• Keine Ergebnisse gefunden

POMP-expression in malignant and non-malignant cells

VIII.2 The proteasome maturation factor POMP – a challenging protein 127

VIII.2.4 POMP-expression in malignant and non-malignant cells

Transformed and highly proliferating cells have higher amounts of proteasomes than quiescent and non-transformed cells. It was furthermore suggested that abnormally high expression of proteasomes could play an important role in transformation and proliferation of blood cells. In fact, increased proteasome levels have been described in diverse malignant haematopoietic cells and human cancers (230,277). It could be shown in this study that POMP mRNA levels were increased in most investigated cell lines, as compared to those of PBMC. Primary non-transformed leukocyte subsets from healthy donors revealed no evident pattern of increased POMP-expression. It can thus be concluded that augmented proteasome expression in transformed cells is accompanied by increased POMP-expression. To date, proteasome inhibitors

as Bortezomib are already successfully used for treatment of patients with multiple myeloma who have received at least two prior therapies (218).

IX R EFERENCES

1 Gasque, P. 2004. Complement: a unique innate immune sensor for danger signals. Mol Immunol 41:1089-98.

2 Ahearn, J. M. and Fearon, D. T. 1989. Structure and function of the complement receptors, CR1 (CD35) and CR2 (CD21). Adv Immunol 46:183-219.

3 Tsoukas, C. D. and Lambris, J. D. 1993. Expression of EBV/C3d receptors on T cells:

biological significance. Immunol Today 14:56-9.

4 Moore, M. D., Cooper, N. R., Tack, B. F., and Nemerow, G. R. 1987. Molecular cloning of the cDNA encoding the Epstein-Barr virus/C3d receptor (complement receptor 2) of human B lymphocytes. Proc Natl Acad Sci U S A 84:9194-9198.

5 Weis, J. J., Toothaker, L. E., Smith, J. A., Weis, J. H., and Fearon, D. T. 1988. Structure of the human B lymphocyte receptor for C3d and the Epstein-Barr virus and relatedness to other members of the family of C3/C4 binding proteins. J. Exp. Med. 168:1953-4.

6 Iida, K., Nadler, L., and Nussenzweig, V. 1983. Identification of the membrane receptor for the complement fragment C3d by means of a monoclonal antibody. J Exp Med 158:1021-33.

7 Weis, J. J., Tedder, T. F., and Fearon, D. T. 1984. Identification of a 145,000 Mr membrane protein as the C3d receptor (CR2) of human B lymphocytes. Proc Natl Acad Sci U S A 81:881-5.

8 Tedder, T. F., Clement, L. T., and Cooper, M. D. 1984. Expression of C3d receptors during human B cell differentiation: immunofluorescence analysis with the HB-5 monoclonal antibody. J Immunol 133:678-83.

9 Reynes, M., Aubert, J. P., Cohen, J. H., Audouin, J., Tricottet, V., Diebold, J., and Kazatchkine, M. D. 1985. Human follicular dendritic cells express CR1, CR2, and CR3 complement receptor antigens. J Immunol 135:2687-94.

10 Delibrias, C. C., Mouhoub, A., Fischer, E., and Kazatchkine, M. D. 1994. CR1(CD35) and CR2(CD21) complement C3 receptors are expressed on normal human thymocytes and mediate infection of thymocytes with opsonized human immunodeficiency virus.

Eur. J. Immunol. 24:2784-8.

11 Fischer, E., Delibrias, C., and Kazatchkine, M. D. 1991. Expression of CR2 (the C3dg/EBV receptor, CD21) on normal human peripheral blood T lymphocytes. J Immunol 146:865-9.

12 Fingeroth, J. D., Diamond, M. E., Sage, D. R., Hayman, J., and Yates, J. L. 1999.

CD21-Dependent infection of an epithelial cell line, 293, by Epstein-Barr virus. J Virol 73:2115-25.

13 Gasque, P., Chan, P., Mauger, C., Schouft, M. T., Singhrao, S., Dierich, M. P., Morgan, B. P., and Fontaine, M. 1996. Identification and characterization of complement C3 receptors on human astrocytes. J. Immunol. 156:2247-2255.

