We observe that(ck)k≥1

is the infinite power of the sequence in the fifth column andrth row of Ta-ble 5.9. Further, we get the numberl= 6n−Σ2ni=1ci. It appears in the fourth column of Table 5.9. One checks thatl | 12 and(c1, c2, . . . , c12n/l) ∈ A+ by Corollary 3.1.5(2). ThenC(M)is a finite Cartan graph by Theorem 3.1.14.

Hence the set of roots∆[M]is finite by Corollary 2.1.11.

Ifθ= 3, then we obtain thatC(M)is the same as the Cartan graph obtained from the Dynkin diagrams appearing in rowsof Table 2 in [22], wheres ap-pears in the third column andrth row of Table 5.11. The detailed calculations are skipped here. Moreover, the Weyl groupoids of the above Cartan graphs from [22] are finite, see [22, Table 2]. Then∆[M]is finite by Corollary 2.1.11.

(II) The second step is to prove that if the set of roots∆[M] of Nichols algebra B(V)is finite then the Dynkin diagram ofM appears in the listed tables. If

[M] is finite thenM admits all reflections by [28, Corollary 6.12]. Since

[M]is finite, C(M) is a finite Cartan graph by Corollary 2.1.11. Since the braiding matrix ofMis indecomposable, then the generalized Cartan matrix AX is indecomposable by the definition ofAX and Lemma 2.1.4. SinceC(M) is connected, we obtain thatCis indecomposable by Proposition 1.5.9. We can apply Theorem 3.1.14 and Theorem 3.2.6 to rank 2 and rank 3 Cartan graph C(M), respectively. From the above argument I it is enough to prove that the Dynkin diagram of at least one point inC(M)is contained in the listed Tables (5.1-5.8.

We separate the proof intoθ= 2andθ= 3.

(IIa)Consider the caseθ= 2.

SetX = [M]2andm =tX12. We may assume thati= 1, j = 2, but change the labels if necessary. Let (ck)k≥1 be the characteristic sequence of C(M) with respect toX and the labeli= 1. Then we have(c1, c2, . . . , cm) ∈ A+ and(ck)k≥1 = (c1, c2, . . . , cm)by Theorem 3.1.14.

Ifm = 2then(c1, c2) = (0,0). Hence aX12 = aX21 = 0. Thenq12q21 = 1 and hence the braiding matrix ofX is decomposable, which is a contradic-tion. Hence m > 2. By Proposition 3.1.6 one of the subsequences (1,1), (1,2, a),(2,1, b),(1,3,1, b) or their transpose, where1 ≤ a ≤ 3 and3 ≤ b≤5, is a subsequence of(c1, c2, . . . , cm). Letnbe the smallest integer with

36 4. The classification result

(R2R1)n(X) = X. Thenn|m by Theorem 3.1.14. Sincecm+k = ck for all k∈N, we have the freedom to assume any position in(ck)k≥1, where any of these subsequences is starting. Letc0 :=cmandq0 :=q12q21.

We proceed case by case:

Step 1. Ifc0 =c1 = 1, thenaX12=aX21=−1. Henceq0 6= 1. We distinguish four cases: 1aa,1ab,1ba and 1bb.

Case 1aa. Ifq11q0 = 1andq22q0 = 1, thenD=D21.

Case 1ab. Ifq11q0 = 1,q22=−1, andq22q0 6= 1, thenD=D31. Case 1ba. Ifq11=−1,q22q0= 1, andq11q0 6= 1, thenD=τD31. Case 1bb. Ifq11=−1,q22=−1, andq0 6=−1, thenD=D32.

Step 2. Assume that(c0, c1, c2) = (1,2, a0), wherea0 ∈ {1,2,3}. Then we obtain thataX21=−1,aX12=ar121(X)=−2, andar211(X)=−a0. We distinguish four cases: 2aa, 2ab, 2ba and 2bb.

Case 2aa. Ifq112q0 = 1andq22q0 = 1, thenD=D41.

Case 2ab. Ifq112q0 = 1,q22=−1, andq22q0 6= 1, thenD=D51.

Case 2ba. Assume that1 +q11+q112 = 0,q22q0= 1, andq112q0 6= 1. Ifp= 3 then1 +q11+q112 = 0yieldsq11= 1. Ifq22 6= −1thenD = D60,1 and if q22 =−1thenD =D6000,1. Assume thatp 6= 3. Setζ := q11 andq := q22. Thenq0 = q−1 ∈ {1, ζ/ −1}sinceaX12 = −2, andq0 6= ζ sinceq112q0 6= 1. ThusD=D61orD600,1,p6= 2.

Case 2bb. Consider the last case 1 +q11+q112 = 0,q22 = −1andq0 ∈/ {1,−1, q11, q112 }.

Case 2bba. Ifp = 3thenq11 = 1. Setq := q0. By Lemma 2.1.7, the Dynkin diagrams ofr1(X)andXare withq∈k\ {−1,1}. Thenar211(X)≤ −2since (−q2)q−1 =−q 6= 1, and−q2 6=−1.

Case2bba1. Ifp= 3anda0=−ar211(X) = 2, then one gets(−q2)2q−1 = 1or 1 + (−q2) + (−q2)2 = 0. If(−q2)2q−1 = 1thenq = 1, which is a contradic-tion. Hence−q2 = 1from the second equation sincep= 3. ThenD=D90,2. Case 2bba2. Ifp= 3anda0 =−ar211(X)= 3, then one has(−q2)3q−1 = 1or 1 + (−q2) + (−q2)2+ (−q2)3 = 0. The first equation(−q2)3q−1= 1yields (−q)5 = 1, henceD = D160,2. If1 + (−q2) + (−q2)2 + (−q2)3 = 0, then (1−q2)(1 +q4) = 0and henceq ∈G08. ThenD=D130,2.

