• Keine Ergebnisse gefunden

2 RATIONALE AND AIMS OF THE STUDY

5.4 Possible functional significance of the structural aberrations in TNR deficient mice

Behavioural analyses have revealed that adult TNR-deficient mice have motor deficits and that their neocortex is hyperexcitable. The results of this study show that TNR deficiency leads to aberration in subpopulations of inhibitory neurons in a region- and age-specific fashion. Reduced numbers of calretinin-positive interneurons at adult age might contribute, in an as to yet unknown way, to the dysbalance between excitation and inhibition in the hippocampus and neocortex of TNR deficient mice. The alterations in the size of the parvalbumin- and calretinin-positive interneuron populations in older age might be consequences of functional and structural deficits in these neuronal ensembles already present during adulthood but not detectable with the methods applied here. Future studies combining structural and functional analyses of the same animals may provide valuable new insight into pathophysiological mechanisms underlying brain dysfunctions.

6 SUMMARY

Tenascin-R (TNR) is an extracellular matrix glycoprotein belonging to the tenascin family of proteins. It is expressed by oligodendrocytes, interneurons and motoneurons in the central nervous system. In the adult mouse brain, TNR is found accumulated in perineuronal nets around motoneurons and interneurons and at nodes of Ranvier of myelinated axons. TNR is been implicated in cell adhesion, neurite outgrowth, modulation of ion channels and receptor functions, synaptic plasticity and learning. Constitutive ablation of TNR in mice causes behavioural and physiological abnormalities and impairment of motor coordination.

The morphological substrates of the deficits remain largely unknown.

The aim of this study was to analyse quantitatively neuronal and glial cell populations in the motor and sensory cortices of TNR-deficient mice. Densities and numbers per cortical column (cortical tissue under a unit of cortical surface) of immunohistochemically identified major cell types (neurons, neuronal subpopulations, astrocytes, oligodendrocytes and microglia) were stereologically assessed in TNR-deficient mice (TNR-/-) and wild-type (TNR+/+) littermates studied at ages of 5 and 18 months, i.e. adult and old age, respectively.

No differences between TNR-/- and TNR+/+ mice at both ages were found for cortical thickness, numbers of all cells and all neurons as well as for oligodendrocytes, astrocytes and microglial cells in both cortical areas. TNR deficiency had an cortical region-specific and age-related impact on the size of subpopulations of interneurons. Calretinin-positive interneurons were already significantly lower in numbers in adult TNR-/- mice compared to wild-type littermates (loss of about –20% in both cortical areas). Calbindin-positive interneuron numbers were normal in adult but reduced in old TNR-/- mice (-23%

and -29% compared to TNR+/+ mice in the motor and sensory cortex, respectively). Finally, age-related loss of parvalbumin-positive interneurons observed in TNR+/+ mice was found to be attenuated in the motor but not the sensory cortex of old TNR-/- animals.

Comparisons of old and adult mice revealed age-related but genotype-independent loss of excitatory neurons, inhibitory parvalbumin-positive

cortical thickness in the motor area of the neocortex. The magnitude of these age-related changes was between 18% and 44% compared with adult mice.

Interestingly, the sensory cortex was less severely affected by aging compared to the motor area in animals of both genotypes: small reduction in the numbers of all neurons (-10% in both genotype groups) and a moderate decrease in the numbers of parvalbumin-positive interneurons (-20% and –31% in TNR+/+ and TNR-/- mice, respectively).

The results of this study show that constitutive ablation of TNR does not influence the formation and maintenance throughout life of excitatory neuronal and glial cell populations in the neocortex. Affected by the mutation are subpopulation of interneurons with different functional characteristics and connectivity which may contribute to the previously observed functional deficits in the TNR deficient mouse. Ageing, independent of genotype, appears to influence the motor cortex more than the sensory cortical area. The finding of different degrees of neuronal loss in different neocortical areas is compatible with the differential age-related decline in different cognitive, motor and sensory functions.

7 REFERENCES

Adams I, Brauer K, Arelin C, Hartig W, Fine A, Mader M, Arendt T, Brückner G (2001) Perineuronal nets in the rhesus monkey and human basal forebrain including basal ganglia.

Neuroscience 108: 285-298.

Andersen BB, Gundersen HJ, Pakkenberg B (2003) Aging of the human cerebellum: a stereological study. J Comp Neurol 466: 356-365.