14 Andrasfalvy, M., Prechl, J., Hardy, T., Erdei, A., and Bajtay, Z. 2002. Mucosal type mast cells express complement receptor type 2 (CD21). Immunol Lett 82:29-34.

15 Bacon, K., Gauchat, J. F., Aubry, J. P., Pochon, S., Graber, P., Henchoz, S., and Bonnefoy, J. Y. 1993. CD21 expressed on basophilic cells is involved in histamine release triggered by CD23 and anti-CD21 antibodies. Eur. J. Immunol. 23:2721-4.

16 Schwab, J. and Illges, H. 2001. Regulation of CD21 expression by DNA methylation and histone deacetylation. Int Immunol 13:705-10.

17 Schwab, J. and Illges, H. 2001. Silencing of CD21 expression in synovial lymphocytes is independent of methylation of the CD21 promoter CpG island. Rheumatol Int 20:133-7.

18 Gorelik, L., Cutler, A. H., Thill, G., Miklasz, S. D., Shea, D. E., Ambrose, C., Bixler, S.

A., Su, L., Scott, M. L., and Kalled, S. L. 2004. Cutting edge: BAFF regulates CD21/35 and CD23 expression independent of its B cell survival function. J Immunol 172:762-6.

19 Tedder, T. F., Haas, K. M., and Poe, J. C. 2002. CD19-CD21 complex regulates an intrinsic Src family kinase amplification loop that links innate immunity with B-lymphocyte intracellular calcium responses. Biochem Soc Trans 30:807-11.

20 Fischer, E. M., Mouhoub, A., Maillet, F., Fremeaux-Bacchi, V., Krief, C., Gould, H., Berrih-Aknin, S., and Kazatchkine, M. D. 1999. Expression of CD21 is developmentally regulated during thymic maturation of human T lymphocytes. Int Immunol 11:1841-9.

21 Carroll, M. C. 2004. The complement system in B cell regulation. Mol Immunol 41:141-6.

22 Rickert, R. C. 2005. Regulation of B lymphocyte activation by complement C3 and the B cell coreceptor complex. Curr Opin Immunol 17:237-43.

23 Bradbury, L. E., Goldmacher, V. S., and Tedder, T. F. 1993. The CD19 signal transduction complex of B lymphocytes. Deletion of the CD19 cytoplasmic domain alters signal transduction but not complex formation with TAPA-1 and Leu 13. J Immunol 151:2915-27.

24 Bradbury, L. E., Kansas, G. S., Levy, S., Evans, R. L., and Tedder, T. F. 1992. The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol 149:2841-50.

25 Matsumoto, A. K., Kopicky-Burd, J., Carter, R. H., Tuveson, D. A., Tedder, T. F., and Fearon, D. T. 1991. Intersection of the complement and immune systems: a signal transduction complex of the B lymphocyte-containing complement receptor type 2 and CD19. J Exp Med 173:55-64.

26 Smith, R. A., Young, J., Weis, J. J., and Weis, J. H. 2006. Expression of the mouse fragilis gene products in immune cells and association with receptor signaling complexes. Genes Immun.

27 Carter, R. H. and Fearon, D. T. 1992. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256:105-7.

28 Dempsey, P. W., Allison, M. E., Akkaraju, S., Goodnow, C. C., and Fearon, D. T. 1996.

C3d of complement as a molecular adjuvant: bridging innate and acquired immunity.

Science 271:348-50.

29 Lee, Y., Haas, K. M., Gor, D. O., Ding, X., Karp, D. R., Greenspan, N. S., Poe, J. C., and Tedder, T. F. 2005. Complement Component C3d-Antigen Complexes Can Either Augment or Inhibit B Lymphocyte Activation and Humoral Immunity in Mice Depending on the Degree of CD21/CD19 Complex Engagement. J Immunol 175:8011-23.

30 Cherukuri, A., Cheng, P. C., Sohn, H. W., and Pierce, S. K. 2001. The CD19/CD21 complex functions to prolong B cell antigen receptor signaling from lipid rafts. Immunity 14:169-79.

