• Keine Ergebnisse gefunden

Proof of Ramanujan formulas

Appendix C. Pentagon and superpentagon relation 125

Appendix C. Pentagon and superpentagon relation 126 Supersymmetric case : In order to prove the Ramanujan formulas in the supersym-metric case , let us define

Φ+NS(a, w) = eNS(a)eNS(w)

eNS(a+w−cb), ΦNS(a, w) = eNS(a)eR(w) eR(a+w−cb), Φ+R(a, w) = eR(a)eNS(w)

eR(a+w−cb), ΦR(a, w) = eR(a)eR(w) eNS(a+w−cb).

Ψ+NS(a, w) = Z

dxeπix(w−cb)

eNS(x+a)

eNS(x−cb) + eR(x+a) eb(x−cR)

, ΨNS(a, w) =

Z

dxeπix(w−cb)

eNS(x+a)

eNS(x−cb) − eR(x+a) eb(x−cR)

, Ψ+R(a, w) =

Z

dxeπix(w−cb)

eR(x+a)

eNS(x−cb) +eNS(x+a) eb(x−cR)

, ΨR(a, w) =

Z

dxeπix(w−cb)

− eR(x+a)

eNS(x−cb)+ eNS(x+a) eb(x−cR)

,

One can consider the shift equations (omitting intermediate steps) Ψ±NS(a−ib

2, w) =±Ψ±R(a+ib

2, w)±ieπabΨR(a+ib

2, w−ib), Ψ±R(a+ib

2, w) + ΨR(a+ ib

2, w−ib) =eπb(w−cb)Ψ±NS(a−ib 2, w), Ψ±R(a−ib

2, w) =±Ψ+NS(a+ib

2, w)±ieπabΨNS(a+ib

2, w−ib), Ψ±NS(a+ib

2, w)−ΨNS(a+ ib

2, w−ib) =eπb(w−cb)Ψ±R(a−ib 2, w).

since

e−1NS(x−cb) = (1−ieπb(x−cb+ib/2))−1e−1R (x−cb+ib) = (1−eπbx)−1e−1R (x−cb+ib), e−1R (x−cb) = (1 +ieπb(x−cb+ib/2))−1e−1NS(x−cb+ib) = (1 +eπbx)−1e−1NS(x−cb+ib).

So, eventually

(1∓ieπb(w+a−cb)+NS/R(a−ib

2, w) = (1∓ieπab+R/NS(a+ib 2, w), (1±ieπb(w+a−cb)NS/R(a−ib

2, w) =−(1−ieπabR/NS(a+ib 2, w), (1∓ieπb(w+a−cb)R(a+ib

2, w−ib) =−(1∓eπ(w−cb)±R(a+ib 2, w), (1±ieπb(w+a−cb)NS(a+ib

2, w−ib) = (1∓eπ(w−cb)±NS(a+ib 2, w),

Appendix C. Pentagon and superpentagon relation 127 On the other hand, it is easy to check that

Φ+NS/R(a−ib

2, w) = 1∓ieπab

1∓ieπb(a+w−cb)Φ+R/NS(a+ib 2, w), ΦNS/R(a−ib

2, w) =− 1∓ieπab

1±ieπb(a+w−cb)ΦR/NS(a+ib 2, w), Φ±NS(a+ib

2, w−ib) = 1±eπb(w−cb)

1∓ieπb(a+w−cb)ΦNS(a+ ib 2, w), Φ±R(a+ib

2, w−ib) =− 1±eπb(w−cb)

1±ieπb(a+w−cb)ΦR(a+ ib 2, w),

Taking b → b−1 one gets an additional set of shift equations. Given that one has two doubly periodic functions with the same equations, they have to be equal up to a constant:

Ψ±NS(a, w) =CΦ±NS(a, w), Ψ±R(a, w) =CΦ±R(a, w), Then, one can fixC by evaluating the expression on particulara andw.

Moreover, on can use the connection between eR, eNS and GR, GNS to prove the Ra-manujan formulae based on the results from [80].