Case 2bbb. We now suppose thatp6= 3. Setζ :=q11andq :=q0. Hence the Dynkin diagram ofr1(X)is ζe(ζq)−1−ζqe2withζ ∈G03, q∈k\{1,−1, ζ, ζ−1}. Sincea0∈ {1,2,3}, we distinguish three cases:2bbb1,2bbb2and2bbb3.

Case 2bbb1. Consider thatp6= 3andar211(X)=−1. then one gets(−ζq2)(ζq)−1 = 1or 1 + (−ζq2) = 0. If(−ζq2)(ζq)−1 = 1, thenq = −1, which is a

con-4.2. The proof of Theorem 4.1.1 37

tradiction. If1+(−ζq2) = 0thenζ2 =q2and henceq =−ζ. ThenD=D71. Case 2bbb2. If the conditionp6= 3andar211(X)=−2hold, then(−ζq2)2(ζq)−1 = 1orP2

i=0(−ζq2)i = 0.

Case 2bbb2a. Consider the equation(−ζq2)2(ζq)−1 = 1. Thenζq3 = 1and henceq ∈G09sinceζ ∈G03andp6= 3. HenceD=D10,2.

Case 2bbb2b. IfP2

i=0(−ζq2)i= 0, then−ζq2 ∈ {ζ, ζ−1}. Henceq2 =−1or

−q2=ζ.

Case 2bbb2b1. Ifq2 = −1, thenp 6= 2 and the Dynkin diagram of X is

e e

ζ q -1 withq∈G04,ζ ∈G03. Setη:=ζ2q−1. Thenη∈G012,ζ =−η2, and q=η3. HenceD=D92.

Case 2bbb2b2. If−q2 = ζ, thenq ∈ G012andp 6= 2sinceq 6= ζ−1. Hence D=D81.

Case 2bbb3. Consider thatp6= 3andar211(X)=−3. Then(−ζq2)3(ζq)−1= 1 orP3

i=0(−ζq2)i= 0,1−ζq2 6= 0.

Case 2bbb3a. Consider the equation(−ζq2)3(ζq)−1 = 1, that is−q5 = ζ. Henceq =−ζ−1or−q∈G015,p6= 5.

Case 2bbb3a1. If−q ∈G015,p6= 3,5, andζ =−q5, thenD=D16,2.

Case 2bbb3a2. Ifq = −ζ−1 thenp 6= 2sinceq 6= ζ−1. Hence the Dynkin diagrams ofr1(X),Xandr2(X), respectively, are

e e

ζ -1 -ζ−1

e e

ζ -ζ−1 -1

e e

1 -ζ -1

withζ ∈ G03. Then one obtains thatar122(X) = 1−p. We distinguish four cases.

Case 2bbb3a2a. Ifp= 5, thenD=D16002. Case 2bbb3a2b. Ifp= 7, thenD=D18,2.

Case 2bbb3a2c. Ifp = 6s+ 1 (s≥ 2),then the Dynkin diagrams ofr1(X), X,r2(X),r1r2(X),r2r1r2(X), and(r1r2)2(X), respectively, are

e e

ζ -1 -ζ−1

e e

ζ −1 -1

e e

1 -1

e e

1 −1 -1

e e

ζ−1 -1

e e

ζ−1 -1 -ζ

withζ ∈ G03. Hencen = 6in Theorem 3.1.14 and(ck)k≥0 = (2,3,2,1, p− 1,1,2,3,2,1, p−1,1). Thenl= 20−2p <0, which is a contradiction to Theorem 3.1.14.

Case 2bbb3a2d. Ifp = 6s+ 5, wheres ≥ 1, then the Dynkin diagrams of r1(X),X,r2(X)andr1r2(X), respectively, are

e e

ζ -1 -ζ−1

e e

ζ -ζ−1 -1

e e

1 -ζ -1

e e

1 -ζ−1 -ζ

38 4. The classification result withζ ∈G03. Thenn= 4and(ck)k≥0 = (2,3,2,1, p−1,1, p−1,1). Hence l= 16−2p <0. Again, one gets a contradiction.

Case 2bbb3b. Consider the equation0 =P3

i=0(−ζq2)i= (1−ζq2)(1+ζ2q4), whereζq2 6= 1. One getsζ =−q4. Ifp = 2, thenζ4 =q4and henceζ =q, which is a contradiction toζq2 6= 1. Otherwiseq ∈G024andD=D13,2.

Step 3. Now we change the label. It means that(ck)k≥1is the characteristic sequence ofCs(M)with respect toXand the label2.

Assume that(c0, c1, c2) = (2,1, b0), whereb0∈ {3,4,5}. Then we obtain that aX12 = −2,aX21 = −1andar122(X) = −b0. Ifq112q0 = 1andq22 = −1then ar122(X)=−2, which is a contradiction. Ifq0q22= 1thenar122(X)=aX12=−2, which is again a contradiction. Hence we may assume that1 +q11+q112 = 0, q22 =−1andq0 ∈ {1,/ −1, q−211}.SinceaX12 = −2, we also obtain thatq0 6=

q−111.

Case 3a. If p = 3, then by settingq := q0, the Dynkin diagrams ofX and r2(X), respectively, are

e e

1 q -1

e e

-q q−1 -1

q∈k\ {−1,1}. (4.1)

Case 3a1. Ifp= 3andb0 = 3, then one gets(−q)3q−1 = 1orP3

i=0(−q)i = 0. Sinceq6= 1, both equations imply thatq2 =−1. HenceD=D90,2.