31 Fearon, D. T. and Carroll, M. C. 2000. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol 18:393-422.

32 Nemerow, G. R., McNaughton, M. E., and Cooper, N. R. 1985. Monoclonal antibody to the Epstein-Barr virus receptor induces human B lymphocyte activation and differentiation. Trans Assoc Am Physicians 98:290-300.

33 Wilson, B. S., Platt, J. L., and Kay, N. E. 1985. Monoclonal antibodies to the 140,000 mol wt glycoprotein of B lymphocyte membranes (CR2 receptor) initiates proliferation of B cells in vitro. Blood 66:824-9.

34 Carter, R. H., Spycher, M. O., Ng, Y. C., Hoffman, R., and Fearon, D. T. 1988.

Synergistic interaction between complement receptor type 2 and membrane IgM on B lymphocytes. J Immunol 141:457-63.

35 Fingeroth, J. D., Heath, M. E., and Ambrosino, D. M. 1989. Proliferation of resting B cells is modulated by CR2 and CR1. Immunol Lett 21:291-301.

36 Kozono, Y., Duke, R. C., Schleicher, M. S., and Holers, V. M. 1995. Co-ligation of mouse complement receptors 1 and 2 with surface IgM rescues splenic B cells and WEHI-231 cells from anti-surface IgM- induced apoptosis. Eur J Immunol 25:1013-7.

37 Roberts, T. and Snow, E. C. 1999. Cutting edge: recruitment of the CD19/CD21 coreceptor to B cell antigen receptor is required for antigen-mediated expression of Bcl-2 by resting and cycling hen egg lysozyme transgenic B cells. J Immunol 16Bcl-2:4377-80.

38 Cherukuri, A., Shoham, T., Sohn, H. W., Levy, S., Brooks, S., Carter, R., and Pierce, S.

K. 2004. The tetraspanin CD81 is necessary for partitioning of coligated CD19/CD21-B cell antigen receptor complexes into signaling-active lipid rafts. J Immunol 172:370-80.

39 Ahearn, J. M., Fischer, M. B., Croix, D., Goerg, S., Ma, M., Xia, J., Zhou, X., Howard, R.

G., Rothstein, T. L., and Carroll, M. C. 1996. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen.

Immunity 4:251-62.

40 Molina, H., Holers, V. M., Li, B., Fung, Y., Mariathasan, S., Goellner, J., Strauss-Schoenberger, J., Karr, R. W., and Chaplin, D. D. 1996. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc Natl Acad Sci U S A 93:3357-61.

41 Croix, D. A., Ahearn, J. M., Rosengard, A. M., Han, S., Kelsoe, G., Ma, M., and Carroll, M. C. 1996. Antibody response to a T-dependent antigen requires B cell expression of complement receptors. J Exp Med 183:1857-64.

42 Cherukuri, A., Cheng, P. C., and Pierce, S. K. 2001. The role of the CD19/CD21 complex in B cell processing and presentation of complement-tagged antigens. J Immunol 167:163-72.

43 Lanzavecchia, A., Abrignani, S., Scheidegger, D., Obrist, R., Dorken, B., and Moldenhauer, G. 1988. Antibodies as antigens. The use of mouse monoclonal antibodies to focus human T cells against selected targets. J Exp Med 167:345-52.

44 Lindhout, E., Mevissen, M. L., Kwekkeboom, J., Tager, J. M., and de Groot, C. 1993.

Direct evidence that human follicular dendritic cells (FDC) rescue germinal centre B

45 Liu, Y. J., Joshua, D. E., Williams, G. T., Smith, C. A., Gordon, J., and MacLennan, I. C.

1989. Mechanism of antigen-driven selection in germinal centres. Nature 342:929-31.

46 Apel, M. and Berek, C. 1990. Somatic mutations in antibodies expressed by germinal centre B cells early after primary immunization. Int Immunol 2:813-9.

47 Nie, X., Basu, S., and Cerny, J. 1997. Immunization with immune complex alters the repertoire of antigen- reactive B cells in the germinal centers. Eur J Immunol 27:3517-25.