LHS = Z

R

eNS(x+u)

eNS(x+v) +eR(x+u) eR(x+v)

eπiwxdx=

= Z

GNS(−i(x+v) +Q/2)

GNS(−i(x+u) +Q/2)+ GR(−i(x+v) +Q/2) GR(−i(x+u) +Q/2)

eπiwxdx=

= Z

iR

GNS(τ −iv+Q/2)

GNS(τ−iu+Q/2)+GR(τ−iv+Q/2) GR(τ −iu+Q/2)

eπiτ(iw)dτ i =

= Z

iR

GNS(τ+ (Q/2−iv) + (Q/2 +iu))

GNS(τ +Q) +GR(τ + (Q/2−iv) + (Q/2 +iu)) GR(τ +Q)

×

×eπiτ(iw)eπi(Q/2+iu)(iw)dτ i =

= 2e−iπc2b/2GNS(iw)GNS(Q+iu−iv)

GNS(Q+iu−iv+iw) e−πw(Q/2+iu)

=

= 2e−iπc2b/2A4 A2

eNS(iQ−u+v−w−cb)

eNS(−w−cb)eNS(iQ−u+v−cb)e−πw(Q/2+iu)

=

= 2e−iπc2b/2A2 eNS(−u+v−w+cb)

eNS(−w−cb)eNS(−u+v+cb)e−πw(Q/2+iu)=

= eNS(−u+v−w+cb)

eNS(−w−cb)eNS(−u+v+cb)e−πiw(u−cb)

2e−iπc2b/2A2

=RHS, where

B¯ = 2e−iπc2b/2A2, B = 2eiπc2b/2A−2, Three additional equations can be proven in the same way.

Appendix D

Permutation

In section 6.2.3 we mentioned that the Pf in equation (6.24) is not the standard per-mutation operator on C1|1 ⊗C1|1 satisfying Pf1 ⊗ η2)Pf = η2 ⊗η1 for arbitrary η1, η2 ∈ End(C1|1). In this appendix we want to show how to calculate the standard permutation operator onC⊗Cin the supercase.

One can use the Pauli matrices as the bases : Hom (C1|1) = span(σi) =span(I, σi) σ1= 0 1

1 0

!

, σ2 = 0 −i i 0

!

, σ3 = 1 0 0 −1

!

. (D.1)

We consider permutation as

P(12) = Σaijσi⊗σj (D.2)

while the bases have grading as : |σ1 |=|σ4 |= 0,|σ2|=|σ3 |= 1,(−1)δi,2 = (−1)|i| and satisfy the following relations:

σ1ei =ei, σ2ei =ei+1, σ3ei =i(−1)δi,2ei+1, σ4ei = (−1)δi,2ei, We can choose the basis for calculatingP(12) depending on the Pauli’s matrices as

σ1=I, σ21, σ32, σ43. The permutation can be calculated as

Σaijσi⊗σj = Σklaklk⊗σl)(ei⊗ej) = (−1)|i||j|(ej⊗ei) i, j= 1,2

129

Appendix D. Permutation 130 then we get:

Σklaklk.ei)⊗(σl.ej)(−1)|ei||σl|=a11(ei⊗ej) +a12(ei⊗ej+ 1)(−1)|ei|+

a13(ei⊗i(−1)|j|ej+1)(−1)|ei|+a14(ei⊗(−1)|j|ej) +a21(ei+1⊗ej) +a22(ei+1⊗ej+1)(−1)|ei|+ a23(ei+1⊗i(−1)|j|ej+1)(−1)|ei|+a24(ei+1⊗(−1)|j|ej) +a31((−1)|i|iei+1⊗ej)+

a32((−1)|i|iei+1⊗ej+1)(−1)|ei|+a33((−1)|i|iei+1⊗i(−1)|j|ej+1)(−1)|ei|+

a34((−1)|i|iei+1⊗(−1)|j|ej) +a41((−1)|i|iei⊗ej) +a42((−1)|i|ei⊗ej+1)(−1)|ei|+ a43((−1)|i|ei⊗(−1)|j|iej+1)(−1)|ei|+a44((−1)|i|ei⊗(−1)|j|ej)

we have 16 equations for different choices of i and j. By solving these equations we get the following non zero coefficients: a14= 1/2, a23=i/2, a32=−i/2, a41= 1/2.

Then, the permutation it found to be

2P(12) =σ1⊗σ4+iσ2⊗σ3−iσ3⊗σ24⊗σ1

=I⊗ 1 0 0 −1

!

+ 1 0

0 −1

!

⊗I+ 0 −1

1 0

!

⊗ 0 1 1 0

!

− 0 1 1 0

!

⊗ 0 −1

1 0

! . By knowing that

a b c d

!

⊗ α β γ δ

!