Bartsch U, Pesheva P, Raff M, Schachner M (1993) Expression of janusin (J1-160/180) in the retina ans optic nerve of the developing and adould mouse. Glia 9:57-69

Brennecke F, Schachner M, Elger CE, Lie AA (2004) Up-regulation of the extracellular matrix glycoprotein tenascin-R during axonal reorganization and astrogliosis in the adult rat hippocampus. Epilepsi research 58(2-3):133-43

Brennecke F, Bukalo O, Dityatev A, Lie AA (2004) Mice deficient for the extracellular matrix glycoprotein tenascin-R show physiological and structural hallmarks of increased

hippocampal exitability, but no increased susceptibility to seizure in the pilocarpine model of epilepsy. Neurosci 124(4):841-55

Brückner G, Grosche J, Hartlage-Rubsamen M, Schmidt S, Schachner M (2003) Region and lamina-specific distribution of extracellular matrix proteoglycans, hyaluronan and tenascin-R in the mouse hippocampal formation. J Chem Neuroanat 26: 37-50.

Brückner G, Grosche J, Schmidt S, Hartig W, Margolis RU, Delpech B, Seidenbecher CI, Czaniera R, Schachner M (2000) Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J Comp Neurol 428: 616-629.

Brückner G, Szeoke S, Pavlica S, Grosche J, Kacza J (2006) Axon initial segment ensheathed by extracellular matrix in perineuronal nets. Neuroscience 138: 365-375.

Carnemolla B, Leprini R, Borsi L, Querze G, Urbini S, Zardi L (1996) Human tenascin-R: complete primary structure, pre-mRNA alternative splicing and gene localization on chromosome 1g23-g24. J Biol Chem 271:8157-8160

Carulli D, Rhodes KE, Brown DJ, Bonnert TP, Pollack SJ, Oliver K, Strata P, Fawcett JW (2006) Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J Comp Neurol 494: 559-577.

Coggeshall RE, Lekan HA (1996) Methods of Determining Nubers of Cells and Synapses: A Case for More Uniform Standards of Review. The Journal of Comparative Neurology 364:6-15 Dayer AG, Cleaver KM, Abouantoun T, Cameron HA (2005) New GABAergic interneurons in the

adult neocortex and striatum are generated from different precursors. J Cell Biol 168: 427.

Erickson HP (1993) Tenascin-C, tenascin-R and tenascin-X: a family of talented proteins in search of functions. Curr Opin Cell Biol 5:869-876

Erickson HP (1997) A tenascin knockout with phenotype. Nature Genet 17:5-7

Freitag S, Schachner M, Morelli F (2003) Behavioral alterations in mice deficient for the extracellular matrix glycoprotein tenascin-R. Behavioural Brain Research 145:189-207

Fukuda T, Kosaka T (2000) The dual network of GABAergic interneurons linked by both chemical and electrical synapses: a possible infrastructure of the cerebral cortex. Neurosci Res 38:123-130

Fuss B, Wintergerst ES, Bartsch U, Schachner M (1993) Molecular characterization ans in situ messenger RNA localisation of the neural recognition molecule J1-160/180 – a modular structure similar to tenascin. J Cell Biol 120:1237-1249

Galarreta M, Hestrin S (2002) Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc Natl Acad Sci USA 12443

Garman RH (1990) Artifacts in routinely immersion fixed nervous tissue. Toxicol Pathol 18:149-153 Gundersen HJ (1986) Sterology of arbitrary particles. A review of unbiased number and size

estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 147 (Pt):3-45

Gurevicius K, Gureviciene I, Valjakka A, Schachner M, Tanila H (2004) Enhanced cortical and hippocampal neuronal excitability in mice deficient in the extracellular matrix glycoprotein tenascin-R. Molecular and Cellular Neurosci 25(3):515-23

Hof PR, Morrison JH (2004) The aging brain: morphomolecular senescence of cortical circuits.

Trends Neurosci 27: 607-613.

