• Keine Ergebnisse gefunden

In view of the uniform a priori estimates of (u, J, V), we are able to extend the local classical solution globally in time and prove its exponential convergence to the stationary solution (C0,0,0).

Assume that for any givenT >0, there is a classical solution (u, J, V) of the IVP (4.1.11)-(4.1.12) satisfying the regularity conditions

(u, J, V)∈Su×SJ×SV, (4.2.1) where

Su:=H1(0, T;H5(Td))\

L2(0, T;, H6(Td)), SJ :=C([0, T], H4(Td))\

L2(0, T;, H5(Td)), SV :=C([0, T], H4(Td)).

Sobolev embedding theorem provides

H1(0, T;H5(Td)),→C([0, T], H5(Td)).

Assume that

δT := max

0≤t≤T

kukH5(Td)+kJkH4(Td)

. (4.2.2)

By the Sobolev embedding theorem

H5(Td)×H4(Td)×H4(Td)−→C3(Td)×C2(Td)×C2(Td),

it is easy to verify that if δT is sufficiently small, there are constants φ, φ+

such that

0< φ≤u+C0≤φ+.

In the following we assume that δT is sufficiently small such that the above estimate holds. And we will use C as a generic constant which may change from line to line and is not allowed to depend on timet∈[0, T].

Lemma 4.2.1. Given the multi-indexα satisfies0≤α≤4, then the following inequality holds

d

dtkJk2|α|+CkJk2|α|+1 ≤Ck(u, ut,∇u,4u)k2|α|. (4.2.3) Proof. Setting ˆu:=Dαu, ˆJ :=DαJ, one obtains the following equation

t−ν04Jˆ+1

τJˆ=DαG+T∇ˆu−Dα((u+C0)∇V)− 2

4∇4ˆu. (4.2.4) Take the inner product between (4.2.4) and ˆJ, and integrate by parts overTd:

1 2

d

dtkJˆk2+ 1

τkJkˆ 20k∇Jkˆ 2 (4.2.5)

=T(∇ˆu,J) +ˆ 2

4(4ˆu,div ˆJ) +L1+L2+L3, (4.2.6) here define

L1 : =−X

k,l

Z

Td

(∂kl)Dα

JlJk

u+C0

dx,

L2 : =−2 4

X

k,l

Z

Td

(∂kl)Dα

(∂ku)(∂lu) u+C0

dx,

L3 : =− Z

Td

J(Dˆ α((u+C0)∇V))dx.

Next we estimate the integrals L1, L2, L3. The constants in the following computations may change from one line to another, and can depend on the order of differentiation |α|, the space dimension dandδT, but are independent of the time T. Recall the embedding H|α|(Td) ⊂ L(Td), and We will make free use of the following Moser-type calculus inequalities [55, 61, 76]

kDα(f g)k ≤C(kfkLkDαgk+kDαfkkgkL), kDα(f g)−f Dαgk ≤C(kgkLkDαfk+kDα−1gkkfkL).

Then we conclude that

|L1| ≤X

k,l

k∂klkL2k(u+C0)−1JlJkkH|α|

≤Ck∇JˆkL2

X

k,l

k(u+C0)−1JlkLkJkkH|α|+k(u+C0)−1JlkH|α|kJkkL .

Since the following estimates hold Concerning the second integral, we have

|L2| ≤CX Similarly to the computations ofL1, we deduce

|L2| ≤Cσ2k∇Jk2H|α| +C(δ2T4T)

σ2 k∇uk2H|α|. (4.2.8) Concerning the third integral, we have

|L3| ≤ kJˆkL2k(u+C0)∇VkH|α| The itemsσi are arbitrarily selected positive numbers.

Recall (4.2.5), substitute (4.2.7), (4.2.8) and (4.2.9) into (4.2.5), then sum up for all derivatives whose order are less than |α|, we obtain (4.2.3), that completes the proof of lemma 4.2.

Next we estimate kukH|α|+2 in terms ofkJkH|α|

Lemma 4.2.2. We set Y(x, t) := Proof. From (4.1.10) ˆu satisfies the equation

ˆ

Taking the inner product between (4.2.11) and ˆu+ (τ + 1)ˆut, then integrating the resulting equation by parts overTd yields

d

then we obtain

Note that there exists a constantκ, such that SelectδT sufficiently small such that

min then there is a positive constantβ1, such that

d

which implies (4.2.10).

4.3 Global Existence and Exponential Decay

Now we are in a position to show the following

Theorem 4.3.1. Assume that (4.1.1) and (4.1.2) hold, Let(C0,0,0) be a sta-tionary solution of the initial-value problem (3.0.1) on a torus Td. Assum that the initial datum (u0, J0) ∈H6(Td)×H5(Td), then there is a number m1 >0 such that if

ku0k2H6(Td)+kJ0k2H5(Td)≤m1,

the (classical) solution (u, J, V) of (4.1.11)-(4.1.12)exists globally in time and satisfies

kuk2H5(Td)+kJk2H4(Td)+kVk2H4(Td)≤C

ku0k2H6(Td)+kJ0k2H5(Td)

e−c0t for all t≥0. Here,C >0 and c0 >0 are constants independent of time t.

Proof. lemma 4.2 yields

TkJk2|α|+1≤CδTk(u, ut,∇u,4u)k2|α|−CδT

d

dtkJk2|α|. (4.3.1) Substituting (4.3.1) into (4.2.10) yields

d

dt(Y +CδTkJk2|α|) +CY ≤CδTk(u, ut,∇u,4u)k2|α|. Choose δT sufficiently small such that

d

dt(Y +CδTkJk2|α|) +CY ≤0, (4.3.2) then add (4.3.1) and (4.3.2), we obtain

d

dt(Y +CδTkJk2|α|) +CY +CδTkJk2|α|+1 ≤CδTk(u, ut,∇u,4u)k2|α|,

=⇒d

dt(Y +CδTkJk2|α|) +CY +CδTkJk2|α|≤CδTk(u, ut,∇u,4u)k2|α|. Choosing δT sufficiently small, then there is a constant C such that

d

dt(Y +CδTkJk2|α|) +CY +CδTkJk2|α|≤0. (4.3.3) Via solving the differential inequality (3.2.74) we deduce

Y +CδTkJk2|α|≤(Y0+CδTkJ0k2|α|)e−β2t, (4.3.4)

hereY0:=Y(0, x), the initial value of Y. Recall (4.1.12) we infer

kut(0,·)k2|α|≤C(kJ0k2|α|+1+ku0k2|α|+2). (4.3.5) Hence (4.3.4) and (4.3.5) yield

kuk2|α|+2+kJk2|α|≤CδT(kJ0k2|α|+1+ku0k2|α|+2)e−β2t, (4.3.6) hereCδT depends upon δT. Thus

kn− C0k25+kJk24+kVk24 ≤C(kJ0k25+ku0k26)e−c0t, (4.3.7) the constantsC andc0 are independent oft. Integrate (4.2.12) from 0 toT we deduce

kuk2L2(0,T;H6(Td))+kuk2H1(0,T;H5(Td))

≤CδTkJk2L2(0,T;H5(Td))+CY(0)

(4.3.8) Integrate (4.2.3) from 0 toT we deduce

kJk2L2(0,T;H5(Td))≤C

kuk2L2(0,T;H6(Td))+kuk2H1(0,T;H5(Td))

+kJ0k2H4(Td).

(4.3.9) From (4.3.8) and (4.3.9) we obtain

kuk2L2(0,T;H6(Td))+kuk2H1(0,T;H5(Td))

≤CδT

kuk2L2(0,T;H6(Td))+kuk2H1(0,T;H5(Td))

+CδTkJ0k2H4(Td)+CY(0).

For sufficiently smallδT

kuk2L2(0,T;H6(Td))+kuk2H1(0,T;H5(Td))≤CδTkJ0k2H4(Td)+CY(0). (4.3.10) Go back to (4.3.9) we obtain

kJk2L2(0,T;H5(Td))≤CδTkJ0k2H4(Td)+CY(0) +kJ0k2H4(Td). (4.3.11) By Theorem 2.4 in [17] there exists a local-in-time solution (n, J, V) of the IVP (3.0.1). Assume the initial data (n0, J0, V0) is sufficiently close to (C0,0,0) then there exists a time interval [0, T] such that (3.0.1) admits a local solution (n, J, V) in [0, T] and δT is so small that (n− C0, J, V) in [0, T] satisfies (4.3.7), (4.3.10) and (4.3.11) whereT, δT is replaced by T, δT respectively.