=

aα aβ bα bβ

aγ aδ bγ bδ

cα −cβ dα −bβ

−cγ cδ −dγ bδ

. (D.3)

Then permutation is

P(12) =

1 0 0 0

0 0 −1 0

0 −1 0 0

0 0 0 −1

, (D.4)

and satisfies the necessary properties P(12)e1⊗e1=e1⊗e1,

P(12)e2⊗e2=e2⊗e2, P(12)2= 1, P(12)e3⊗e3=e3⊗e3,

P(12)e4⊗e4=−e4⊗e4. (D.5)

Appendix E

q-binomial

We introduce and prove some formulas for the so called q-analysis, which are useful for the construction of quantum group, Drinfeld double and Heisenberg double ofUq(sl(2)), Drinfeld double and Heisenberg double ofUq(osp(1|2)).

Lemma 1. q-binomial formula: If A and B are elements of an algebra obeyingBA=qAB then

(A+B)n=

n

X

m=0

n m

q

AmBn−m, where

n m

q

= (n)q!

(m)q!(n−m)q!, (n)q= 1−qn 1−q .

We suppose that the q-integer (m)q is non zero for 0< m < n. By convention n0

q= 1 Proof. Assuming the result for (A+B)n−1 we have

(A+B)n−1(A+B) =

n−1

X

m=0

n−1 m

q

AmBn−1−m(A+B)

=

n−1

X

m=0

qn−1−m

n−1 m

q

Am+1Bn−1−m+

n−1

X

m=0

n−1 m

q

AmBn−m

=

n

X

m=1

qn−m

n−1 m−1

q

AmBn−m+

n−1

X

m=0

n−1 m

q

AmBn−m

=An+Bn+

n−1

X

m=1

qn−m

n−1 m−1

q

+

n−1 m

q

!

AmBn−m Then by using the identityqn−m(m)q+ (n−m)q= (n)qwe can see the proof is complete.

131

Appendix E.q-binomial 132 We present a short proof of

n k

q

= (q)n (q)k(q)n−k

, (E.1)

where, (q)n= (1−q)...(1−qn).

where we use the fact that (x;q)−1=

Y

k=0

1 1−xqk =

Y

k=0

X

l=0

(xqk)l=

= (1 +x+x2+...)(1 +xq+x2q2+...)...(1 +xqk+x2q2k+...)...=

= 1 +x(1 +q+q2+...) +x2(1 +q+...+qk+...+q2+q3+...+q4+q5+...) +...=

= 1 + x

1−q +x2 1

1−q(1 +q2+q4+...) +...= 1 + x

1−q +x2 1 1−q

1

1−q2 +...=

= 1 +

X

k=1

xk Qk

l=1(1−ql) =

X

k=0

xk (q)k.

q-binomial in terms of Gb functions In the non-supersymmetric case, we have the following form of the Ramanujan summation formula

Z

dτ e−2πτ βGb(α+iτ)

Gb(Q+iτ) = Gb(α)Gb(β)

Gb(α+β) . (E.2)

From this we can get the Fourier transforms. First, by taking α→+∞ and using

Gb(x)→ζ¯b, =(x)→+∞, (E.3)

whereζb−1= ¯ζb (because ζb is a pure phase), we get Z

dτ e−2πτ β ζ¯b

Gb(Q+iτ) =Gb(β), Z

d(bt)e−2π(bt)(Q2−ir) 1

Gb(Q+ibt) =ζbGb(Q 2 −ir), b

Z

dte2πibtr e−πbtQ

Gb(Q+ibt) =ζbGb(Q

2 −ir) =g−1b (e2πbr) =e−1b (r).

Now, using the complex conjugation property of theGb

Gb(x) =e−iπ¯x(¯x−Q)Gb(¯x), (E.4) we can complex conjugate the previous expression to get

b Z

dte−2πibtr e−πbtQ

Gb(Q+ibt) = ¯ζbGb(Q 2 −ir), b

Z

dte−2πibtr e−πbtQ

Gb(Q−ibt)e−iπ(Q−ibt)(Q−Q+ibt)= ¯ζbGb(Q

2 +ir)eiπ(Q2+ir)(Q−Q2−ir), b

Z

dte2πibtr e−iπb2t2

Gb(Q+ibt) = ¯ζb 1

Gb(Q2 −ir) =gb(e2πbr) =eb(r).

Bibliography 133 Now, we can proceed with the calculation. We start from the shift property

eb(x−ib

2) =eb(x+ ib

2)(1 +e2πbx).