48 Fu, Y. X., Molina, H., Matsumoto, M., Huang, G., Min, J., and Chaplin, D. D. 1997.

Lymphotoxin-alpha (LTalpha) supports development of splenic follicular structure that is required for IgG responses. J Exp Med 185:2111-20.

49 Wu, J., Qin, D., Burton, G. F., Szakal, A. K., and Tew, J. G. 1996. Follicular dendritic cell-derived antigen and accessory activity in initiation of memory IgG responses in vitro. J Immunol 157:3404-11.

50 Song, H., Nie, X., Basu, S., and Cerny, J. 1998. Antibody feedback and somatic mutation in B cells: regulation of mutation by immune complexes with IgG antibody.

Immunol Rev 162:211-8.

51 Fujimoto, M., Poe, J. C., Jansen, P. J., Sato, S., and Tedder, T. F. 1999. CD19 amplifies B lymphocyte signal transduction by regulating Src-family protein tyrosine kinase activation. J Immunol 162:7088-94.

52 Fujimoto, M., Fujimoto, Y., Poe, J. C., Jansen, P. J., Lowell, C. A., DeFranco, A. L., and Tedder, T. F. 2000. CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification. Immunity 13:47-57.

53 Weng, W. K., Jarvis, L., and LeBien, T. W. 1994. Signaling through CD19 activates Vav/mitogen-activated protein kinase pathway and induces formation of a CD19/Vav/phosphatidylinositol 3-kinase complex in human B cell precursors. J Biol Chem 269:32514-21.

54 Fujimoto, M., Poe, J. C., Hasegawa, M., and Tedder, T. F. 2001. CD19 Amplification of B Lymphocyte Ca2+ Responses. A ROLE FOR Lyn SEQUESTRATION IN EXTINGUISHING NEGATIVE REGULATION. J Biol Chem 276:44820-7.

55 Inabe, K. and Kurosaki, T. 2002. Tyrosine phosphorylation of B-cell adaptor for phosphoinositide 3-kinase is required for Akt activation in response to CD19 engagement. Blood 99:584-9.

56 Otero, D. C., Omori, S. A., and Rickert, R. C. 2001. Cd19-dependent activation of Akt kinase in B-lymphocytes. J Biol Chem 276:1474-8.

57 Sato, S., Miller, A. S., Howard, M. C., and Tedder, T. F. 1997. Regulation of B lymphocyte development and activation by the CD19/CD21/CD81/Leu 13 complex requires the cytoplasmic domain of CD19. J Immunol 159:3278-87.

58 Barel, M., Balbo, M., Le Romancer, M., and Frade, R. 2003. Activation of Epstein-Barr virus/C3d receptor (gp140, CR2, CD21) on human cell surface triggers pp60src and Akt-GSK3 activities upstream and downstream to PI 3-kinase, respectively. Eur J Immunol 33:2557-66.

59 Hein, W. R., Dudler, L., Marston, W. L., Landsverk, T., Young, A. J., and Avila, D. 1998.

Ubiquitination and dimerization of complement receptor type 2 on sheep B cells. J Immunol 161:458-66.

60 Blom, N., Gammeltoft, S., and Brunak, S. 1999. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351-62.

61 Pond, L., Kuhn, L. A., Teyton, L., Schutze, M. P., Tainer, J. A., Jackson, M. R., and Peterson, P. A. 1995. A role for acidic residues in di-leucine motif-based targeting to the endocytic pathway. J Biol Chem 270:19989-97.

62 Barrault, D. V. and Knight, A. M. 2004. Distinct sequences in the cytoplasmic domain of complement receptor 2 are involved in antigen internalization and presentation. J Immunol 172:3509-17.

63 Barel, M., Balbo, M., Gauffre, A., and Frade, R. 1995. Binding sites of the Epstein-Barr virus and C3d receptor (CR2, CD21) for its three intracellular ligands, the p53 anti-oncoprotein, the p68 calcium binding protein and the nuclear p120 ribonucleoprotein.

Mol Immunol 32:389-97.