Further choosing the initial data kJ0k25+ku0k26 so small that C(kJ0k25+ku0k26)< δT.

By Sobolev embedding theorem and (4.3.7) we conclude firstn >0 in [0, T]× Td; and second by the usual continuity argument (n, J, V) exists globally in time and satisfies (4.3.7).

Local Solutions to the

Non-Isothermal Viscous QHD

5.1 Introduction and the Main Result

Compared to the situation of constant temperature the non-isothermal system is on equations of n, J, V, ne which stands for particle density, the current density, the electrostatic potential and energy density respectively.

In this chapter we investigate the local existence of solutions to the following non-isothermal viscous model of QHD





































tn−divJ =ν04n,

tJ−div

J ⊗J n

− ∇(nT) +n∇V +2

2n∇

4√

√ n n

04J−J

τ +µ∇n,

t(ne)−div

((ne)Ed+P)J n

+J∇V =−2

τ(ne) + 3 τn +ν04(ne) +µdivJ, λ24V =n− C(x),

(5.1.1)

whereµ is the interaction constant; the (scaled) stress tensor P and the tem-peratureT satisfy





P =nT Ed2

4n(∇ ⊗ ∇) lnn, ne= |J|2

2n +3

2nT − 2

8n4lnn.

(5.1.2)

The (scaled) stress tensor consists of the classical pressure and a quantum

”pressure” term. The energy density is the sum of kinetic energy, thermal energy, and quantum energy.

115

The initial data and boundary conditions are

(n, J, ne)T(0) = (n0, J0,(ne)0), (5.1.3) (n, J, ne, V)T|∂Ω = (nΓ, JΓ,(ne)Γ, VΓ)T (5.1.4) with

x∈Ωinf n0(x)>0, n0 ∈H3(Ω), J0∈H2(Ω), (ne)0 ∈H2(Ω), (5.1.5) nΓ∈H5/2(Ω), JΓ∈H3/2(Ω),(ne)Γ ∈H3/2(Ω), , VΓ∈H3/2(Ω). (5.1.6) We also require the following compatibility conditions.

( (n0, J0,(ne)0)|∂Ω= (nΓ, JΓ,(ne)Γ), (ν04n0+ divJ0)|∂Ω= 0.

(5.1.7)

Furthermore the given data J0,∇(ne)0,∇n0, VΓ are supposed to be sufficiently small in

(H2(Ω))d×(L2(Ω))d×(H2(Ω))d×H3/2(Ω))

and C(x) is close to n0 inL2(Ω) norm, which means physically that the initial data of the current density, the spatial change of the initial data of the particle density and the energy density, the boundary function of the electrostatic po-tential are small; and the doping profile of background charges is close to the initial data of the particle density. Under these assumptions we conclude Theorem 5.1.1. There exist T >0, C>0 such that the system (5.1.1) with the initial data (5.1.3) and the boundary conditions (5.1.4) under the assump-tions (5.1.5), (5.1.6), (5.1.7) and

k∇n0kH2(Ω)+kJ0kH2(Ω)

+k∇(ne)0kL2(Ω)+kn0− C(x)kL2(Ω)+kVΓkH3/2(Ω)≤ C,

(5.1.8)

has a unique local-in-time solution (n, J, ne, V) in [0,T) with

n∈L(0,T;H3(Ω)), J ∈L(0,T;H2(Ω)),

tn∈L2(0,T;H2(Ω)), ∂tJ ∈L2(0,T;H1(Ω)), (n,∇n, J)∈C([0,T)×Ω),¯ ne∈L(0,T;H2(Ω)), V ∈C(0,T;H2(Ω)), ∂t(ne)∈L2(0,T;H1(Ω)),

tV ∈L2(0,T;H1(Ω)).

5.2 Proof of Theorem 5.1.1

We also study the equations for the perturbation (n−n0, J−J0,(ne)−(ne)0).

The main steps to derive a local solution to (5.1.1) are first to construct ap-proximate solutions, second to derive a uniform time interval and their uniform bounds, finally to analysis the limit of the approximate solutions. For uniform bounds we refer to the a-priori estimates of solutions to the isothermal equations in previous chapters.

hold. From (5.1.2), we have the representions of the (scaled) stress tensor P andnT:

After an equivalent reformulation of (5.1.1) we obtain the following system.

SetP := (Pn,PJ,Pne) := (n−n0, J−J0, ne−(ne)0), then from (5.2.1) we obtain the following IBVP with respect to P.

























tPn−ν04Pn−divPJ =F0,

tPJ −ν04PJ+PJ τ +2

6∇4Pn−µ∇Pn=Fd(Pn,PJ,Pne),

tPne−ν04Pne+ 2

τPne=F(Pn,PJ,Pne), λ24V =Pn+n0− C(x), P(0,·) = 0, P|∂Ω = 0, V|∂Ω =VΓ,

(5.2.2)

where

F0 :=ν04n0+ divJ0, Fd(Pn,PJ,Pne) := 2

3∇Pne+ 2

3∇(ne)0+ div

(PJ +J0)⊗(PJ+J0) Pn+n0

−(Pn+n0)∇V +2div

(∇p

Pn+n0)⊗(∇p

Pn+n0)

−1

3∇|PJ+J0|2 Pn+n02

12∇|∇(Pn+n0)|2 Pn+n004J0−1

τJ0+µ∇n02

6∇4n0, F(Pn,PJ,Pne) := div

PJ +J0 Pn+n0

(Pne+ (ne)0+P(Pn,PJ,Pne))

04(ne)0− 2

τ(ne)0+3

τ(Pn+n0) +µdiv(PJ+J0)

−(PJ +J0)∇V.

5.2.2 Construction of Approximate Solutions and their Uni-form Bounds

Fix ϕ1, ϕ2 >0 define

c: =p

kF(0,0,0)k212. (5.2.3) Lemma 5.2.1. Let T > 0, qne ∈ L(0, T;H01(Ω)), ∂tqne ∈ L(0, T;L2(Ω)), with

kqnekL(0,T;H01(Ω)) ≤c, k∂tqnekL(0,T;L2(Ω)) ≤c, (5.2.4)

then for any γ > 0 there exist T ∈ (0, T], Cµ,ν0,,τ > 0 depending only on µ, ν0, , τ; C, C0 >0 depending only upon C0 := max(A1,A2) with

A1 :=

v u u u u u t

µkF0k2+2

6k∇F0k2+kFd(0,0,0)k2

+γ min

µ,2

6,1

,

A2:=

v u u u t

µkF0k2+ 2

6k∇F0k2+kFd(0,0,0)k2

+γ Cµ,ν0,,τ

c, the initial data and all physical constants such that the IBVP

















tqn−ν04qn−divqJ04n0+divJ0,

tqJ−ν04qJ +qJ τ +2

6∇4qn−µ∇qn=Fd(qn, qJ, qne), λ24qv=qn+n0− C(x), (qn, qJ)(0,·) = 0, (qn, qJ)|∂Ω= 0, qv|∂Ω =VΓ,

(5.2.5)

has a unique local solution(qn, qJ, qv)T in [0,T) with

qn∈L(0,T;H3(Ω)), qJ ∈L(0,T;H2(Ω)),

tqn∈L2(0,T;H2(Ω)), ∂tqJ ∈L2(0,T;H1(Ω)), (qn,∇qn, qJ)∈C([0,T)×Ω),¯

qv ∈C(0,T;H2(Ω)),

tqv ∈L2(0,T;H1(Ω)), and the following estimates





















kqnkL(0,T;H3(Ω))≤C0, kqJkL(0,T;H2(Ω))≤C0, kqnkL(0,T;H2(Ω))≤C, kqJkL(0,T;H01(Ω))≤C, kqnkL(0,T;H01(Ω))≤C0, kqJkL(0,T;L2(Ω))≤C0, kq˙nkL(0,T;H01(Ω))≤C0, kq˙JkL(0,T;L2(Ω))≤C0, kq˙nkL2(0,T;H2(Ω))≤C0, kq˙JkL2(0,T;H01(Ω))≤C0,

(5.2.6)

and













[0,Tinf]inf

x∈Ω

(qn+n0)≥δ0, sup

[0,T]

max

k∇(qn+n0)kL(Ω),kqn+n0kL(Ω), kqJ +J0kL(Ω)

≤δ0−1,

(5.2.7)

hold, where δ0 is defined in (3.3.17).