Using that, we defineu=e2πbq,v=e2πbp such thatuv=q2vuwithq =eiπb2. Then eb(p−q)ue−1b (p−q) =eπbq(1 +e2πb(p−q))eπbq =u+v.

Therefore,

(u+v)it=eb(p−q)uite−1b (p−q) =b2 Z

12e−iπb2τ12 e2πibτ1(p−q)

Gb(Q+ibτ1)uite−πbτ2Q e2πibτ2(p−q) Gb(Q+ibτ2) =

=b2 Z

12e−iπb2τ12Gb(−ibτ1)e−iπ(Q+ibτ1)(Q+ibτ1−Q)e−πbτ2Qe2πibτ1(p−q)uite2πibτ2(p−q) Gb(Q+ibτ2) =

=b2 Z

12e−πb(τ2−τ1)Q Gb(−ibτ1)

Gb(Q+ibτ2)e2πibτ1(p−q)e2πibtqe2πibτ2(p−q)= (∗) and because e2πibτ1pe−2πibτ1q = e

−(2πibτ1)2

4πi e2πibτ2(p−q) = e−πib2τ12e2πibτ2(p−q) and similar expression for τ2 we have

(∗) =b2 Z

12e−πb(τ2−τ1)Qe−πib212)2e2πib21 Gb(−ibτ1)

Gb(Q+ibτ2)ui(t−τ1−τ2)vi(τ12) and after the change of the integration variableτ =τ12, Therefore,

(∗) =b2 Z

dτdτ2e−2πbτ2(Q+ibt)+πbτ(Q+2ibt)−πib2τ2Gb(−ibτ+ibτ2)

Gb(Q+ibτ2) ui(t−τ)v Now, using the Ramanujan summation formula withα=−ibτ and β =Q+ibtwe get (∗) =b

Z

dτ eπbτ(Q+2ibt)−πib2τ2Gb(−ibτ)Gb(Q+ibt)

Gb(−ibτ+Q+ibt) ui(t−τ)v =

=b Z

dτ e2πib2−2πib2τ2 Gb(Q+ibt)

Gb(Q+ibτ)Gb(−ibτ+Q+ibt)ui(t−τ)v =b Z

dτ t

τ

b

ui(t−τ)v, where we set

t τ

b

=b Z

dτ e2πib2τ(t−τ) Gb(Q+ibt)

Gb(Q+ibτ)Gb(−ibτ+Q+ibt).

Bibliography

[1] Nezhla Aghaei, Michal Pawelkiewicz, J¨org Teschner, “Quantisation of super Teichm¨uller theory,”.http://arxiv.org/abs/1512.02617.

[2] Nezhla Aghaei, Michal Pawelkiewicz, J¨org Teschner, “Heisenberg double of the quantum super plane and Teichm¨uller theory, in preparation,”.

[3] E. Witten, “Some comments on string dynamics,” inFuture perspectives in string theory. Proceedings, Conference, Strings’95, Los Angeles, USA, March 13-18, 1995. 1995. arXiv:hep-th/9507121 [hep-th].

[4] E. Witten, “Five-branes and M theory on an orbifold,” Nucl. Phys.B463(1996) 383–397,arXiv:hep-th/9512219 [hep-th].

[5] D. Gaiotto, “N=2 dualities,” JHEP08 (2012) 034,arXiv:0904.2715 [hep-th].

[6] D. Gaiotto, G. W. Moore, and A. Neitzke, “Wall-crossing, Hitchin Systems, and the WKB Approximation,” arXiv:0907.3987 [hep-th].

[7] L. F. Alday, D. Gaiotto, and Y. Tachikawa, “Liouville Correlation Functions from Four-dimensional Gauge Theories,”Lett. Math. Phys.91 (2010) 167–197, arXiv:0906.3219 [hep-th].

[8] J. Teschner, “Liouville theory revisited,” Class. Quant. Grav.18 (2001) R153–R222,arXiv:hep-th/0104158 [hep-th].

[9] N. A. Nekrasov, “Seiberg-Witten prepotential from instanton counting,” Adv.

Theor. Math. Phys.7 no. 5, (2003) 831–864,arXiv:hep-th/0206161 [hep-th].

[10] J. Teschner, “Supersymmetric gauge theories, quantisation of moduli spaces of flat connections, and Liouville theory,” arXiv:1412.7140 [hep-th].

[11] J. Teschner and G. Vartanov, “6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories,”Lett. Math. Phys. 104 (2014) 527–551,arXiv:1202.4698 [hep-th].