Irintchev A, Rosenblatt JD, Cullen MJ, Zweyer M, Wernig A (1998) Ectopic skeletal muscles derived from myoblasts implanted under the skin. J Cell Sci 111:3287-3297

Irintchev A, Salvini TF, Faissner A, Wernig A (1993) Differential expression of tenascin after denervation, damage or paralysis of mouse soleus muscle. J Neurocytol 22-955-965 Irintchev A, Zeschnigk M, Starzinski-Powitz A, Wernig A (1994) Expression pattern of M-cadherin

in normal, denervated, and regernerating mouse muscles. Dev Dyn 199:326-337

Jiao Y, Sun Z, Lee T, Fusco FR, Kimble TD, Meade CA, Cuthbertson S, Reiner A (1990) A simple and sensitive antigen retrieval method for free-floating and slide-mounted tissue sections. J Neurosci 93:149-162

Jones FS, Jones PL (1999) The Tenascin Family of ECM Glycoproteins: Structure, Function, and Regulation During Embryonic Development and Tissue Remodeling. Development Dynamincs 218:235-259

Lei DL, Long JM, Hengemihle J, O'Neill J, Manaye KF, Ingram DK, Mouton PR (2003) Effects of estrogen and raloxifene on neuroglia number and morphology in the hippocampus of aged female mice. Neuroscience 121: 659-666.

Leprini A, Gherzi R, Siri A, Querze G, Viti F, Zardi L (1996) The human tenascin-R gene. J Biol Chem 271:31251-31254

Lochter A, Schachner M (1993) Tenascin and extracellular matrix glycoproteins: from promotion to polarization of neurite outgrowth in vitro. J Neurosci 13:3986-4000

Long JM, Mouton PR, Jucker M, Ingram DK (1999) What counts in brain aging? Design-based tereological analysis of cell number. J Gerontol A Biol Sci Med Sci 54: B407-B417.

Montag-Sallaz M, Montag D (2003) Severe cognitive and motor coordination deficits in tenascin-R- deficient mice. Genes, Brain and Behavior 2(1):20-31

Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278: 412-419.

Mouton PR, Long JM, Lei DL, Howard V, Jucker M, Calhoun ME, Ingram DK (2002) Age and ender effects on microglia and astrocyte numbers in brains of mice. Brain Res 956: 30-35.

Murakami T, Ohtsuka A (2003) Perisynaptic barrier of proteoglycans in the mature brain and spinal ord. Arch Histol Cytol 66: 195-207.

Nikonenko A, Schmidt S, Skibo G, Brückner G, Schachner M (2003) Tenascin-R-deficient mice show structural alterations of symmetric perisomatic synapses in the CA1 region of the hippocampus. The Journal of Comparative Neurology 456:338-349

Packard MG, Knowlton BJ (2002) Learning and memory functions of the Basal Ganglia. Annu Rev Neurosci 25:563-93. Epub;%2002 Mar 27.: 563-593.

Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age.

J Comp Neurol 384: 312-320.

Pesheva P, Gennarini G, Goridis C, Schachner M (1993) The F3/F11 cell adhesion molecule mediates the repulsion of neurons by the extracellular matrix glycoprotein J1-160/180.

Neuron 10:69-82

Pesheva P, Gloor S, Schachner M, Probstmeier R (1997) Tenascin-R is an intrinsic autocrine factor for oligodendrocyte differentiation and promotes cell adhesion by a

sulfatide.mediated mechanism. J Neurosci 17:4642-4651

Saghatelyan A, Gorissen S, Albert M, Hertlein B, Schachner M, Dityatev A (2000) The extracellular matrix molecule tenascin-R and its HNK-1 carbohydrate modulate perisomatic inhibition and longterm potentiation in the CA1 region of the hippocampus. Eur J Neurosci 12(9):3331-42

Saghatelyan A, de Chevigny A, Schachner M, Lledo PM (2004) Tenascin-R mediates activity- dependent recruitment of neuroblasts in the adult mouse forebrain. Nature Neurosci

Schachner M, Taylor J, Bartsch U, Pesheva P (1994) The perplexing multifunctionality of janusin, a tenascin-related molecule. Perspect Dev Neurobiol 2:33-41

Sofroniew MV, Schrell U (1982) Long-term storage and regular repeated use of diluted antisera in glass staining jars for increased sensitivity, reproducibility, and convenience of single- and two-color light microscopic immunocytochemistry. J Histochem Cytochem 30:504-511 Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike

timing in the hippocampus. J Physiol 562: 91-116.

Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72: 295-339.

Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14: 685-692.

Teramoto T, Qiu J, Plumier JC, Moskowitz MA (2003) EGF amplifies the replacement of parvalbumin-expressing striatal interneurons after ischemia. J Clin Invest 111: 1125-1132.

Weber P, Bartsch U, Rasband MN, Czaniera R, Lang Y, Bluethmann H, Margolis RU, Levinon SR, Shrager P, Montag D, Schachner M (1999) Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS. J Neurosci 19(11):4245-4262

Wegner,F., Hartig,W., Bringmann,A., Grosche,J., Wohlfarth,K., Zuschratter,W. & Brückner,G.