Case 3a2. Ifp= 3andb0 = 4, then one has(−q)4q−1 = 1orP4

i=0(−q)i = 0.

If(−q)4q−1= 1thenq = 1, which is a contradiction to (4.1). IfP4

i=0(−q)i= 0thenq5=−1andD=D160,2.

Case 3a3. Ifp= 3andb0 = 5, then one obtains(−q)5q−1= 1orP5

i=0(−q)i= 0. If (−q)5q−1 = 1 then q ∈ G08 andD = D130,2. Consider the equation 0 =P5

i=0(−q)i = (1−q)(1 +q2+q4). Thenq2 = 1sincep= 3andq6= 1, which is a contradiction to (4.1).

Case 3b. We now consider the cases in which the conditionp6= 3holds. Set ζ :=q11andq:=q0. The Dynkin diagram ofr2(X)is

e e

-ζq q−1 -1 ζ ∈G03 q∈k\ {1,−1, ζ, ζ−1}. (4.2)

Case 3b1. Ifp6= 3andb0= 3, then one gets(−ζq)3q−1 = 1orP3

i=0(−ζq)i= 0. If(−ζq)3q−1= 1thenq ∈G04,p6= 2andD=D92. If0 =P3

i=0(−ζq)i= (1−ζq)(1 + (ζq)2), then(ζq)2 = −1and p 6= 2sinceq 6= ζ−1. Hence D=D81.

Case 3b2. Ifp6= 3andb0= 4, then one gets(−ζq)4q−1 = 1orP4

i=0(−ζq)i=

4.2. The proof of Theorem 4.1.1 39

0. If(−ζq)4q−1 = 1thenζ = q−3. Sinceq /∈ G03, one obtainsq ∈ G09 and D = D10,2. The equationP4

i=0(−ζq)i = 0givesζ = −q5. Sinceζ ∈ G03, one gets−q ∈G03,ζ =−q−1,p= 5or−q∈G015,p6= 3,5. If−q ∈G03 then D=D1600,2and if−q ∈G015thenD=D16,2.

Case 3b3. Ifp6= 3andb0 = 5, then one gets(−ζq)5q−1 = 1orP5

i=0(−ζq)i = 0, −ζq 6= 1. If(−ζq)5q−1 = 1 and p = 2 then qζ−1 = 1, which is a contradiction to (4.2). If (−ζq)5q−1 = 1 and p 6= 2 then ζ = −q4 and D =D13,2. Consider0 =P5

i=0(−ζq)i = (1−ζq)(1 + (−ζq)2+ (−ζq)4). Sinceq /∈ {1,−1, ζ, ζ−1}, one getsp 6= 2andq3 =−1. Since−ζq6= 1, one getsq =−ζandar122(X)=−2, which is a contradiction.

Step 4. Again we use the same labeling as in steps 1 and 2. Assume that (c0, c1, c2, c3) = (1,3,1, c0), where c0 ∈ {3,4,5}. Then aX21 = −1 and aX12=−3. We distinguish four cases: 4aa, 4ab, 4ba and 4bb.

Case 4aa. Ifq113q0 = 1andq22q0 = 1, thenD=D11,1.

Case 4ab. Setq :=q11. Ifq113q0= 1andq22=−1, then the Dynkin diagrams ofX,r1(X)andr2r1(X), respectively, are

e e

q q−3 -1

e e

q q−3 -1

e e

-q−2 q3 -1 q ∈k\ {1,−1}, q /∈G03.

Then−ar122r1(X) = c0 ∈ {3,4,5}. Hence we distinguish three cases: 4ab1, 4ab2 and 4ab3.

Case 4ab1. Ifc0 = 3, then(−q−2)3q3 = 1orP3

i=0(−q−2)i = 0,1−q−2 6= 0. If(−q−2)3q3 = 1then D = D11,1, whereq3 = −1. IfP3

i=0(−q−2)i = 0, thenD=D12,1.

Case 4ab2. Ifc0 = 4, then(−q−2)4q3 = 1orP4

i=0(−q−2)i = 0.

Case 4ab2a. The equation(−q−2)4q3 = 1gives q5 = 1andp 6= 5, since q6= 1. HenceD=D14,1.

Case 4ab2b. Consider the equationP4

i=0(−q−2)i = 0. One getsq10=−1. If p = 2thenD= D14,1. Ifp = 5thenq2 =−1andD =D150,1. Ifp 6= 2,5, thenq ∈G020andD=D15,1.

Case 4ab3. Ifc0 = 5, then(−q−2)5q3 = 1orP5

i=0(−q−2)i = 0.

Case 4ab3a. Consider the equation(−q−2)5q3 = 1, which gives−q7 = 1.

Sinceq6=−1, one getsp6= 7and−q ∈G07. HenceD=D17,1. Case 4ab3b. Consider the equation0 =P5

i=0(−q−2)i = (1−q−2)(1 +q−4+ q−8). Sinceq2 6= 1, one gets 1 +q−4 +q−8 = 0. If p = 3 thenq ∈ G04 sinceq2 6= 1. Hencear122r1(X) = −2, which is a contradiction. Thenp 6= 3 andq−4 ∈ G03. Sincec0 = 5, one getsq ∈ G06 or q ∈ G012. Ifq ∈ G06, then ar122r1(X) = −3, which is a contradiction. Ifq ∈ G012, thenar122r1(X) = −2,

40 4. The classification result which is again a contradiction.