Proof. This is a direct consequence by making minor modifications of the proof of Theorem3.3.1.

Additionally we have the following conclusion which is useful for the remainder of the proof.

Lemma 5.2.2. Let T >0, f1, f2, f3 be functions satisfying

f1 ∈L(0, T;H3(Ω))∩C([0, t0];C1(Ω))∩C([0, T];H2(Ω)), f2 ∈L(0, T;H2(Ω))∩C([0, T];C(Ω))∩C([0, T];H01(Ω)),

tf1 ∈L(0, T;H01(Ω))∩C([0, T];L2(Ω))∩L2(0, T;H2(Ω)),

tf2 ∈L(0, T;L2(Ω))∩C([0, T];L2(Ω))∩L2(0, T;H01(Ω)), f3 ∈L(0, T;H1(Ω)), ∂tf3 ∈L(0, T;L2(Ω)),

and

inf

[0,T]inf

x∈Ω

(f1+n0)>0, (f1, f2, f3)(0) = 0.

Then 









F(f1, f2, f3)∈L(0, T, L2(Ω)),

tF(f1, f2, f3)∈L2(0, T, H−1(Ω)), F(f1, f2, f3)(0,·)∈L2(Ω).

Proof. At first

F(f1, f2, f3) :=Y1+Y2+Y3+Y4, where

Y1 : = div

((f3+ (ne)0)Ed)f2+J0

f1+n0

, Y2 := div

P(f1, f2, f3)f2+J0

f1+n0

Y3 : =−(f2+J0)∇g,

Y4 : =ν04(ne)0−2τ−1(ne)0+ 3τ−1(f1+n0) +µdiv(f2+J0),

λ24g=f1+n0− C(x), g|∂Ω=VΓ.

From our assumptions it is easy to verify that Y1,Y4 ∈L(0, T, L2(Ω)) and

tY1, ∂tY4 ∈L2(0, T, H−1(Ω)).

The item P(f1, f2, f3) has the representation P(f1, f2, f3) =2

3(f3+ (ne)0)− |f2+J0|2 3(f1+n0) + 2

124(f1+n0)

2 12

|∇(f1+n0)|2 f1+n0

Ed2

4(∇ ⊗ ∇)(f1+n0) +2

4

∇(f1+n0)⊗ ∇(f1+n0) f1+n0 ,

from which we obtain kP(f1, f2, f3)kL(0,T;H1(Ω)) < ∞, which implies Y2 ∈ L(0, T, L2(Ω)).Furthermore it is easy to seek∂tP(f1, f2, f3)kL2(0,T;L2(Ω)) <∞ according to our assumptions. Then k∂tY2kL2(0,T;H−1(Ω))<∞.

Now it remains to estimateY3.

kY3kL(0,T;L2(Ω))≤Ckf2+J0kL(0,T;H1(Ω))kgkL(0,T;H2(Ω))

≤Ckf2+J0kL(0,T;H1(Ω))

kf1+n0− C(x)kL(0,T;L2(Ω))+kVΓkH3/2(Ω)

, thenY3∈L(0, T;L2(Ω)).Next for a.e. 0≤t≤T

k∂tY3kL2(Ω)≤Ck∂tf2kH1(Ω)kgkH2(Ω)+Ckf2+J0kH1(Ω)k∂tgkH2(Ω)

≤C

kf1+n0− C(x)kL(0,T;L2(Ω))+kVΓkH3/2(Ω)

k∂tf2kH1(Ω)

+Ck∂tf1kL(0,T;L2(Ω))kf2+J0kL(0,T;H1(Ω)). Obviously,∂tY3∈L2(0, T;H−1(Ω)).

LetT >0,q0ne= 0. Then it is trivial that

kq0nekL(0,T;H01(Ω))≤c, k∂tqne0 kL(0,T;L2(Ω))≤c.

By Lemma 5.2.1 there exists a time interval [0, t0) ⊆ [0, T) such that the system

















tqn0 −ν04qn0 −divq0J04n0+ divJ0,

tq0J−ν04q0J+ qJ0 τ +2

6∇4q0n−µ∇qn0 =Fd(q0n, qJ0, qne0 ), λ24qv0 =q0n+n0− C(x), (q0n, qJ0)(0,·) = 0, (qn0, q0J)|∂Ω= 0, q0v|∂Ω=VΓ,

(5.2.8)

admits a unique local-in-time solution (q0n, q0J, q0v) with

qn0 ∈L(0, t0;H3(Ω)), q0J ∈L(0, t0;H2(Ω)),

tqn0 ∈L2(0, t0;H2(Ω)), ∂tqJ0 ∈L2(0, t0;H1(Ω)), (q0n,∇q0n, qJ0)∈C([0, t0)×Ω),¯

qv0 ∈C(0, t0;H2(Ω)),

tqv0 ∈L2(0, t0;H1(Ω)),





















kq0nkL(0,t0;H3(Ω))≤C0, kqJ0kL(0,t0;H2(Ω))≤C0, kq0nkL(0,t0;H2(Ω))≤C, kqJ0kL(0,t0;H01(Ω))≤C, kq0nkL(0,t0;H10(Ω))≤C0, kq0JkL(0,t0;L2(Ω))≤C0, kq˙0nkL(0,t0;H10(Ω))≤C0, kq˙0JkL(0,t0;L2(Ω))≤C0, kq˙n0kL2(0,t0;H2(Ω))≤C0, kq˙0JkL2(0,t0;H01(Ω))≤C0,

(5.2.9)

and













inf

[0,t0]inf

x∈Ω

(q0n+n0)≥δ0, sup

[0,t0]

max

k∇(q0n+n0)kL(Ω),kqn0 +n0kL(Ω), kqJ0 +J0kL(Ω)

≤δ−10 .

(5.2.10)

Now we consider the third equation of (5.2.2). More precisely, we shall study the problem





tq1ne−ν04q1ne+2

τqne1 =F(q0n, q0J, qne0 ), q1ne(0,·) = 0, q1ne|∂Ω= 0.

(5.2.11) This BVP admits a unique solution q1ne with q1ne ∈ L(0, t0, H01(Ω)), ∂tq1ne ∈ L(0, t0, L2(Ω))∩L2(0, t0, H01(Ω)) provided









F(qn0, q0J, q0ne)∈L(0, t0, L2(Ω)),

tF(qn0, q0J, q0ne)∈L2(0, t0, H−1(Ω)), F(q0n, qJ0, qne0 )(0,·)∈L2(Ω).

(5.2.12)

Check that since (q0n, qJ0) satisfies (5.2.9) and it is obviously true thatF(q0n, q0J, q0ne) satisfies (5.2.12) from Lemma 5.2.12.

Letk≥1,tk−1>0. Assume

qnek ∈L(0, tk−1;H01(Ω)), ∂tqkne∈L(0, tk−1;L2(Ω))

with

kqnek kL(0,tk−1;H10(Ω))≤c, k∂tqnek kL(0,tk−1;L2(Ω))≤c, qnek (0) = 0. (5.2.13) Then by Lemma 5.2.1 there exists a time interval [0, tk)⊆[0, tk−1) such that the system

















tqnk−ν04qnk−divqkJ04n0+ divJ0,

tqJk −ν04qkJ+ qJk τ +2

6∇4qnk−µ∇qnk =Fd(qkn, qJk, qnek ), λ24qvk=qnk +n0− C(x), (qnk, qkJ)(0,·) = 0, (qkn, qJk)|∂Ω = 0,qkv|∂Ω=VΓ,

(5.2.14)

admits a unique local-in-time solution (qnk, qkJ, qkv) with

qkn∈L(0, tk;H3(Ω)), qkJ ∈L(0, tk;H2(Ω)),

tqkn∈L2(0, tk;H2(Ω)), ∂tqJk ∈L2(0, tk;H1(Ω)), (qkn,∇qnk, qkJ)∈C([0, tk)×Ω),¯

qkv ∈C(0, tk;H2(Ω)),

tqkv ∈L2(0, tk;H1(Ω)),

(5.2.15)





















kqknkL(0,tk;H3(Ω))≤C0, kqJkkL(0,tk;H2(Ω))≤C0, kqknkL(0,tk;H2(Ω))≤C, kqJkkL(0,tk;H01(Ω))≤C, kqknkL(0,tk;H01(Ω))≤C0, kqJkkL(0,tk;L2(Ω))≤C0, kq˙knkL(0,tk;H01(Ω))≤C0, kq˙JkkL(0,tk;L2(Ω))≤C0, kq˙nkkL2(0,tk;H2(Ω))≤C0, kq˙kJkL2(0,tk;H01(Ω))≤C0,

(5.2.16)

and













inf

[0,tk]inf

x∈Ω

(qnk +n0)≥δ0, sup

[0,tk]

max

k∇(qnk +n0)kL(Ω),kqkn+n0kL(Ω), kqkJ +J0kL(Ω)

≤δ0−1,

(5.2.17)

Next consider the problem





tqk+1ne −ν04qk+1ne + 2

τqnek+1=F(qkn, qJk, qnek ), qnek+1(0,·) = 0, qnek+1|∂Ω= 0.