64 Rost, B. and Liu, J. 2003. The PredictProtein server. Nucleic Acids Res 31:3300-4.

65 Barel, M., Vazquez, A., Charriaut, C., Aufredou, M. T., Galanaud, P., and Frade, R.

1986. gp 140, the C3d/EBV receptor (CR2), is phosphorylated upon in vitro activation of human peripheral B lymphocytes. FEBS Lett 197:353-6.

66 Changelian, P. S. and Fearon, D. T. 1986. Tissue-specific phosphorylation of complement receptors CR1 and CR2. J Exp Med 163:101-15.

67 Delcayre, A. X., Fiandino, A., Barel, M., and Frade, R. 1987. gp140, the EBV/C3d receptor (CR2) of human B lymphocytes, is involved in cell-free phosphorylation of p120, a nuclear ribonucleoprotein. Eur J Immunol 17:1827-33.

68 Young, A. J., Dudler, L., Yamaguchi, K., Marston, W., and Hein, W. R. 1999. Structure and expression of ovine complement receptor type 2. Vet Immunol Immunopathol 72:67-72.

69 Lemmon, M. A., Treutlein, H. R., Adams, P. D., Brunger, A. T., and Engelman, D. M.

1994. A dimerization motif for transmembrane alpha-helices. Nat Struct Biol 1:157-63.

70 d'Azzo, A., Bongiovanni, A., and Nastasi, T. 2005. E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation. Traffic 6:429-41.

71 Barel, M., Fiandino, A., Lyamani, F., and Frade, R. 1989. Epstein-Barr virus/complement fragment C3d receptor (CR2) reacts with p53, a cellular antioncogene-encoded membrane phosphoprotein: detection by polyclonal anti-idiotypic anti-CR2 antibodies. Proc Natl Acad Sci U S A 86:10054-8.

72 Barel, M., Gauffre, A., Lyamani, F., Fiandino, A., Hermann, J., and Frade, R. 1991.

Intracellular interaction of EBV/C3d receptor (CR2) with p68, a calcium-binding protein present in normal but not in transformed B lymphocytes. J Immunol 147:1286-91.

73 Bouillie, S., Barel, M., and Frade, R. 1999. Signaling through the EBV/C3d receptor (CR2, CD21) in human B lymphocytes: activation of phosphatidylinositol 3-kinase via a CD19-independent pathway. J Immunol 162:136-43.

74 Barel, M., Le Romancer, M., and Frade, R. 2001. Activation of the EBV/C3d receptor (CR2, CD21) on human B lymphocyte surface triggers tyrosine phosphorylation of the 95-kDa nucleolin and its interaction with phosphatidylinositol 3 kinase. J Immunol 166:3167-73.

75 Lottin-Divoux, S., Jean, D., Le Romancer, M., and Frade, R. 2005. Activation of

surface triggers Cbl tyrosine phosphorylation, its association with p85 subunit, Crk-L and Syk and its dissociation with Vav. Cell Signal.

76 Shao, Y., Yang, C., Elly, C., and Liu, Y. C. 2004. Differential regulation of the B cell receptor-mediated signaling by the E3 ubiquitin ligase Cbl. J Biol Chem 279:43646-53.

77 Gill, M. B., Roecklein-Canfield, J., Sage, D. R., Zambela-Soediono, M., Longtine, N., Uknis, M., and Fingeroth, J. D. 2004. EBV attachment stimulates FHOS/FHOD1 redistribution and co-aggregation with CD21: formin interactions with the cytoplasmic domain of human CD21. J Cell Sci 117:2709-20. Epub 2004 May 11.

78 Wallar, B. J. and Alberts, A. S. 2003. The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol 13:435-46.

79 Melamed, I., Stein, L., and Roifman, C. M. 1994. Epstein-Barr virus induces actin polymerization in human B cells. J Immunol 153:1998-2003.

80 Carel, J. C., Myones, B. L., Frazier, B., and Holers, V. M. 1990. Structural requirements for C3d,g/Epstein-Barr virus receptor (CR2/CD21) ligand binding, internalization, and viral infection. J Biol Chem 265:12293-9.

81 Balbo, M., Barel, M., Bouillie, S., Drane, P., Cassinat, B., and Frade, R. 1995. Pep34, a synthetic peptide whose sequence corresponds to the intracytoplasmic domain of the Epstein-Barr virus receptor (CR2, CD21), regulates human B lymphocyte proliferation triggered through CR2. Mol Immunol 32:1295-8.