Case 4ba. The conditions1 +q11+q112+q113 = 0,q11 6=−1andq22q0 = 1 hold. Then q11 ∈ G04 andp 6= 2 since aX12 = −3. Set ζ := q11 and q = q22. The Dynkin diagram of r1(X) is ζe −q ζqe−2withζ ∈ G04 and q ∈k\ {1,−1, ζ, ζ−1}. Since−ar211(X) =c2 = 1, one gets(ζq−2)(−q) = 1 orζq−2 =−1. If(ζq−2)(−q) = 1thenq =−ζ, which is a contradiction. If ζq−2 =−1thenq∈G08andD=D12,3.

Case 4bb. Consider the last case: 1 +q11+q211+q311 = 0,q22 = −1and q116=−1. Thenq112 =−1andp 6= 2. Setζ := q11andq =q0. The Dynkin diagram of r1(X) is ζe-q−1-ζqe3withq ∈ k \ {1,−1, ζ, ζ−1} andζ ∈ G04. Since−ar211(X)=c2 = 1, one has(−q−1)(−ζq3) = 1orζq3 = 1.

Case 4bb1. Ifζq3 = 1, thenζ =q−3 ∈ G04. Ifp= 3, thenζ =q, which is a contradiction. Hencep6= 3andD=τD85.

Case 4bb2. The condition(−q−1)(−ζq3) = 1holds. Thenζ = q−2 ∈ G04. Henceq∈G08andD=D12,2.

By checking all cases in Proposition 3.1.6, the proof of Theorem 4.1.1 is com-pleted.

(IIb)Consider the caseθ= 3.

Since the matrix(qij)i,j∈I is indecomposable, the finite Cartan graphC(M) is indecomposable. Set X = [M]3, q1 = q12q21, q2 = q23q32, andq3 = q31q13. We write the Cartan matrixAX := (aij)i,j∈I. SinceC(M)is a finite indecomposable Cartan graph, by Theorem 3.2.6 we are free to assume that Cartan matrixAX is one of the following cases:(a),(b)and(c).

Case(a). Assume that eitherXhas a goodA3neighborhood orCis standard, AX =A3for allX∈ X. Let

(a, b, c, d) := (−ar231(X),−ar132(X),−ar312(X),−ar213(X))

be the sequence in Definition 3.2.2. By applying Lemma 2.1.4 to a13 = 0, a12 = −1, anda23 = −1, we getq3 = 1,q1 6= 1andq2 6= 1, respectively.

SinceAX is ofA3 type, we distinguish subcasesa1,a2,a3,a4,a5,a6anda7

by Lemma 2.1.4.

Casea1. Consider the case(2)q11 = (2)q22 = (2)q33 = 0. Setq1 := q and q2:=r. Then we getq11=q22=q33=−1forp6= 2orq11=q22=q33= 1 forp= 2. Hence we distinguish subcasesa1aanda1b.

casea1a. Consider the caseq11 = q22 = q33 = −1,p 6= 2. Ifqr = 1and q 6= −1, thenD = D82,p 6= 2. Ifqr = 1 andq = −1, thenCis standard

4.2. The proof of Theorem 4.1.1 41

andD = D11, whereq = −1, andp 6= 2. Ifqr 6= 1, thenXhas a goodA3

neighborhood and by Lemma 2.1.7 we get the reflectionr2(X)ofX

e u e

−1 q −1 r −1

e e

e

A AA

q

−1

r q−1 r−1

qr

withq6= 1,r6= 1,qr6= 1, andp6= 2. SinceXhas a goodA3neighborhood, we obtain thatar132(X) = −1andar312(X) ∈ {−1,−2}. Then we distinguish subcasesa1a1anda1a2.

Casea1a1. Consider the casear132(X) =ar312(X) = −1. We obtain(2)q(q2r− 1) = 0and(2)r(qr2−1) = 0by Lemma 2.1.4. Ifq =−1, thenr 6= −1by qr 6= 1. Ifq = −1andqr2 −1 = 0, thenr ∈G04 and henceD =τ321D62, whereq ∈ G04 andp 6= 2. If q2r = 1andr = −1, then D = D62, where q ∈ G04 andp 6= 2. Ifq2r = qr2 = 1, thenq = r ∈ G03,p 6= 3and hence D=D15,2,p6= 2,3.

Casea1a2. Consider the casear132(X)=−1andar312(X)=−2. Then(2)q(q2r− 1) = 0,(3)r(qr3−1) = 0and(2)r(qr2−1)6= 0. Hencer 6=−1andqr2 6= 1. Ifq = −1,r ∈ G03 andp 6= 3, then D = D17,1, p 6= 2,3. Ifq = −1and qr3 = 1, thenr ∈ G06,p 6= 3 and henceD = τ321D72, whereq ∈ G06 and p 6= 2,3. Ifq2r = r3 = 1, then−q = r ∈ G03,p 6= 3 byqr2 6= 1. Hence D=τ321D17,3,p6= 2,3. Ifq2r=qr3 = 1, thenr2 =q, wherer∈G05,p6= 5. Hence by Lemmas 2.1.4 and 2.1.7 we get the sequence(a, b, c, d) = (2,1,2,3). Furtherar213r1(X)=−4, which is a contradiction.

casea1b. Consider the caseq11 = q22 = q33 = 1,p = 2. Ifqr = 1, then D=D82,p= 2. Ifqr 6= 1, then the Dynkin diagrams ofXandr2(X)are

e u e

1 q 1 r 1

e e

e

A AA

q 1

r q−1 r−1

qr

withq6= 1,r6= 1,qr6= 1, andp= 2. SinceXhas a goodA3neighborhood, we obtain thatar132(X)=−1andar312(X)∈ {−1,−2}. Then we have subcases a1b1 anda1b2.