[12] N. J. Hitchin, “The Selfduality equations on a Riemann surface,”Proc. Lond.

Math. Soc.55 (1987) 59–131.

[13] W. M. Goldman, “Topological components of spaces of representations.,”

Inventiones mathematicae93no. 3, (1988) 557–608.

http://eudml.org/doc/143609.

135

Bibliography 136 [14] H. L. Verlinde, “Conformal Field Theory, 2-D Quantum Gravity and

Quantization of Teichm¨uller Space,”Nucl. Phys.B337(1990) 652.

[15] J. Teschner, “From Liouville theory to the quantum geometry of Riemann surfaces,” inMathematical physics. Proceedings, 14th International Congress, ICMP 2003, Lisbon, Portugal, July 28-August 2, 2003. 2003.

arXiv:hep-th/0308031 [hep-th].

[16] J. Teschner, “An Analog of a modular functor from quantized Teichm¨uller theory,”arXiv:math/0510174 [math-qa].

[17] V. Belavin and B. Feigin, “Super Liouville conformal blocks from N=2 SU(2) quiver gauge theories,” JHEP07(2011) 079,arXiv:1105.5800 [hep-th].

[18] H. L. Verlinde and E. P. Verlinde, “Conformal field theory and geometric qunatization,” in In *Trieste 1989, Proceedings, Superstrings ’89* 422-449 and Princeton Univ. - PUPT-1149 (89,rec.Jan.90) 28 p. 1989.

http://alice.cern.ch/format/showfull?sysnb=0115452.

[19] J. Teschner and G. S. Vartanov, “Supersymmetric gauge theories, quantization of Mflat, and conformal field theory,”Adv. Theor. Math. Phys.19(2015) 1–135, arXiv:1302.3778 [hep-th].

[20] J. Teschner, “Supersymmetric Gauge Theories, Quantization of Mflat , and Conformal Field Theory,” inNew Dualities of Supersymmetric Gauge Theories, J. Teschner, ed., pp. 375–417. 2016. http://arxiv.org/abs/1405.0359.

[21] T. Dimofte, “Complex Chern–Simons Theory at Level k via the 3d–3d Correspondence,”Commun. Math. Phys.339 no. 2, (2015) 619–662.

http://arxiv.org/abs/1409.0857.

[22] J. E. Andersen and R. Kashaev, “Complex Quantum Chern-Simons,”

arXiv:1409.1208 [math.QA].

[23] T. Dimofte, S. Gukov, J. Lenells, and D. Zagier, “Exact Results for Perturbative Chern-Simons Theory with Complex Gauge Group,”Commun. Num. Theor.

Phys.3 (2009) 363–443,arXiv:0903.2472 [hep-th].

[24] K. Hikami, “Hyperbolic Structure Arising from a Knot Invariant,” Int. J. Mod.

Phys. A,16 (2001) 3309–3333,arXiv:0105039 [math-ph/].

[25] K. Hikami, “Hyperbolicity of partition function and quantum gravity,” Nucl.

Phys.B616(2001) 537–548,arXiv:hep-th/0108009 [hep-th].

[26] K. Hikami, “Generalized volume conjecture and the -polynomials: The

Neumann–Zagier potential function as a classical limit of the partition function,”

Journal of Geometry and Physics 57no. 9, (2007) 1895 – 1940.

http://www.sciencedirect.com/science/article/pii/S0393044007000459.

[27] T. P. Killingback, “Quantization of SL(2,R) Chern-Simons theory,” Commun.

Math. Phys.145 (1992) 1–16.

Bibliography 137 [28] E. Witten, “(2+1)-Dimensional Gravity as an Exactly Soluble System,”Nucl.

Phys.B311(1988) 46.

[29] A. Achucarro and P. K. Townsend, “A Chern-Simons Action for

Three-Dimensional anti-De Sitter Supergravity Theories,” Phys. Lett.B180 (1986) 89.

[30] E. Witten, “Notes On Super Riemann Surfaces And Their Moduli,”

arXiv:1209.2459 [hep-th].

[31] L. Crane and J. M. Rabin, “”super riemann surfaces: Uniformization and teichm¨uller theory”,”Communications in Mathematical Physics113 no. 4, (1988) 601–623.http://dx.doi.org/10.1007/BF01223239.

[32] V. Fock, “Dual Teichm¨uller spaces,”.http://arxiv.org/abs/dg-ga/9702018v3.