(5.2.18)

This BVP admits a unique solutionqnek+1withqk+1ne ∈L(0, tk, H01(Ω)),∂tqk+1ne

It is easy to verify that (5.2.19) is satisfied fromLemma 5.2.2.

Using (5.2.11), we take the inner product with −4qnek+1 for a.e. t ∈ [0, tk]. by which we use H¨older’s inequality and Cauchy’s inequality then obtain

1

Using (5.2.13), (5.2.9) and (5.2.10)

F(qnk, qkJ, qkne) we will use the same notations, i.e., letCi, i= 1,2 denote the generic constants which may change from line to line.

Differentiate formally (5.2.11) with respect to 0≤t≤tk, then take theL2(Ω) (5.2.9) and (5.2.10) we estimate

kP(qnk, qkJ, qkne)kL4(Ω)≤C2.

Thus

kS2kL2(Ω) ≤C2kq˙kJkH1(Ω)+C2. (5.2.25)

• Estimates of S3. It is easy to verify that

kS3kL2(Ω)≤C2. (5.2.26)

• Estimates of S4.

kS4kL2(Ω) ≤δ0−2

P(q˙ kn, qJk, qnek ) L2(Ω). By (5.2.9) and (5.2.10) we obtain

kS4kL2(Ω)≤C2kq˙nkkH2(Ω)+C2. (5.2.27) Combining (5.2.23)-(5.2.27) we deduce

1

2∂tkq˙nek+1k20k∇q˙k+1ne k2+ 2

τkq˙nek+1k2

≤C2+C2kq˙knk2H2(Ω)+C2kq˙kJk2H1(Ω),

(5.2.28)

from which via integration from 0 to t∈(0, tk] we conclude from (5.2.9) kq˙nek+1kL(0,tk;L2(Ω))

≤q

kq˙nek+1(0)k2+C2tk+C2kq˙knk2L2(0,t

k;H2(Ω))+C2kq˙Jkk2L2(0,t

k;H1(Ω))

≤ q

kq˙nek+1(0)k2+C2tk+C2C02.

(5.2.29)

It is obvious that

˙

qk+1ne (0) =F(0,0,0),

then (5.2.29) yields that there exit C, tC > 0 independent of k such that if infx∈Ωn0 > δ0,tk ≤tC and

k∇n0kH2(Ω)+kJ0kH2(Ω)

+k∇(ne)0kL2(Ω)+γ+kn0− C(x)kL2(Ω)+kVΓkH3/2(Ω) ≤ C, (5.2.30) then after recalling (5.2.13)

kq˙k+1ne kL(0,tk;L2(Ω))≤p

kF(0,0,0)k212 =c, kqk+1ne kL(0,tk;H01(Ω))≤c.

(5.2.31)

Recursively using Lemma 5.2.1 once more we obtain [0, tk+1) which guarantees thatγ satisfying (5.2.30) and tk+1 ≤tC, and functions (qk+1n , qk+1J ) in [0, tk+1) satisfying

qk+1n ∈L(0, tk+1;H3(Ω)), qJk+1 ∈L(0, tk+1;H2(Ω)),

tqk+1n ∈L2(0, tk+1;H2(Ω)), ∂tqJk+1∈L2(0, tk+1;H1(Ω)), (qk+1n ,∇qk+1n , qJk+1)∈C([0, tk+1)×Ω),¯

qk+1v ∈C(0, tk+1;H2(Ω)),

tqk+1v ∈L2(0, tk+1;H1(Ω)),

























kqk+1n kL(0,tk+1;H3(Ω))≤C0, kqk+1J kL(0,tk+1;H2(Ω))≤C0, kqk+1n kL(0,tk+1;H2(Ω))≤C, kqk+1J kL(0,tk+1;H10(Ω))≤C, kqk+1n kL(0,tk+1;H01(Ω))≤C0, kqJk+1kL(0,tk+1;L2(Ω))≤C0, kq˙k+1n kL(0,tk+1;H01(Ω))≤C0, kq˙Jk+1kL(0,tk+1;L2(Ω))≤C0, kq˙k+1n kL2(0,tk+1;H2(Ω))≤C0, kq˙k+1J kL2(0,tk+1;H10(Ω))≤C0,

(5.2.32)

and













inf

[0,tk+1]inf

x∈Ω

(qnk+1+n0)≥δ0, sup

[0,tk+1]

max

k∇(qk+1n +n0)kL(Ω),kqk+1n +n0kL(Ω), kqJk+1+J0kL(Ω)

≤δ0−1.

(5.2.33)

In the next lemma we will show thattk tends not to zero ask→ ∞.

Lemma 5.2.3. There exits an in k uniform time interval [0, tu) with tu ≤tC

such that forγ satisfying (5.2.30)and all k= 0,1,· · ·

qkn∈L(0, tu;H3(Ω)), qkJ ∈L(0, tu;H2(Ω)),

tqkn∈L2(0, tu;H2(Ω)), ∂tqJk ∈L2(0, tu;H1(Ω)), (qkn,∇qnk, qkJ)∈C([0, tu)×Ω),¯ qnek ∈L(0, tu;H01(Ω)), qkv ∈C(0, tu;H2(Ω)), ∂tqnek ∈L(0, tu;L2(Ω)),

tqkv ∈L2(0, tu;H1(Ω)),





























kqknkL(0,tu;H3(Ω))≤C0, kqkJkL(0,tu;H2(Ω))≤C0, kqknkL(0,tu;H2(Ω))≤C, kqkJkL(0,tu;H01(Ω))≤C, kqknkL(0,tu;H01(Ω))≤C0, kqJkkL(0,tu;L2(Ω))≤C0, kq˙knkL(0,tu;H01(Ω))≤C0, kq˙JkkL(0,tu;L2(Ω))≤C0, kq˙knkL2(0,tu;H2(Ω))≤C0, kq˙kJkL2(0,tu;H01(Ω))≤C0, kqnek kL(0,tu;H01(Ω))≤c, kq˙knekL(0,tu;L2(Ω))≤c,

(5.2.34)

and













inf

[0,tu]inf

x∈Ω

(qnk+n0)≥δ0, sup

[0,tu]

max

k∇(qnk+n0)kL(Ω),kqkn+n0kL(Ω), kqkJ+J0kL(Ω)

≤δ0−1,

(5.2.35)

hold.