Casea1b1. Consider the casear132(X) =ar312(X) =−1. Sinceq 6= 1andr 6= 1, we obtain q2r = qr2 = 1by Lemma 2.1.4. Thenq = r ∈ G03 and hence D=D15,2,p= 2.

Casea1b2. Consider the case ar132(X) = −1 andar312(X) = −2. Then we get

42 4. The classification result

q2r = 1,(3)r(qr3−1) = 0, andqr2 6= 1. Ifq2r =r3 = 1, thenq =r ∈G03 and henceqr2 = 1, which is a contradiction. Then we obtainq2r=qr3 = 1, thenr2 =q, wherer ∈G05,p= 2. Hence by Lemmas 2.1.4 and 2.1.7 we get the sequence(a, b, c, d) = (2,1,2,3)andar213r1(X) =−4in Definition 3.2.2, which is again a contradiction.

Casea2. Consider the case(2)q22 = (2)q33 = 0,q11q1−1 = 0, and(2)q11 6= 0. Set q11 := q andq2 := r. Then we getq 6= −1for p 6= 2 andq 6= 1 for p = 2. Hence we obtainq22 = q33 = −1,qq1 = 1,q 6= −1for p 6= 2or q22 = q33 = 1,qq1 = 1,q 6= 1forp = 2. We distinguish two subcases a2a anda2b.

Casea2aConsider the caseq22 =q33 =−1,qq1 = 1,q 6=−1, andp 6= 2. If r = q 6=−1, thenCis standard andD =τ321D42,p 6= 2. Ifr =−1,q 6=r, andq /∈ G04, thenD =D91, wherer = −1,q /∈ G04 andp 6= 2. Ifr = −1, q 6= r, andq ∈ G04, then D = D10,2, whereq ∈ G04 andp 6= 2. Now we consider the caser 6= −1andq 6= r. ThenX has a goodA3 neighborhood and by Lemma 2.1.7 we get the following reflectionr2(X)ofX

e u e

q q−1 −1 r −1

e e

e

A AA

−1

−1

r q r−1

rq−1

withq6= 1,r /∈ {−1,1, q}, andp6= 2. SinceXhas a goodA3neighborhood, we get ar312(X) ∈ {−1,−2}. Then we get either (2)r(r2q−1 − 1) = 0 or (3)r(r3q−1−1) = 0,(2)r(r2q−1−1)6= 0. Hence we can distinguish three subcasesa2a1,a2a2 anda2a3.

Casea2a1. Consider the case(2)r(r2q−1−1) = 0. Sincer 6=−1andp 6= 2, we obtain thatr2q−1 = 1and henceD=τ321D62,p6= 2.

Casea2a2. Consider the caser3q−1 = 1and(2)r(r2q−1−1)6= 0. Then we getq=r36= 1andr /∈ {1,−1}. HenceD=τ321D72,p6= 2.

Casea2a3. Consider the caser ∈G03,(2)r(r2q−1−1)6= 0, andp 6= 3. Then qr6= 1. By Lemma 2.1.7 we get the following reflectionr3(X)ofX

e e u

q q−1 −1 r −1

qe q−1 re r−1 −1e

withq 6= 1,r /∈ {−1,1, q, q−1}. By Lemmas 2.1.4 and 2.1.7 we obtain that (a, b, c, d) = (1,1,2,2), which is a contradiction.

Casea2b. Consider the caseq22=q33= 1,qq1= 1,q 6= 1forp= 2. Ifr=q, thenD =τ321D42,p = 2. Ifr 6= q, then we getar312(X) ∈ {−1,−2}. Hence

4.2. The proof of Theorem 4.1.1 43

we distinguish subcasesa2b1,a2b2, anda2b3.

Casea2b1. Ifar312(X)=−1, thenr2q−1= 1and henceD=τ321D62,p= 2.

Casea2b2. Consider the casear312(X)=−2. Ifr∈G03, then we get(a, b, c, d) = (1,1,2,2), which is a contradiction. Ifr3q−1 = 1, thenq =r36= 1and hence D=τ321D72,p= 2.

Casea3. Consider the case(2)q11 = (2)q22 = 0,q33q2−1 = 0, and(2)q33 6= 0. Letq33 := q andq1 := r. Then by(2)q 6= 0we getq 6= −1 forp 6= 2and q6= 1forp= 2. Hence we obtainq11=q22=−1,qq2= 1,q6=−1forp6= 2 orq11=q22= 1,qq2 = 1,q6= 1forp= 2. We distinguish two subcasesa3a anda3b.

Casea3aConsider the caseq11 =q22 =−1,qq2 = 1,q 6=−1, andp 6= 2. If r =q 6=−1, thenCis standard andD =D42,p6= 2. Ifr =−1,q 6=r, and q /∈ G04, thenD =τ321D91, wherer = −1,q /∈ G04 andp 6= 2. If r = −1, q 6=r, andq ∈G04, thenD =τ321D10,2, whereq ∈ G04andp 6= 2. Now we consider the caser 6=−1andq 6= r. ThenXhas a goodA3 neighborhood and by Lemma 2.1.7 we get the following reflectionr2(X)ofX

e u e

−1 r −1 q−1 qe e

e A AA

r

−1

−1 r−1 q

rq−1

withq 6= 1,r /∈ {−1,1, q}, andp6= 2. SinceXhas a goodA3neighborhood, we getar312(X)=−1and hencer2q−1 = 1. ThenD=D62,p6= 2.