82 Ross, T. M., Xu, Y., Bright, R. A., and Robinson, H. L. 2000. C3d enhancement of antibodies to hemagglutinin accelerates protection against influenza virus challenge.

Nat Immunol 1:127-31.

83 Boackle, S. A., Holers, V. M., and Karp, D. R. 1997. CD21 augments antigen presentation in immune individuals. Eur J Immunol 27:122-9.

84 Thornton, B. P., Vetvicka, V., and Ross, G. D. 1994. Natural antibody and complement-mediated antigen processing and presentation by B lymphocytes. J Immunol 152:1727-37.

85 Bonifacino, J. S. and Traub, L. M. 2003. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395-447. Epub 2003 Mar 6.

86 Hicke, L. 1997. Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins. Faseb J 11:1215-26.

87 Mori, S., Heldin, C. H., and Claesson-Welsh, L. 1993. Ligand-induced ubiquitination of the platelet-derived growth factor beta-receptor plays a negative regulatory role in its mitogenic signaling. J Biol Chem 268:577-83.

88 Rechsteiner, M. and Rogers, S. W. 1996. PEST sequences and regulation by proteolysis. Trends Biochem Sci 21:267-71.

89 Rogers, S., Wells, R., and Rechsteiner, M. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364-8.

90 Siemasko, K., Eisfelder, B. J., Stebbins, C., Kabak, S., Sant, A. J., Song, W., and Clark, M. R. 1999. Ig alpha and Ig beta are required for efficient trafficking to late endosomes and to enhance antigen presentation. J Immunol 162:6518-25.

91 Lee, D. H. and Goldberg, A. L. 1998. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397-403.

92 Hess, M. W., Schwendinger, M. G., Eskelinen, E. L., Pfaller, K., Pavelka, M., Dierich, M.

P., and Prodinger, W. M. 2000. Tracing uptake of C3dg-conjugated antigen into B cells via complement receptor type 2 (CR2, CD21). Blood 95:2617-23.

93 Park, C. S. and Choi, Y. S. 2005. How do follicular dendritic cells interact intimately with B cells in the germinal centre? Immunology 114:2-10.

94 Fremeaux-Bacchi, V., Kolb, J. P., Rakotobe, S., Kazatchkine, M. D., and Fischer, E. M.

1999. Functional properties of soluble CD21. Immunopharmacology 42:31-7.

95 Huemer, H. P., Larcher, C., Prodinger, W. M., Petzer, A. L., Mitterer, M., and Falser, N.

1993. Determination of soluble CD21 as a parameter of B cell activation. Clin Exp Immunol 93:195-9.

96 Ling, N., Hansel, T., Richardson, P., and Brown, B. 1991. Cellular origins of serum complement receptor type 2 in normal individuals and in hypogammaglobulinaemia.

Clin Exp Immunol 84:16-22.

97 Myones, B. L. and Ross, G. D. 1987. Identification of a spontaneously shed fragment of B cell complement receptor type two (CR2) containing the C3d-binding site.

Complement 4:87-98.

98 Masilamani, M., Apell, H. J., and Illges, H. 2002. Purification and characterization of soluble CD21 from human plasma by affinity chromatography and density gradient centrifugation. J Immunol Methods 270:11-8.

99 Masilamani, M., Kassahn, D., Mikkat, S., Glocker, M. O., and Illges, H. 2003. B cell activation leads to shedding of complement receptor type II (CR2/CD21). Eur J Immunol 33:2391-7.

100 Fremeaux-Bacchi, V., Fischer, E., Lecoanet-Henchoz, S., Mani, J. C., Bonnefoy, J. Y., and Kazatchkine, M. D. 1998. Soluble CD21 (sCD21) forms biologically active complexes with CD23: sCD21 is present in normal plasma as a complex with trimeric CD23 and inhibits soluble CD23-induced IgE synthesis by B cells. Int Immunol 10:1459-66.