Proof. Using reduction to absurdity, assume there exists no such time interval, then for any sufficiently small [0, ts) withts≤tC we can find an earliest k∈N such that though qkne∈L(0, ts;H01(Ω)) and ∂tqkne∈L(0, ts;L2(Ω)) with

kqnek kL(0,ts;H01(Ω))≤c, k∂tqknekL(0,ts;L2(Ω))≤c, the system (5.2.14) has no slutions in [0, ts) satisfying

qnk ∈L(0, ts;H3(Ω)), qkJ ∈L(0, ts;H2(Ω)),

tqnk ∈L2(0, ts;H2(Ω)), ∂tqJk ∈L2(0, ts;H1(Ω)), (qkn,∇qkn, qkJ)∈C([0, ts)×Ω),¯

qkv∈C(0, ts;H2(Ω)),

tqkv∈L2(0, ts;H1(Ω)),





















kqknkL(0,ts;H3(Ω))≤C0, kqkJkL(0,ts;H2(Ω))≤C0, kqknkL(0,ts;H2(Ω))≤C, kqkJkL(0,ts;H01(Ω))≤C, kqknkL(0,ts;H01(Ω))≤C0, kqkJkL(0,ts;L2(Ω))≤C0, kq˙knkL(0,ts;H01(Ω))≤C0, kq˙kJkL(0,ts;L2(Ω))≤C0, kq˙knkL2(0,ts;H2(Ω))≤C0, kq˙JkkL2(0,ts;H01(Ω))≤C0,

(5.2.36)

and

Now we go back to the proof of Theorem3.3.1. In order to solve (5.2.14) with respect to (qnk, qkJ, qkv) we first construct approximate solutions{(qnk,l, qk,lJ , qk,lv )}l=1. From Lemma 3.3.2 and 3.3.3 we claim there existsCc >0 independent ofksuch that if ts ≤ Cc (in the sequal we will always use this assumption of ts), then

From this the local-in-time existence of solutions to (5.2.14) in [0, ts) can be obtained where the solution satisfies (5.2.36) and (5.2.37).

Recall our premise that the system (5.2.14) has no slutions satisfying (5.2.36) and (5.2.37) in [0, ts), there must be an earliestlsuch that (qk,ln , qJk,l, qvk,l) violate (5.2.36) or (5.2.38). From the proof of Theorem 3.3.1 there exists tγ > 0 independent of k such that if ts ≤ tγ (in the sequal we will always use this assumption ofts) and (qnk,l−1, qJk,l−1) satisfies (5.2.36) and

kqJk,l(t1,·)−qJk,l(t2,·)kC(Ω)

≤2(2−β)/2CβCinterk∂tqJk,lkβ/2L(0,tk;L2(Ω))kqk,lJ k(2−β)/2L(0,tk;H2(Ω))|t1−t2|β/2

≤2(2−β)/2CβCinterC0β/2(C0+M)(2−β)/2|t1−t2|β/2. By a similar reasoning

k∇qk,ln (t1,·)− ∇qk,ln (t2,·)kC(Ω)

≤2(2−β)/2CβCinterk∇∂tqnk,lkβ/2L(0,tk;L2(Ω))kqk,ln k(2−β)/2L(0,tk;H3(Ω))|t1−t2|β/2

≤2(2−β)/2CβCinterC0β/2(C0+M)(2−β)/2|t1−t2|β/2.

Sincetsis sufficiently small then from the interpolations mentioned above, that (qnk,l, qJk,l) violate (5.2.38) produces a contradiction.

Remark 5.2.1. Recall (5.2.18),

kqnek+1kL(0,tu;H2(Ω))≤C k∂tqk+1ne kL(0,tu;L2(Ω))+kF(qkn, qkJ, qkne)kL(0,tu;L2(Ω))

. Integrate (5.2.28)from 0 to tu then recall (5.2.29) we infer

k∂tqk+1ne kL2(0,tu;H1(Ω))

≤q

kq˙k+1ne (0)k2+C2tk+C2kq˙nkk2L2(0,t

k;H2(Ω))+C2kq˙kJk2L2(0,t

k;H1(Ω))

≤q

kq˙k+1ne (0)k2+C2tk+C2C02.

From (5.2.18), (5.2.23), (5.2.29), (5.2.34) and (5.2.35) we conclude that there exists C˜independent of k such that for all k= 0,1,· · ·

kqnek kL(0,tu;H2(Ω))+k∂tqknekL2(0,tu;H1(Ω))≤C.˜ (5.2.40) 5.2.3 Analysis of the Limit of the Approximate Solutions After having obtained the uniform bounds we deduce the following

Lemma 5.2.4. There exits C > 0 independent of k such that if tu ≤ C, {qnek }k=0 is a Cauchy sequence inL(0, tu;L2(Ω). Namely there exists aqne∈ L(0, tu;L2(Ω) such thatqkne converges to qne in L(0, tu;L2(Ω).

Proof. Since (qnk, qkJ) solves

















tqkn−ν04qkn−divqJk04n0+ divJ0,

tqkJ −ν04qkJ+qkJ τ +2

6∇4qkn−µ∇qkn=Fd(qnk, qkJ, qkne), λ24qkv =qkn+n0− C(x), (qkn, qkJ)(0,·) = 0,(qnk, qkJ)|∂Ω= 0,qvk|∂Ω=VΓ,

(5.2.41)

and (qk−1n , qJk−1) solves

















tqk−1n −ν04qnk−1−divqk−1J04n0+ divJ0,

tqk−1J −ν04qk−1J +qk−1J τ + 2

6∇4qnk−1−µ∇qk−1n =Fd(qnk−1, qk−1J , qnek−1), λ24qk−1v =qk−1n +n0− C(x), (qnk−1, qk−1J )(0,·) = 0,(qk−1n , qJk−1)|∂Ω= 0,qvk−1|∂Ω =VΓ.

(5.2.42) (5.2.41)-(5.2.42) yields













t(qk−qk−1)T +A(∂x)(qk−qk−1)T = 0,Fd(qk, qnek )−Fd(qk−1, qnek−1)T

, λ24(qvk−qk−1v ) =qkn−qnk−1,

(qk−qk−1)T(0,·) = 0, (qk−qk−1, qkv−qk−1v )T|∂Ω = 0,

(5.2.43) whereqi:= (qin, qJi)T, i=k, k−1,

A(∂x) :=

−ν04 −div

−µ∇+ 2

6∇4 −ν04+τ−1

. By a similar calculations as (3.3.28)-(3.3.33) we find

1 2∂t

µkqnk−qnk−1k2+2

6k∇(qnk −qk−1n )k2+kqkJ−qk−1J k2

0µk∇(qnk−qk−1n )k2+2

0k4(qkn−qnk−1)k20k∇(qJk −qk−1J )k2+1

τkqkJ−qJk−1k2

=(Fd(qk, qkne)−Fd(qk−1, qk−1ne ), qkJ−qJk−1).

By H¨older’s inequality and Cauchy’s inequlity we obtain

t

µkqkn−qnk−1k2+2

6k∇(qnk−qk−1n )k2+kqkJ−qJk−1k2

+C k∇(qnk−qnk−1)k2+k4(qnk −qk−1n )k2 +k∇(qkJ−qk−1J )k2+kqkJ−qJk−1k2

≤CkFd(qk, qkne)−Fd(qk−1, qk−1ne )k2H−1(Ω).

(5.2.44)

Using (5.2.9), (5.2.10) we calculate similarly as (3.3.121)-(3.3.126) to obtain for a.e. t∈[0, t0)

kFd(qk, qkne)−Fd(qk−1, qk−1ne )k2H−1(Ω)

≤C

kqkn−qk−1n k2H1(Ω)+kqkJ−qk−1J k2L2(Ω)+kqkne−qk−1ne k2L2(Ω)

.

(5.2.45) Then we have

kqnk −qk−1n k2L(0,tu;H01(Ω))+kqJk −qk−1J k2L(0,tu;L2(Ω))

≤Ctu

kqkn−qk−1n k2L(0,tu;H10(Ω))+kqJk −qJk−1k2L(0,tu;L2(Ω))

+kqkne−qk−1ne k2L(0,tu;L2(Ω))

.

Assume [0, tu) is sufficiently small such thatCtu <1, then kqkn−qk−1n k2L(0,tv;H01(Ω))+kqkJ−qJk−1k2L(0,tu;L2(Ω))

≤ Ctu

1−Ctukqkne−qk−1ne k2L(0,tu;L2(Ω)).

(5.2.46)

Integrate (5.2.44) from 0 to tu we obtain

kqnk −qk−1n k2L2(0,tu;H2(Ω))+kqkJ−qk−1J k2L2(0,tu;H1(Ω))

≤Ctu

kqkn−qk−1n k2L(0,tu;H10(Ω))+kqJk −qJk−1k2L(0,tu;L2(Ω))

+kqkne−qk−1ne k2L(0,tu;L2(Ω))

. Together with (5.2.46) we conclude

kqnk−qk−1n k2L2(0,tu;H2(Ω))+kqkJ−qk−1J k2L2(0,tu;H1(Ω))

≤ Ctu 1−Ctu

kqnek −qk−1ne k2L(0,tu;L2(Ω)).