Casea3b. Consider the caseq11=q22= 1,qq2 = 1,q6= 1forp= 2. Ifr=q, thenD =D42,p= 2. Ifr 6=q, then we getar312(X) =−1. Hencer2q−1 = 1 andD=D62,p= 2.

Casea4. Consider the case(2)q11 = (2)q33 = 0,q22q1−1 = q22q2−1 = 0, and(2)q22 6= 0. Letq22:=q. Then by(2)q 6= 0we getq6=−1forp6= 2and q 6= 1forp= 2. Hence we obtainq11 =q33 =−1,qq1 = qq2 = 1,q 6=−1 forp6= 2orq11=q33= 1,qq1 =qq2 = 1,q 6= 1forp= 2. Ifp6= 2, thenC is standard andD=D82,p6= 2. Ifp= 2, thenCis standard andD =D82, p= 2.

Casea5. Consider the case(2)q11 = 0,q22q1−1 =q22q2−1 =q33q2−1 = 0, (2)q22 6= 0, and(2)q33 6= 0. Setq33 := q. If q11 = 1andp = 2, thenC is standard andD = D41,p = 2. Ifq11 = −1andp 6= 2, thenq 6= −1,C is standard, andD=D41,p6= 2.

Casea6. Consider the case(2)q33 = 0,q11q1−1 =q22q1−1 =q22q2−1 = 0, (2)q11 6= 0, and(2)q22 6= 0. Setq11:=q. Thenq6=−1. Ifq33= 1andp= 2,

44 4. The classification result thenC is standard andD = τ321D41,p = 2. Ifq33 = −1andp 6= 2, then q 6=−1andD=τ321D41,p6= 2.

Casea7. Consider the case(2)q22 = 0,q11q1 = q33q2 = 1,(2)q11 6= 0, and (2)q33 6= 0. Setq11:=qandq33:=r. We distinguish subcasesa7aanda7b. Casea7a. Consider the caseq22=−1,qq1 =rq2 = 1, andp6= 2. Ifqr= 1, thenq 6= −1andD= D81,p 6= 2. Ifqr 6= 1,q = r ∈ G03, andp 6= 3, then D = D11,1,p 6= 2,3. Ifqr 6= 1,q = r /∈ G03 andp 6= 3, thenD = D10,1, p 6= 2,3. If qr 6= 1,q 6= r,qr2 6= 1, andrq2 6= 1, then D = D91,p 6= 2. Ifqr 6= 1,q 6= r, and rq2 = 1, thenq /∈ G03 for p 6= 3. HenceD = D10,2, p 6= 2. Ifqr 6= 1,q 6=r, andqr2 = 1, thenr /∈G03forp6= 3,r2 6= 1. Hence D=τ321D10,2,p6= 2.

Casea7b. Consider the caseq22 = 1,qq1 = rq2 = 1, andp = 2. Ifqr = 1, thenD=D81,p = 2. Ifqr 6= 1andq =r ∈G03, thenD=D11,1,p = 2. If qr 6= 1andq =r /∈ G03, thenD =D10,1,p = 2. Ifqr 6= 1,q 6=r,qr2 6= 1, andrq2 6= 1, then D = D91,p = 2. Ifqr 6= 1,q 6= r, andrq2 = 1, then q /∈G03andD=D10,2,p = 2. Ifqr 6= 1,q 6=r, andqr2 = 1, thenr /∈G03, andD=τ321D10,2,p= 2.

Casea8. Consider the caseq11q1 =q22q1 =q22q2 =q33q2 = 1,(2)q11 6= 0, (2)q22 6= 0, and(2)q33 6= 0. ThenD=D11,q6=−1.

Case(b). Assume that eitherXhas a goodB3neighborhood orCis standard, AX = B3 for allX ∈ X. SinceAX is ofB3 type, we obtain thatq3 = 1, q1 6= 1and q2 6= 1 by Lemma 2.1.4. By Lemma 2.1.7 we get q1q2 = 1 if (2)q22 = 0, sincear132(X) = 0. Further, we distinguish subcasesb1,b2,b3,b4, b5,b6,b7andb8.

Caseb1. Consider the case(2)q11 = (2)q22 = (3)q33 = 0and(2)q33(q33q2− 1) 6= 0. Letq1 := q. Thenq2 = q−1 andq33 6= q. We distinguish subcases b1a,b1bandb1c.

caseb1a. Consider the caseq11 =q22 =−1,q33:=ζ ∈G03, andp6= 2,3. By Lemma 2.1.7 we get the reflectionr3(X)ofX

e e u

−1 q −1 q−1 ζ

−1e q -ζqe−2−1 ζe

withζ ∈ G03,q 6= ζ, andp 6= 2,3. Sincear233(X) = −1by Definition 3.2.3, we get((−ζq−2)qζ−1−1)(ζq−2−1) = 0and henceq = −1,q = ζ−1, or q = −ζ−1. Ifq = ζ−1, then C is standard and D = D52, where q ∈ G03, p6= 2,3. Ifq=−ζ−1, thenCis standard andD=D14,2,p6= 2,3. Ifq=−1, thenar213(X) =−3, which is a contradiction.

Caseb1b. Consider the case q11 = q22 = −1, q33 = 1, andp = 3. Then

4.2. The proof of Theorem 4.1.1 45

the Dynkin diagram ofr3(X)is −1e q -q−2e q 1e. Byar233(X) =−1we get q=−1. HenceCis standard andD=D120,1.