[33] L. Chekhov and V. V. Fock, “Quantum Teichmuller space,” Theor. Math. Phys.

120(1999) 1245–1259,arXiv:math/9908165 [math-qa]. [Teor. Mat.

Fiz.120,511(1999)].

[34] R. M. Kashaev, “Quantization of Teichm¨uller spaces and the quantum dilogarithm,”.http://arxiv.org/abs/q-alg/9705021.

[35] R. M. Kashaev, “The quantum dilogarithm and Dehn twists in quantum Teichm¨uller theory,”.

[36] R. M. Kashaev, “Liouville central charge in quantum Teichm¨uller theory,”

arXiv:hep-th/9811203 [hep-th].

[37] B. Ponsot and J. Teschner, “Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of U(q)(sl(2,R)),”Commun. Math. Phys.

224(2001) 613–655,arXiv:math/0007097 [math-qa].

[38] B. Ponsot and J. Teschner, “Liouville bootstrap via harmonic analysis on a noncompact quantum group,”arXiv:hep-th/9911110 [hep-th].

[39] V. G. Drinfeld, “Quantum groups,”J. Sov. Math. 41(1988) 898–915. [Zap.

Nauchn. Semin.155,18(1986)].

[40] M. Jimbo, “A q difference analog of U(g) and the Yang-Baxter equation,”Lett.

Math. Phys.10(1985) 63–69.

[41] R. J. Baxter, “Partition function of the eight vertex lattice model,” Annals Phys.

70(1972) 193–228. [Annals Phys.281,187(2000)].

[42] C.-N. Yang, “Some exact results for the many body problems in one dimension with repulsive delta function interaction,”Phys. Rev. Lett. 19(1967) 1312–1314.

[43] R. M. Kashaev, “The Heisenberg double and the pentagon relation,” Algebra i Analiz8 (1996) 63–74, arXiv:arXiv:q-alg/9503005v1 [hep-th].

[44] R. M. Kashaev, “On the spectrum of Dehn twists in quantum Teichm¨uller theory,”arXiv:math/0008148 [math-qa].

Bibliography 138 [45] L. D. Faddeev and R. M. Kashaev, “Quantum Dilogarithm,” Mod. Phys. Lett.

A9(1994) 427–434,arXiv:hep-th/9310070 [hep-th].

[46] A. Yu. Volkov, “Noncommutative hypergeometry,”Commun. Math. Phys.258 (2005) 257–273,arXiv:math/0312084 [math.QA].

[47] L. D. Faddeev, “Discrete Heisenberg-Weyl group and modular group,”Lett.

Math. Phys.34(1995) 249–254,arXiv:hep-th/9504111 [hep-th].

[48] V. V. Bazhanov, V. V. Mangazeev, and S. M. Sergeev, “Faddeev-Volkov solution of the Yang-Baxter equation and discrete conformal symmetry,”Nucl. Phys.

B784(2007) 234–258,arXiv:hep-th/0703041 [hep-th].

[49] V. V. Bazhanov, V. V. Mangazeev, and S. M. Sergeev, “Quantum geometry of 3-dimensional lattices,” J. Stat. Mech.0807(2008) P07004,arXiv:0801.0129 [hep-th].

[50] L. D. Faddeev and R. M. Kashaev, “Strongly coupled quantum discrete Liouville theory. 2. Geometric interpretation of the evolution operator,”J. Phys. A35 (2002) 4043–4048,arXiv:hep-th/0201049 [hep-th].

[51] T. Dimofte, “Quantum Riemann Surfaces in Chern-Simons Theory,” Adv. Theor.

Math. Phys.17no. 3, (2013) 479–599,arXiv:1102.4847 [hep-th].

[52] R. M. Kashaev, “A link invariant from quantum dilogarithm,” Mod. Phys. Lett.

A10 (1995) 1409–1418,arXiv:q-alg/9504020 [q-alg].

[53] R. C. Penner and A. M. Zeitlin, “Decorated Super-Teichm¨uller Space,”

arXiv:1509.06302 [math.GT].

[54] R. C. Penner, “The decorated teichm¨uller space of punctured surfaces,”Comm.

Math. Phys.113 no. 2, (1987) 299–339.

http://projecteuclid.org/euclid.cmp/1104160216.

[55] F. Bouschbacher, “Shear coordinates on the super Teichm¨uller space,” Phd Thesis, June 2013, University of Strasbourg.