(5.2.47)

From (5.2.11) we find









t(qk+1ne −qkne)−ν04(qk+1ne −qkne) + 2

τ(qnek+1−qkne)

=F(qnk, qkJ, qkne)−F(qk−1n , qJk−1, qk−1ne ), (qnek+1−qkne)(0,·) = 0,(qk+1ne −qkne)|∂Ω = 0.

Taking the inner product withqnek+1−qknefor a.e. t∈[0, tu) yields

t

1

2kqk+1ne −qknek20k∇(qk+1ne −qkne)k2+ 2

τkqnek+1−qknek2

≤ kF(qkn, qJk, qnek )−F(qnk−1, qk−1J , qk−1ne )kH−1(Ω)kqk+1ne −qnek kH1 0(Ω).

Cauchy’s inequality provides By a similar reasoning as (3.3.122)-(3.3.123):

Further, from which we infer

kK1kL2(Ω)≤ Recall (5.2.50) we obtain

kK2kL2(Ω) ≤C

It remains to estimate

Jk∇qkv−Jk−1∇qk−1v

L2(Ω). We first have the reformu-lation:

Jk∇qvk−Jk−1∇qvk−1 =Jk∇4kV +∇qk−1v 4kJ.

Since4kV is the unique solution of

λ244kV =4kn, 4kV|∂Ω= 0,

(5.2.52) thenk4kVkH2(Ω) ≤Ck4knkL2(Ω). Thus

Jk∇qkv−Jk−1∇qk−1v

L2(Ω)≤C

k4kJkH1(Ω)+k4knkL2(Ω)

. (5.2.53) Recalling (5.2.48), combining (5.2.49), (5.2.51) and (5.2.53) we obtain

tkqk+1ne −qknek2+Ckqk+1ne −qknek2H1 0(Ω)

≤C

k4knek2L2(Ω)+k4kJk2H1(Ω)+k4knk2H2(Ω)

.

(5.2.54)

Integrating (5.2.54) from 0 to anyt∈[0, tu) yields k(qk+1ne −qnek )(t,·)k2

≤Ctuk4knek2L(0,tu;L2(Ω))+C

k4kJk2L2(0,tu;H1(Ω))+k4knk2L2(0,tu;H2(Ω))

. From (5.2.47) we decuce

kqnek+1−qknek2L(0,tu;L2(Ω))

Ctu+ Ctu

1−Ctu

k4knek2L(0,tu;L2(Ω)), which implies{qkne}k=0 is a Cauchy sequence in L(0, tu;L2(Ω)) assuming

Ctu+ Ctu 1−Ctu

<1, thus there existsqne∈L(0, tu;L2(Ω)) such that

qnek −→qne inL(0, tu;L2(Ω)).

Now we are in a position to study the convergence behavior of the sequence {(qkn, qkJ, qkv, qnek )}k=0. Select 0 < T < min (tu,C). Since the embeddings H3(Ω),→H2(Ω),H2(Ω),→H1(Ω) are compact,{(qkn, qJk, qnek )}k=0are bounded inL(0,T;H3(Ω)×(H2(Ω))d+1) and {(∂tqkn, ∂tqJk, ∂tqnek )}k=0 are bounded in L2(0,T;H1(Ω)×(L2(Ω))d+1) from Lemma 5.2.3 and Remark 5.2.1, then Aubin’s Lemma (Corollary 4 in [72]) yields{qkn}k=0,{qkJ}k=0 and {qkne}k=0 are relatively compact inC([0,T], H2(Ω)),C([0,T]; (H1(Ω))d) andC([0,T];H1(Ω)) respectively, i.e., there is a subsequence of (qnk, qkJ, qkne) and functions (Pn,PJ, V,Pne) which satisfy (maybe after extracting a subsequence)

(qkn, qkJ)→(Pn,PJ) inC([0,T];H2(Ω)×(H1(Ω))d), (5.2.55)

(qvk, qkne)→(V,Pne) in C([0,T];H2(Ω))×C([0,T];H1(Ω)). (5.2.56) Furthermore we also obtain





























tqkn* ∂tPn in L2(0,T;H2(Ω)),

tqkJ * ∂tPJ in L2(0,T;H1(Ω)),

tqkne* ∂tPne in L2(0,T;H1(Ω)), qkn* Pn in L(0,T;H3(Ω)), qkJ * PJ in L(0,T;H2(Ω)), qkne* Pne in L(0,T;H2(Ω)).

(5.2.57)

Fix now 0 < γ < 1

2 and any t ∈ (0,T) we deduce the interpolation (after extracting a subsequence)

kqkn− PnkH3−γ(Ω)≤Cinkqnk− Pnk(3−γ)/3H3(Ω) kqkn− Pnkγ/3L2(Ω), then byLemma 5.2.3

kqkn− PnkH3−γ(Ω)≤Cin2(3−γ)/3C0(3−γ)/3kqnk − Pnkγ/3L2(Ω). (5.2.58) Similarly

kqJk − PJkH2−γ(Ω) ≤Cin2(2−γ)/2C0(2−γ)/2kqJk − PJkγ/2L2(Ω), (5.2.59) kqkne− PnekH2−γ(Ω) ≤Cin2(2−γ)/2(2−γ)/2kqkne− Pnekγ/2L2(Ω). (5.2.60) By Sobolev embedding theorem we deduce

(qnk,∇qkn, qJk, qnek )→(Pn,∇Pn,PJ,Pne) in C([0,T]×Ω). (5.2.61) Notice that the functions (Pn,PJ, V,Pne) depend upon the selection of the subsequence.

Then we can find a subsequence {(qnk

j, qkJ

j, qkv

j, qnek

j)}j=0 ⊆ {(qnk, qkJ, qkv, qkne)}k=0 such that there are functions (Pan,PaJ, Va,Pane) and Pbne with (qkn

j, qkJ

j, qvk

j, qnek

j) converges to (Pan,PaJ, Va,Pane) in the sense of (5.2.55)-(5.2.61) asj→ ∞;qkne

j+1

converges to Pbne in the sense of (5.2.55) and (5.2.61) as j → ∞. Then from Lemma 5.2.4Pane coincides withPbne.

We consider the system

According to (5.2.61)-(5.2.57) it is easy to verify that

Furthermore we have the calculus ZZ

Using (5.2.61)-(5.2.57) we obtain the convergence ZZ

converges to ZZ

Q

∇ϕ

∇(Pan+n0)⊗ ∇(Pan+n0) Pan+n0

PaJ +J0 PaJ+n0

dxdt, asj→ ∞, which implies

ZZ

Q

ϕF(qnkj, qJkj, qknej)dxdt−→

ZZ

Q

ϕF(Pan,PaJ,Pane)dxdt, as j→ ∞.

Thus we conclude (Pan,PaJ, Va,Pane) is the solution we seek.

5.2.4 Uniqueness

Let (n1, J1, V1,(ne)1) and (n2, J2, V2,(ne)2) be two solutions of (5.1.1)-(5.1.4).

Put

n4 =n1−n2, J4=J1−J2, V4 =V1−V2, (ne)4 = (ne)1−(ne)2, then we obtain the system

































tn4−ν04n4= divJ4,

tJ4−ν04J4+1

τJ4−µ∇n4+2

6∇4n4=4Fd,

t(ne)4−ν04(ne)4+ 2

τ(ne)4=4F, λ24V4=n4,

(n4, J4, V4,(ne)4)(t, x) = 0 on [0,T)×∂Ω, (n4, J4,(ne)4)(0, x) = 0,

where

4Fd : =Fd(n1, J1,(ne)1)− Fd(n2, J2,(ne)2), 4F : =F(n1, J1,(ne)1)− F(n2, J2,(ne)2).

Similarly as (5.2.44) we obtain for a.e. t∈[0,T] 1

2∂t

µkn4k2+2

6k∇n4k2+kJ4k2

0T0k∇n4k2 +2

0k4n4k20k∇J4k2+1 τkJ4k2

=(4Fd, J4)≤ k4FdkH−1(Ω)kJ4kH1 0(Ω).