Caseb1c. Consider the caseq11 =q22 = 1,q33:= ζ ∈G03, andp= 2. Then the Dynkin diagram ofr3(X)is 1e q ζq−2e−1 ζewithζ ∈G03,q 6= ζ, and p = 2. The conditionar233(X) =−1givesq = ζ−1. HenceCis standard and D=D52, whereq ∈G03andp= 2.

Caseb2. Consider the case(2)q11 = (2)q22 = 0,q332 q2−1 = 0,(3)q33 6= 0, and(2)q33(q33q2−1)6= 0. Letq33:= q. Thenq2 =q−2 and henceq1 =q2 byq1q2 = 1. Hence we distinguish two casesb2aandb2b.

caseb2a. Consider the caseq11=q22=−1andp6= 2. Ifq2 6=−1andp6= 3, thenC is standard andD = D52, where q /∈ G03,p 6= 2,3. Ifq2 6= −1and p = 3, thenD= D52,p = 3. Ifq2 =−1, thenCis standard andD =D21, whereq∈G04,p6= 2.

Caseb2b. Consider the caseq11=q22= 1andp= 2. ThenCis standard and D=D52, whereq /∈G03,p= 2.

Caseb3. Consider the case(2)q11 = (3)q33 = 0,q22q1−1 = 0,q22q2−1 = 0, (2)q22 6= 0, and(2)q33(q33q2 −1) 6= 0. Letq22 := q andq33 := ζ. Then q1 =q2 =q−1andq 6=ζ. We distinguish subcasesb3a,b3b, andb3c.

Caseb3a. Consider the caseq11 =−1,ζ ∈G03 andp6= 2,3. By Lemma 2.1.7 we get the Dynkin diagrams ofXandr3(X)

e e u

−1 q−1 q q−1 ζ−1e q−1ζq−1e−1 ζe

withζ ∈ G03,q /∈ {−1,1, ζ}, andp 6= 2,3. We getar213(X) ∈ {−1,−2}by Definition 3.2.3. Hence((ζq−1) + 1)(ζq−2−1)(q−3−1)(ζ2q−3−1) = 0. Then we obtainq ∈ {ζ−1,−ζ−1,−ζ}or q−3 = ζ. If q = ζ−1, then D = D51, where q ∈ G03,p 6= 2,3. Ifq = −ζ−1, thenC is standard and D = D14,1,p 6= 2,3. Ifq = −ζ, then by Lemmas 2.1.4 and 2.1.7 we getar231r3(X) ar231r3(X)=−3∈ {−1,/ −2}, which is a contradiction. Ifq−3 =ζ ∈G03, then ar231r3(X)=−8∈ {−1,/ −2}, which is again a contradiction.

Caseb3b. Consider the caseq11= 1,ζ ∈G03andp = 2. By Lemma 2.1.7 we get the reflectionr3(X)ofXis

e e u

1 q−1 q q−1 ζ1e q−1ζq−1e−1 ζe

46 4. The classification result

withζ ∈ G03,q 6= ζ, and p = 2. We getq = ζ−1 orq−3 = ζ by ar213(X) ∈ {−1,−2}. Ifq=ζ−1, thenCis standard andD=D51, whereq∈G03,p= 2. Ifq−3 = ζ ∈ G03, then by Lemmas 2.1.4 and 2.1.7 we getar231r3(X) = −8 ∈/ {−1,−2}, which is a contradiction.

Caseb3c. Consider the caseq11=−1,ζ = 1andp = 3. By Lemma 2.1.7 the Dynkin diagrams ofr3(X)is −1e q−1 q−1e q 1e withq /∈ G02, andp = 3. Thenar213(X)∈ {−1,/ −2}, which is a contradiction.

Caseb4. Consider the case(2)q22 = (3)q33 = 0,q11q1−1 = 0,(2)q11 6= 0, and(2)q33(q33q2 −1)6= 0. Letq11 := qandq33 := ζ. Thenq1 = q−1 and q2 =qbyq1q2 = 1. Henceq 6=ζ−1. We distinguish three subcasesb4a,b4b, andb4c.

caseb4a. Consider the caseq22=−1,ζ ∈G03,qq1−1 = 0, andp6= 2,3. The Dynkin diagrams ofXandr3(X)are

e e u

q q−1 −1 q ζqe q−1-ζqe2(qζ)−1ζe

with ζ ∈ G03, q /∈ {1,−1, ζ−1}, and p 6= 2,3. We get ar233(X) = −1 by Definition 3.2.3. Then (ζq2 −1)(ζq2(ζq)−1 + 1) = 0. Hence q = −ζ or q =ζ. Ifq =−ζthenCis standard andD=D14,3,p6= 2,3. Ifq=ζthenC is standard andD=D53, whereq :=−ζ−1,ζ ∈G03, andp6= 2,3.

Caseb4b. Consider the caseq22 = −1,ζ = 1, andp = 3. Then the Dynkin diagram ofr3(X)is qe q−1 -qe2 q−1 1ewithq /∈G02,p = 3. Thenar233(X) 6=

−1, which is a contradiction.

Caseb4c. Consider the caseq22 = 1,q33 := ζ ∈ G03, and p = 2. Then the Dynkin diagram ofr3(X)is qe q−1 ζqe2−1 ζe. The conditionar233(X) =−1 gives thatq=ζ. ThenCis standard andD=D53, whereq :=ζ−1,ζ ∈G03, andp= 2.