[56] P. P. Kulish, “Quantum superalgebraosp(2|1),” Journal of Soviet Mathematics 54no. 3, 923–930.

[57] H. Saleur, “Quantum Osp(1,2) and Solutions of the Graded Yang-Baxter Equation,”Nucl. Phys.B336(1990) 363.

[58] M. Bershadsky and H. Ooguri, “Hidden Osp(N,2) Symmetries in Superconformal Field Theories,” Phys. Lett.B229(1989) 374.

[59] I. P. Ennes, A. V. Ramallo, and J. M. Sanchez de Santos, “On the free field realization of the osp(1—2) current algebra,”Phys. Lett. B389(1996) 485–493, arXiv:hep-th/9606180 [hep-th].

[60] I. P. Ennes, A. V. Ramallo, and J. M. Sanchez de Santos, “Structure constants for theosp(1|2) current algebra,”Nucl. Phys.B491(1997) 574–618,

arXiv:hep-th/9610224 [hep-th].

Bibliography 139 [61] L. Hadasz, M. Pawelkiewicz, and V. Schomerus, “Self-dual Continuous Series of

Representations forU q(sl(2)) and U q(osp(1|2)),”JHEP10(2014) 91, arXiv:1305.4596 [hep-th].

[62] D. Cimasoni, N. Reshetikhin., “ Dimers on surface graphs and spin structuresI,”.

http://arxiv.org/abs/math-ph/0608070.

[63] D. Cimasoni, N. Reshetikhin., “ Dimers on surface graphs and spin structuresII,”.http://arxiv.org/abs/math-ph/0704.0273.

[64] L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtajan, “Quantization of Lie Groups and Lie Algebras,”Leningrad Math. J. 1(1990) 193–225. [Alg.

Anal.1,no.1,178(1989)].

[65] A. N. Kirillov and N. Reshetikhin, “q Weyl Group and a Multiplicative Formula for Universal R Matrices,”Commun. Math. Phys.134 (1990) 421–432.

[66] G. W. Moore and N. Reshetikhin, “A Comment on Quantum Group Symmetry in Conformal Field Theory,” Nucl. Phys.B328(1989) 557.

[67] S. Majid, Foundations of quantum group theory. Cambridge University Press, 2011.

[68] V. Chari and A. Pressley, A guide to quantum groups. 1994.

[69] C. Kassel,Quantum groups. 1995.

[70] N. Yu. Reshetikhin, “Quantized universal envelopiong algebras,the Yang-Baxter equation and invariants of links.1,”.

[71] S. Majid, “Physics for algebraists: Non-commutative and non-cocommutative hopf algebras by a bicrossproduct construction,”Journal of Algebra 130 no. 1, (1990) 17 – 64.

http://www.sciencedirect.com/science/article/pii/002186939090099A.

[72] K. Schmudgen, “Operator representations of U-q(sl(2)(IR)),”Lett. Math. Phys.

37(1996) 211–222.

[73] I. Ivan, “The classical limit of representation theory of the quantum plane,”

International Journal of Mathematics24, No. 4 (2013) ,arXiv:1012.4145.

[74] S. L. Woronowicz and S. Zakrzewski, “Quantum ’ax + b’ group,”Rev. Math.

Phys.14 (2002) .

[75] A. van Daele, “ Multiplier Hopf algebras,”Trans. Amer. Math. Soc. 342 (1994) 917–932.

[76] B. S. DeWitt,Supermanifolds. Cambridge monographs on mathematical physics.

Cambridge Univ. Press, Cambridge, UK, 2012.

http://www.cambridge.org/mw/academic/subjects/physics/

theoretical-physics-and-mathematical-physics/

supermanifolds-2nd-edition?format=AR.

Bibliography 140 [77] A. Rogers, Supermanifolds: Theory and applications. 2007.

[78] S. M. Natanzon, “Moduli of real algebraic surfaces, and their superanalogues.

differentials, spinors, and jacobians of real curves,” Russian Mathematical Surveys54no. 6, (1999) 1091.

http://stacks.iop.org/0036-0279/54/i=6/a=R01.

[79] F. Cantrijn and L. Ibort, “Introduction to poisson supermanifolds,”Differential Geometry and its Applications 1 no. 2, (1991) 133 – 152.

http://www.sciencedirect.com/science/article/pii/0926224591900277.

[80] L. Hadasz, “On the fusion matrix of the N=1 Neveu-Schwarz blocks,”.

http://arxiv.org/abs/0707.3384.