Using Young’s inequality 1

2∂t

µkn4k2+2

6k∇n4k2+kJ4k2 +C

ν0T0k∇n4k2 +2

0k4n4k20k∇J4k2+ 1

τkJ4k2

≤Ck4Fdk2L(0,T;H−1(Ω)),

(5.2.62)

which implies

kn4k2L(0,T;H01(Ω))+kJ4k2L(0,T;L2(Ω))≤CTk4Fdk2L(0,T;H−1(Ω)). (5.2.63) We go back to the proof of Lemma5.2.4. According to (5.2.45) we deduce for a.e. t∈[0,T]

k4Fdk2H−1(Ω)≤C

kn4k2H1(Ω)+kJ4k2L2(Ω)+k(ne)4k2L2(Ω)

. (5.2.64) Integrate (5.2.62) from 0 to t∈[0,T) then we infer

kn4k2L(0,T;H01(Ω))+kJ4k2L(0,T;L2(Ω))

≤ CT

1−CTk(ne)4k2L(0,T;L2(Ω)),

(5.2.65)

which implies

kn4k2L2(0,T;H2(Ω))+kJ4k2L2(0,T;H1(Ω))

≤ CT 1−CT

k(ne)4k2L(0,T;L2(Ω)).

(5.2.66)

Next we have

t1

2k(ne)4k20k∇((ne)4)k2+ 2

τk(ne)4k2

≤ k4FkH−1(Ω)k(ne)4kH1 0(Ω).

(5.2.67)

By a similar reasoning as (5.2.49)-(5.2.53) we obtain for a.e. t∈[0,T) k4Fk2H−1(Ω)≤C

kn4k2H2(Ω)+kJ4k2H1(Ω)+k(ne)4k2L2(Ω)

. (5.2.68) Integrate (5.2.67) from 0 to anyt∈[0,T) we see

k(ne)4k2L(0,T;L2(Ω))

≤CTk(ne)4k2L(0,T;L2(Ω))

+C

kn4k2L2(0,T;H2(Ω))+kJ4k2L2(0,T;H1(Ω))

.

(5.2.69)

Finally let us substitute (5.2.66) into (5.2.69), then we conclude k(ne)4k2L(0,T;L2(Ω))

CT+ CT

1−CT

k(ne)4k2L(0,T;L2(Ω)). SinceT ≤tu,

CT+ CT

1−CT <1,

from which it follows (ne)4 ≡0.Furthermore from (5.2.66) we have n4≡J4 ≡0.

Thus we have completed the proof of the uniqueness of local solutions.

Calculus Facts

A.1 Gauss-Green Theorem

Let Ω⊂Rn be open and bounded, and ∂Ω isC1.

• Gauss-Green Theorem Supposeu∈H1(Ω). Then

Z

uxidx= Z

∂Ω

idS (i= 1,· · ·, n).

• Integration-by-parts formula Letu, v∈H1(Ω). Then

Z

uxivdx=− Z

uvxidx+ Z

∂Ω

uvνidS (i= 1,· · ·, n).

• Green’s formulasLet u, v∈H2(Ω). Then 1.

Z

4udx= Z

∂Ω

∂u

∂νdS, 2.

Z

∇u· ∇vdx=− Z

u4vdx+ Z

∂Ω

u∂v

∂νdS, 3.

Z

(u4v−v4u)dx= Z

∂Ω

u∂v

∂ν −v∂u

∂ν

dS.

A.2 Convolution

We introduce tools which provide smooth approximations to given functions.

Let Ω⊂Rn be open, write Ωε:={x∈Ω|dist(x, ∂Ω)> ε}.

143

Definition A.2.1. Define η∈C(Rn) by

η(x) :=



 Cexp

1

|x|2−1

if |x|<1, 0 if |x| ≥1, the constant C >0 is selected such that R

Rnηdx= 1.For each ε >0, set ηε(x) := 1

εnηx ε

.

We call η the standard mollifier. Obviously, the functionsηε(x) are inC(Rn) and satisfy

Z

Rn

ηε(x)dx= 1, suppηε⊂B(0, ε), where B(0, ε) is a closed ball with center 0, radius ε.

Definition A.2.2. Iff : Ω→Ris locally integrable, we define its mollification fε:=ηε∗f in Ωε,

where

ηε∗f = Z

ηε(x−y)f(y)dy= Z

B(0,ε)

ηε(y)f(x−y)dy for x∈Ωε. Theorem A.2.1. (Properties of mollifiers)

1. fε∈C(Ωε).

2. fε→f a.e. asε→0.

3. Iff ∈C(Ω), then fε→f uniformly on compact subsets of Ω.

4. If1≤p <∞ andf ∈Lploc(Ω), then fε→f in Lploc(Ω).

5. Iff ∈C(Ω), then fε→f uniformly on Ω.

Convergence and Compactness

Theorem B.0.2. Any bounded set in a reflexive Banach space is weakly com-pact, i.e., any sequence in a bounded set has a weakly converging subsequence.

Theorem B.0.3. Any bounded set in Lp(Ω) with 1 < p ≤ ∞ is weakly star compact.

Theorem B.0.4. (J.P. Aubin [12])

Let T >0, X, B, Y be Banach spaces with continuous embeddingsX ⊂B ⊂Y, the first embedding being compact. Then we have

1. Let 1 ≤p≤ ∞, F be a bounded set of Lp(0, T;X) and be precompact in Lp(0, T;Y), then F is precompact in Lp(0, T;B).

2. Let 1 ≤p < ∞, F be a bounded set of Lp(0, T;X), ∂tF:={∂tf | f ∈F} be bounded inL1(0, T;Y). Then F is precompact in Lp(0, T;B).

3. Let F be bounded of L(0, T;X), ∂tF be bounded in Lr(0, T;Y) where r >1. Then F is precompact in C([0, T];B).

Theorem B.0.5. (almost everywhere Point-wise Convergence)

1. Suppose that Ω is a bounded or unbounded domain in Rn, uk(x), u(x) are real functions in Lp(Ω),(1≤p ≤ ∞) such that uk converges to u in Lp(Ω). Then if 1≤p <∞, uk has a subsequence a.e. converging to u; if p=∞, then uk itself converges to u a.e. inΩ.

2. Suppose that Ω is a bounded domain in Rn, {uk(x)}k=1 is a bounded sequence in Lp(Ω),(1 ≤p < ∞) such that uk converges to a function u a.e. inΩ. Then u also belongs toLp(Ω), and uk converges weakly tou in Lp(Ω). If p = ∞, the conclusion becomes that uk converges to u weakly star in L(Ω).

145

Definition B.0.3. A Banach space B is called uniformly conves if for any φ, ϕ ∈ B, ε > 0 such that kφk = kϕk = 1, kφ−ϕk ≥ ε, then there exists a constant δ >0 depending only upon εand kφ+ϕk ≤2(1−δ)<2.

Remark B.0.1. A Hilbert space is uniformly convex. A uniformly convex Banach space is reflexive. If 1 < p < ∞, then Lp(Ω) is uniformly convex.

Lp(Ω) is reflexive if and only if 1< p <∞. Thus in Lp(Ω) Reflexivity⇔Uniform Convexity⇔1< p <∞.

Theorem B.0.6. Let B be a uniformly convex Banach space. Suppose that uk, u ∈ B, kukk → kuk, and uk converges weakly to u. Then uk converges strongly to u, i.e., kuk−uk →0 as k→ ∞.

Theorem B.0.7. Suppose 1 < p ≤ ∞, B is a Banach space, B is the dual space of B, and

(uk*u in Lp(0, T;B), u0k*u0 in Lp(0, T;B), then uk(0)* u(0) in B.

Furthermore suppose 1 < p <∞, B is a reflexive Banach space. Then the weakly star convergence above is equivalent to the weak convergence.

Inequalities

• Young’s inequalities. Let a,b and ε be positive numbers andp, q ≥1, 1

p +1

q = 1.Then

ab≤ εpap p + bq

q.

• H¨older’s inequality. Let 1≤p1,· · ·, pm ≤ ∞, with Pm j=1

1 pj

= 1, and assumeuk ∈Lpk(Ω) fork= 1,· · ·, m. Then

Z

|u1· · ·um|dx≤

m

Y

k=1

kuikLpk(Ω).