Caseb5. Consider the case(2)q11 = 0,q22q1 = 1,q22q2 = 1,q332 q2 = 1, (2)q22 6= 0, and(3)q33 6= 0. Letq33:=q. Thenq2 =q−2,q22=q2and hence q1 =q−2. We obtain thatq2 6= 1,−1, andq3 6= 1. Ifp = 3andq11 = −1, then C is standard andD = D51,p = 3. Ifp 6= 2,3andq11 = −1, then D =D51, whereq /∈G03andp 6= 2,3. Ifp = 2andq11= 1, thenD=D51, whereq /∈G03andp= 2.

Caseb6. Consider the case(2)q22 = 0,q11q1 = 1,q332 q2 = 1,(2)q11 6= 0, and (3)q33 6= 0. Letq33 := q. Then q2 = q−2 andq1 = q2 byq1q2 = 1. Hence q11 = q−2. Ifp = 3andq22 = −1, thenD = D53,p = 3. Ifp 6= 2,3and

4.2. The proof of Theorem 4.1.1 47

q22 =−1, thenD=D53, whereq /∈G03andp 6= 2,3. Ifp= 2andq22= 1, thenD=D53, whereq /∈G03 andp= 2.

Caseb7. Consider the case (3)q33 = 0, q11q1 = 1, q22q1 = 1, q22q2 = 1, (2)q11 6= 0,(2)q22 6= 0and(2)q33(q33q2−1)6= 0. Letq22:= qandq33:= ζ.

Thenq2 =q1 =q−1,q11=q, andq 6=ζ. Hence we distinguish two subcases b7aandb7b.

Caseb7a. Consider the caseζ ∈ G03 andp 6= 3. Then by Lemma 2.1.7 the reflectionr3(X)ofXis

e e u

q q−1 q q−1 ζ

qe q−1ζq−1e−1 ζe

withζ ∈ G03,q /∈ {1,−1, ζ}, andp 6= 3. We getar213(X) ∈ {−1,−2} from Definition3.2.3. Hence((ζq−1)+1)(ζq−2−1)(q−3−1)(ζ2q−3−1) = 0. Then q∈ {ζ−1,−ζ−1,−ζ}orq−3 =ζ. Ifq=ζ−1, thenCis standard andD=D21, whereq ∈ G03,p 6= 3. Ifq = −ζ−1, thenC is standard and D = D12,1. If q=−ζ, thenXhas a goodB3neighborhood andD=τ321D16,5. Ifq−3 =ζ, thenD=D18,1.

Caseb7b. Consider the casep = 3andζ = 1. Since(2)q 6= 0andq 6= 1, we getar213(X)∈ {−1,/ −2}, which is a contradiction.

Caseb8. Consider the caseq11q1 =q22q1 =q22q2 =q233q2 = 1,(2)q11 6= 0, (2)q22 6= 0, and(3)q33 6= 0. If p 6= 2,3, then C is standard andD = D21, whereq /∈G03∪G04andp6= 2,3. Ifp= 3, thenD=D21, whereq /∈G04and p= 3. Ifp= 2, thenD=D21, whereq /∈G03andp= 2.

Case(c). Assume that eitherAXhas a goodC3neighborhood orCis standard, AX = C3 for allX ∈ X. Since AX is ofC3 type, we obtain that q3 = 1, q1 6= 1andq2 6= 1by Lemma 2.1.4. Sincea23 = −2, we get(2)q22 6= 0and henceq22q1 = 0by a21 = −1. Henceq22 6= 1. Sincear231(X) = −2, we get (2)q11 6= 0and henceq11q1−1 = 0bya12=−1. If(3)q22 = 0, thenq1q2= 1 by Lemma 2.1.4. Hence, by Lemma 2.1.4 we distinguish the following cases c1,c2,c3, andc4.

Casec1. Consider the caseq11q1 =q22q1 =q33q2 =q222 q2 = 1. Letq22:=q. Thenq26= 1andCis standard and henceD=D31.

Casec2. Consider the caseq11q1−1 =q22q1−1 =q33q2−1 = 0,(3)q22 = 0, andq222q2−1 6= 0. Sinceq22 6= 1, we getq22 :=ζ ∈ G03 andp 6= 3. Then we getq1−1,q2=ζand henceq222q2−1 = 0, which is a contradiction.

Casec3. Consider the caseq11q1−1 =q22q1−1 =q222 q2−1 = 0,(2)q33 = 0, andq33q2 −1 6= 0. Letq11 := q. Ifp 6= 2, then by Lemma 2.1.7 we get the

48 4. The classification result

reflection ofX

e e u

q q−1 q q−2 −1

qe q−1-q−1e q2 −1e

withq /∈G02∪G04. We obtainar213(X)∈ {−1,−2}from Definition 3.2.4. Since q2 ∈/ G02∪G04, we getar213(X) = −2and hence q−3 = −1or q−3 = 1. If q−3 = −1andp 6= 3, thenC is standard andD = D13,1, withζ ∈ G06. If q−3 = 1andp 6= 3, thenD = D13,1, wíthζ ∈ G03. Ifp = 2, then we get q−3 = 1byar213(X)∈ {−1,−2}and thenD=D130,1.

Casec4. Consider the caseq11q1−1 = q22q1−1 = 0,(2)q33 = (3)q22 = 0, q222q2 −1 6= 0, andq33q2−1 6= 0. Since (3)q22 = 0andq22 6= 1, we get q22 := ζ ∈ G03, q2 = ζ, andp 6= 3. Henceq222q2 −1 = 0, which is a contradiction.

Chapter 5

Generalized Dynkin diagrams

In this section, we give all the Nichols algebras of diagonal type of rank 2 and rank 3 with finite root systems as well as their exchange graphs.