[81] V. Kac,Differential Geometrical Methods in Mathematical Physics II:

Proceedings, University of Bonn, July 13–16, 1977,ch. Representations of classical lie superalgebras, pp. 597–626. Springer Berlin Heidelberg, Berlin, Heidelberg, 1978. http://dx.doi.org/10.1007/BFb0063691.

[82] A. J. Bracken, M. D. Gould, and R.-b. Zhang, “Quantum Supergroups and Solutions of the Yang-Baxter Equation,”Mod. Phys. Lett.A5 (1990) 831.

[83] R.-b. Zhang and M. D. Gould, “Universal R matrices and invariants of quantum supergroups,”J. Math. Phys. 32(1991) 3261–3267.

[84] V. G. Kac, “A Sketch of Lie Superalgebra Theory,” Commun. Math. Phys.53 (1977) 31–64.

[85] V. Kac, “Lie superalgebras,”Advances in Mathematics 26no. 1, (1977) 8 – 96.

http://www.sciencedirect.com/science/article/pii/0001870877900172.

[86] P. P. Kulish and N. Yu. Reshetikhin, “Universal R matrix of the quantum superalgebraosp(2|1),” Lett. Math. Phys.18(1989) 143–149.

[87] M. Chaichian and P. Kulish, “Quantum Lie Superalgebras and q Oscillators,”

Phys. Lett.B234(1990) 72.

[88] M. Pawelkiewicz, V. Schomerus, and P. Suchanek, “The universal Racah-Wigner symbol forU q(osp(1|2)),”JHEP 04(2014) 079,arXiv:1307.6866 [hep-th].

[89] A. G. Bytsko and J. Teschner, “R operator, coproduct and Haar measure for the modular double of U(q)(sl(2,R)),”Commun. Math. Phys.240 (2003) 171–196, arXiv:math/0208191 [math-qa].

[90] D. Chorazkiewicz and L. Hadasz, “Braiding and fusion properties of the

Neveu-Schwarz super conformal blocks,”JHEP01 (2009) 007,arXiv:0811.1226 [hep-th].

[91] D. Chorazkiewicz, L. Hadasz, and Z. Jaskolski, “Braiding properties of the N=1 super conformal blocks (Ramond sector),”JHEP 11(2011) 060,

arXiv:1108.2355 [hep-th].

Bibliography 141 [92] J. Ellegaard Andersen and R. Kashaev, “A TQFT from Quantum Teichm¨uller

Theory,”Commun. Math. Phys.330 (2014) 887–934,arXiv:1109.6295 [math.QA].

[93] D. Gaiotto and A. Kapustin, “Spin TQFTs and fermionic phases of matter,”

arXiv:1505.05856 [cond-mat.str-el].

[94] C. P. R. Benedetti, “Spin structures on 3-manifolds via arbitrary triangulations,”

Algebraic Geometric Topology 14(2014) 1005–1054,arXiv:1304.3884.

[95] A. M. Polyakov, “Quantum Geometry of Bosonic Strings,” Phys. Lett.B103 (1981) 207–210.

[96] R. Jackiw, “Liouville field theory: A two dimensional model for gravity?,”.

[97] J. Teschner, “Nonrational conformal field theory,”arXiv:0803.0919 [hep-th].

[98] L. A. Takhtajan and L.-P. Teo, “Quantum Liouville theory in the background field formalism. I. Compact Riemann surfaces,”Commun. Math. Phys.268 (2006) 135–197,arXiv:hep-th/0508188 [hep-th].

[99] L. D. Faddeev,New Symmetry Principles in Quantum Field Theory,

ch. Quantum Symmetry in Conformal Field Theory by Hamiltonian Methods, pp. 159–175. Springer US, Boston, MA, 1992.

[100] L. D. Faddeev and A. Yu. Volkov, “Algebraic quantization of integrable models in discrete space-time,”arXiv:hep-th/9710039 [hep-th].

[101] E. W. Barnes, “The theory of the double gamma function,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 196(1901) 265–387.

[102] S. L. Woronowicz and S. Zakrzewski, “Quantum exponential function,” Rev.

Math. Phys.12(2000) 873.

[103] S. N. M. Ruijsenaars, “First order analytic difference equations and integrable quantum systems,”Journal of Mathematical Physics 38 no. 2, (1997) .

[104] I. Ivan, “The graphs of quantum dilogarithm,”arxiv:1108.5376.