(2003) Diffuse perineuronal nets and modified pyramidal cells immunoreactive for

Wintergerst ES, Fuss B, Bartsch U (1993) Localization of janusin mRNA in the central nervous system of the developing and adult mouse. Eur J Neurosci 5: 299-310.

Xiao ZC, Bartsch U, Margolis RK, Rougon G, Monatg D, Schachner M (1997) Isolation of the tenascin-R binding protein from mouse brain membranes. A phosphacan-related chondroitin sulfate proteoglycan. J Biol Chem272(51):32092-101

Xiao ZC, Revest JM, Laeng P, Rougon G, Schachner M, Montag D (1998) Defasciculation of neurites is mediated by tenascin-R and its neuronal receptor F3/11. J Neurosci Res 52(4):390-404

Yamanaka H, Yanagawa Y, Obata K (2004) Development of stellate and basket cells and their apoptosis in mouse cerebellar cortex. Neurosci Res 50: 13-22.

Zhou FM, Wilson CJ, Dani JA (2002) Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol 53: 590-605.

8 ABBREVATIONS

Ab Antibodies

AEPs Auditory evoked potentials

CA Cornu ammon

CaCl2 Calcium chloride

CHL1 Close homologue of L1

cm centimetres

cm² Square centrimetres

cm³ Cubic centrimetres

CNPase 2’, 3’-Cyclic Nucleotide 3’-Phosphodiesterase

CNS Central nervous system

ECM Extracellular matrix

EEG Electroenzephalogramm

e.g. example given

g gramm

GABA Gamma amino bytric acid

gt genotype

Hz Hertz

i.e. id est (that is)

Ig Immunglobulin

kD kilodalton

KO Knockout

l litre

LTP Long term potentiation

M Motor cortex

M molar

m metre

mm milimetre (Metre x 10-3) ml mililitre (Litre x 10-3)

mo month

ms milisecond (Second x 10-3) NaOH Sodium hydroxide solution

NaN3 Sodium azide

NeuN Neuron specific nuclear antigen

nm nanometres

PBS Phosphate Buffered Saline

pH p(otential) of H(ydrogen), the logarithm of the reciprocal of hydrogen-ion concentration in gram atoms per litre PNS Peripheral nervous system

PPI Prepulse inhibition

PSA Poly sialic acid

PV Parvalbumin

RT Room temperature

S Second

S Sensory Cortex

WT wildtype

w/v weight per volumn

ZMNH Zentrum für Molekulare Neurobiologie Hamburg

% Percent

µ Micro (10-6)

µg Microgramm (gramm x 10-6) µl Microlitre (Litre x 10-6)

°C Grad Celsius

9 ACKNOWLEDGEMENT/DANKSAGUNG

Die Arbeit wurde am Institut für Biosynthese neuraler Strukturen am Zentrum für molekulare Neurobiologie Hamburg (ZMNH) angefertigt. Bedanken möchte ich mich bei Frau Prof. Dr. Melitta Schachner, die diese Arbeit, als Doktormutter und Direktorin des Institutes, möglich gemacht hat.

Besonders bedanken möchte ich mich bei meinem Betreuer Herrn Dr. Andrey Irintchev, der mir jederzeit für Fragen aller Art zur Verfügung stand und keine Mühe scheute, mir bei dieser Arbeit in jeglicher Hinsicht zu helfen.

Ebenfalls möchte ich mich herzlich bei Frau Emanuela Szpotowicz für das Schneiden und Färben des Mausgewebes bedanken.

Mein besonderer Dank gilt auch Herrn Dr. Gheorghe Tonndorf, der mir helfend zur Seite stand und mich in vielerlei Hinsicht motiviert hat.

Nicht zu vergessen, möchte ich mich bei meinen Eltern Herrn Frank Salis und Frau Anita Salis und bei meiner Schwester Malinde Salis bedanken, die mich über die gesamte Zeit mit Interesse begleitet haben.

10 CURRICULUM VITAE

Personal Data

Family Name Salis

First Name Nadine

Date of Birth 09.07.1977

Place of Birth Hamburg, Germany

Nationality German

Confession Protestant

Education

1984-1988 Grundschule Egenbüttel, Rellingen, Germany

1988-1997 Wolfgang-Borchert-Gymnasium, Halstenbek, Germany 1997-2000 Apprenticeship in foreign trade

Nordmann, Rassmann GmbH & Co., Hamburg, Germany

2000-2006 Regular student of medicine Universität Hamburg, Germany