101 Ling, N. R., Hardie, D. L., Johnson, G. D., and MacLennan, I. C. 1998. Origin and properties of soluble CD21 (CR2) in human blood. Clin Exp Immunol 113:360-6.

102 Kaup, M., Dassler, K., Reineke, U., Weise, C., Tauber, R., Fuchs, H. 2002. Processing of the human transferrin receptor at distinct positions within the stalk region by neutrophil elastase and cathepsin G. Biol Chem. 383:1011-20.

103 Schwager, S. L., Chubb, A. J., Woodman, Z. L., Yan, L., Mentele, R., Ehlers, M. R., and Sturrock, E. D. 2001. Cleavage of disulfide-bridged stalk domains during shedding of angiotensin-converting enzyme occurs at multiple juxtamembrane sites. Biochemistry 40:15624-30.

104 Dello Sbarba, P. and Rovida, E. 2002. Transmodulation of cell surface regulatory molecules via ectodomain shedding. Biol Chem 383:69-83.

105 Nishizuka, Y. 1988. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661-5.

106 Brummer, T., Elis, W., Reth, M., and Huber, M. 2004. B-cell signal transduction:

tyrosine phosphorylation, kinase activity, and calcium mobilization. Methods Mol Biol 271:189-212.

107 Aichem, A., Masilamani, M., and Illges, H. 2006. Redox-regulation of CD21-shedding involves signaling via PKC and indicates the formation of a juxtamembrane stalk. J Cell Sci: in press.

108 Reth, M. 2002. Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 3:1129-34.

109 Droge, W. and Breitkreutz, R. 2000. Glutathione and immune function. Proc Nutr Soc 59:595-600.

110 Kwon, Y. W., Masutani, H., Nakamura, H., Ishii, Y., and Yodoi, J. 2003. Redox regulation of cell growth and cell death. Biol Chem 384:991-6.

111 Watson, W. H., Yang, X., Choi, Y. E., Jones, D. P., and Kehrer, J. P. 2004. Thioredoxin and its role in toxicology. Toxicol Sci 78:3-14.

112 Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., and Turner, N. D. 2004. Glutathione metabolism and its implications for health. J Nutr 134:489-92.

113 De Flora, S., Izzotti, A., D'Agostini, F., and Balansky, R. M. 2001. Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points. Carcinogenesis 22:999-1013.

114 Jeannin, P., Delneste, Y., Lecoanet-Henchoz, S., Gauchat, J. F., Life, P., Holmes, D., and Bonnefoy, J. Y. 1995. Thiols decrease human interleukin (IL) 4 production and IL-4-induced immunoglobulin synthesis. J Exp Med 182:1785-92.

115 Nishinaka, Y., Nakamura, H., Okada, N., Okada, H., and Yodoi, J. 2001. Redox control of EBV infection: prevention by thiol-dependent modulation of functional CD21/EBV receptor expression. Antioxid Redox Signal 3:1075-87.

116 Sugano, N., Chen, W., Roberts, M. L., and Cooper, N. R. 1997. Epstein-Barr virus binding to CD21 activates the initial viral promoter via NF-kappaB induction. J Exp Med 186:731-7.

117 Aubry, J. P., Pochon, S., Graber, P., Jansen, K. U., and Bonnefoy, J. Y. 1992. CD21 is a ligand for CD23 and regulates IgE production. Nature 358:505-7.

118 Fremeaux-Bacchi, V., Aubry, J. P., Bonnefoy, J. Y., Kazatchkine, M. D., Kolb, J. P., and Fischer, E. M. 1998. Soluble CD21 induces activation and differentiation of human monocytes through binding to membrane CD23. Eur J Immunol 28:4268-74.

119 Hebell, T., Ahearn, J. M., and Fearon, D. T. 1991. Suppression of the immune response by a soluble complement receptor of B lymphocytes. Science 254:102-5.

120 Qin, D., Wu, J., Carroll, M. C., Burton, G. F., Szakal, A. K., and Tew, J. G. 1998.

Evidence for an important interaction between a complement-derived CD21 ligand on follicular dendritic cells and CD21 on B cells in the initiation of IgG responses. J Immunol. 161:4549-54.