• Gronwall’s inequality

1. Suppose that a, b are nonnegative constants T > 0, and u(t) is a nonnegative integrable function. Suppose the inequality

u(t)≤a+b Z t

0

u(s)ds holds fort∈[0, T]. Then for 0≤t≤T,

u(t)≤aebt.

2. Lety(·) be a nonnegative, absolutely continuous function on [0, T], which satisfies for a.e. t∈[0, T] the differential inequality

y0(t)≤φ(t)y(t) +ψ(t),

whereφ(t) and ψ(t) are nonnegative, summable functions on [0, T].

Then

y(t)≤e

Rt 0φ(s)ds

y(0) +

Z t

0

ψ(s)ds

.

147

• Interpolation inequalities.

1. Assume 1 ≤ s ≤ r ≤ t ≤ ∞ and 1 r = γ

s + 1−γ

t for γ ∈ [0,1].

Suppose alsou∈Ls(Ω)∩Lt(Ω),thenu∈Lr(Ω),and kukLr(Ω)≤ kukγLs(Ω)kuk1−γLt(Ω).

2. Suppose Ω ⊂ Rn satisfies the cone condition and 0 ≤ j ≤ m,1 ≤ p < ∞, u ∈ Wpm(Ω). Then there exists K > 0 depending only on n, m, p,Ω such that

kukWpj(Ω)≤Kkukj/mWm

p (Ω)kuk(m−j)/mLp(Ω) . (C.0.1) 3. Suppose Ω⊂Rnsatisfies the cone condition and m≥0,1≤p <∞, u ∈Wpm(Ω). Ifmp > n, let q ∈[p,∞]; if mp=n, let q ∈[p,∞); if mp < n,let q ∈[p,n−mpnp ]. Then there existsK >0 depending only on n, m, p, q,Ω such that

kukLq(Ω)≤KkukθWm

p (Ω)kuk1−θLp(Ω) withθ= mpnmqn .

4. Suppose Ω ⊂ Rn satisfies the cone condition, p > 1, mp > n, u ∈ Wpm(Ω). Suppose either 1≤q ≤p orq > p and mp−p < n. Then there existsK >0 depending only on n, m, p, q,Ω such that

kukL(Ω)≤KkukθWm

p (Ω)kuk1−θLq(Ω).

[1] R.A. Adams. Sobolev Spaces.Academic Press,New York, 1975.

[2] S. Agmon, On the eigenfunctions and on the eigenvalues of general ellip-tic boundary boundary problems, Comm. Pure Appl. Math. 25, 119-147 (1962).

[3] S. Agmon. On kernels, eigenvalues, and eigenfunctions of operators re-lated to elliptic boundary problems,Comm. Pure Appl. Math.18, 627-663 (1965).

[4] S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundary for solutions of ellipic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math.12, 623-727, 1959.

[5] S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundary for solutions of ellipic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math., 35-89, 1964.

[6] M. S. Agranovich. Non-self-adjoint problems with a parameter that are elliptic in the sense of AgmonDouglis Nirenberg. Funct. Anal. Appl. 24, 50-53 (1990).

[7] M. S. Agranovich, R. Denk and M. Faierman. Weakly smooth nonselfad-joint spectral elliptic boundary problems. Math.Top.14, 138-199 (1997).

[8] M. S. Agranovich and M. I. Vishik, Elliptic problems with a parameter and parabolic problems of general form, Russ.Math.Surveys 19, 53-157(1964) [9] M. G.Ancona and G. J.Iafrate. Quantum correction to the equation of state of an electron gas in a semiconductor.Phys. Rev. B 39, 9536-9540 (1989).

[10] A. Arnold, J. A. Carrillo, and E. Dhamo. On the periodic Wigner-Possion-Fokker-Planck system.J. Math. Anal. Appl.275, 263-276 (2002).

[11] A. Arnold, J. L. L´opez, P. Markowich, and J. Soler. An analysis of quantum Fokker-Planck models: a Wigner function approach. Preprint, TU Berlin, Germanny, 2000.

149

[12] J. P. Aubin, Un th´eor`eme de compacit´e,C.R. Acad. Sc. Paris,256, 5012-5014(1963).

[13] A. A. Balandin and K. L. Wang. Handbook of Semiconductor Nanos-tructures and Nanodevices (5-Volume Set).American Scientific Publishers (2006).

[14] J. Carrillo, A. J¨ungel, P. Markowich, G. Toscani, and A. Unterreiter. En-tropy dissipation methods for degenerate parabolic problems and general-ized Sobolev inequalities.Monatsh. Math.,133(1), 1-82 (2001).

[15] F. Castella, L. Erd¨os, F. Frommlet and P. Markowich. Fokker-Planck equa-tions as scaling limits of reversible quantum systems. J. Stat. Phys. 100, 543-601 (2000)

[16] C.Cercignani. The Boltzmann equation and its applications.Applied Math-ematical Sciences,Vol.67.Springer-Verlag,Berlin (1988).

[17] L. Chen and M. Dreher. The viscous model of quantum hydrodynamics in several dimensions.Math.Mod.Meth. Appl.Sci.17, 1065-1093 (2007).

[18] L. Chen and Q. Ju. Existence of weak solution and semiclassical limit for quantum drift-diffusion model.ZAMP, 2006.

[19] L. Chen and A. J¨ungel. Analysis of a parabolic cross-diffusion semicon-ductor model with electron-hole scattering.Commun. Part. Diff. Eqs.32, 127-148 (2007).

[20] H. Chihara. Global existence of small solutions to semilinear Schr¨odinger equations. Commun. Partial Differ. Equations,21(1-2), 63-78 (1996).

[21] P. Degond, F. M´ehats, and C. Ringhofer. Quantum energy-transport and drift-diffusion models.J. Stat. Phys.118, 625-665 (2005).

[22] R. Denk, M. Faierman and M.M¨oller. An elliptic boundary problem for a system involving a discontinuous weight.Math.108, 289-317 (2002).

[23] R. Denk, R. Mennicken and L. Volevich. The Newton polygon and elliptic problems with parameter.Math. Nachr.192, 125-157 (1998).

[24] R. Denk, R. Mennicken and L. Volevich. Boundary value problems for a class of elliptic operator pencils.Integral Equations Operator Theory 38, 410-436 (2000).

[25] R. Denk, R. Mennicken and L. Volevich. On elliptic operator pencils with general boundary conditions. Integral Equations Operator Theory 39, 15-40 (2001).

[26] R. Denk and L. Volevich. A priori estimate for a singularly perturbed mixed order boundary value problem. Russian J. Math. Phys.7, 288-318 (2000).

[27] R. Denk and L. Volevich. The Newton polygon approach for boundary value problems with general boundary conditions. Spectral and Evolution-ary Problems 10, 115-121 (2000).

[28] R. Denk and L. Volevich. Parameter-elliptic boundary value problems and their formal asymptotic solutions. Oper. Theory Adv. Appl. 126, 103-111 (2001).

[29] R. Denk and L. Volevich. Parameter-elliptic boundary value problems con-nected with the Newton polygon. Differential Integral Equations 15, 289-326 (2002).

[30] R. Denk and L. Volevich. Boundary value problems for elliptic mixed order systems with parameter. Spectral and Evolutional Problems 11, 188-200 (2002).

[31] M. Dreher. Necessary conditions for the well-posedness of Schr¨odinger type equations in Gevrey spaces. Bull. Sci. Math.,127(6), 485-503 (2003).

[32] M. Dreher. The transient equations of quantum hydrodynamics. Math.

Meth.Appl.Sci.31, 391-414 (2008).

[33] L. C. Evans. Partial Differential Equations.AMS. 1998.

[34] M. Faierman. Eigenvalue asymptotics for a boundary problem involving an elliptic system. Math.Nachr.279, No. 11, 1159-1184 (2006).

[35] G. Fichera. Linear elliptic differential systems and eigenvalue problems.

Lecture Notes in Mathematics.8.Springer-Verlag, 1965.

[36] I. Fukuda and M. Tsutsumi. On solutions of the derivative nonlinear Schr¨oodinger equation. Existence and uniqueness theorem. Funkc.

[36] I. Fukuda and M. Tsutsumi. On solutions of the derivative nonlinear Schr¨oodinger equation. Existence and uniqueness theorem. Funkc.