121 Moore, M. D., Cannon, M. J., Sewall, A., Finlayson, M., Okimoto, M., and Nemerow, G.

R. 1991. Inhibition of Epstein-Barr virus infection in vitro and in vivo by soluble CR2 (CD21) containing two short consensus repeats. J Virol 65:3559-65.

122 Nemerow, G. R., Mullen, J. J., 3rd, Dickson, P. W., and Cooper, N. R. 1990. Soluble recombinant CR2 (CD21) inhibits Epstein-Barr virus infection. J Virol 64:1348-52.

123 Lowe, J., Brown, B., Hardie, D., Richardson, P., and Ling, N. 1989. Soluble forms of CD21 and CD23 antigens in the serum in B cell chronic lymphocytic leukaemia.

Immunol Lett 20:103-9.

124 Larcher, C., Kempkes, B., Kremmer, E., Prodinger, W. M., Pawlita, M., Bornkamm, G.

W., and Dierich, M. P. 1995. Expression of Epstein-Barr virus nuclear antigen-2 (EBNA2) induces CD21/CR2 on B and T cell lines and shedding of soluble CD21. Eur J Immunol 25:1713-9.

125 Masilamani, M., Nowack, R., Witte, T., Schlesier, M., Warnatz, K., Glocker, M. O., Peter, H. H., and Illges, H. 2004. Reduction of soluble complement receptor 2/CD21 in systemic lupus erythomatosus and Sjogren's syndrome but not juvenile arthritis. Scand J Immunol 60:625-30.

126 Masilamani, M., von Kempis, J., and Illges, H. 2004. Decreased levels of serum soluble complement receptor-II (CR2/CD21) in patients with rheumatoid arthritis. Rheumatology (Oxford) 43:186-90.

127 Khanna, R., Burrows, S. R., and Moss, D. J. 1995. Immune regulation in Epstein-Barr virus-associated diseases. Microbiol Rev 59:387-405.

128 Boackle, S. A. and Holers, V. M. 2003. Role of complement in the development of autoimmunity. Curr Dir Autoimmun 6:154-68.

129 Prodeus, A. P., Goerg, S., Shen, L. M., Pozdnyakova, O. O., Chu, L., Alicot, E. M., Goodnow, C. C., and Carroll, M. C. 1998. A critical role for complement in maintenance of self-tolerance. Immunity 9:721-31.

130 Hartley, S. B., Crosbie, J., Brink, R., Kantor, A. B., Basten, A., and Goodnow, C. C.

1991. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature 353:765-9.

131 Boackle, S. A. 2005. Role of complement receptor 2 in the pathogenesis of systemic lupus erythematosus. Adv Exp Med Biol 560:141-7.

132 Pers, J. O., Daridon, C., Devauchelle, V., Jousse, S., Saraux, A., Jamin, C., Youinou, P., and Stohl, W. 2005. BAFF overexpression is associated with autoantibody production in autoimmune diseases

SLE-systemic lupus erythematosus: a BLySful, yet BAFFling, disorder. Ann N Y Acad Sci 1050:34-9.

133 Illges, H., Braun, M., Peter, H. H., and Melchers, I. 2000. Reduced expression of the complement receptor type 2 (CR2, CD21) by synovial fluid B and T lymphocytes. Clin Exp Immunol 122:270-6.

134 Arribas, J., and Merlos-Suárez, A. 2003. Shedding of plasma membrane proteins. In Zucker, S., and Chen, WT., ed., Current topics in developmental biology - cell surface proteases., p. 125-144. Academic Press.

135 Blobel, C. P. 2005. ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6:32-43.

136 Bridges, L. C. and Bowditch, R. D. 2005. ADAM-Integrin Interactions: potential integrin regulated ectodomain shedding activity. Curr Pharm Des 11:837-47.

137 Garcia-Touchard, A., Henry, T. D., Sangiorgi, G., Spagnoli, L. G., Mauriello, A., Conover, C., and Schwartz, R. S. 2005. Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol 25:1119-27.

138 John, V., Beck, J. P., Bienkowski, M. J., Sinha, S., and Heinrikson, R. L. 2003. Human

138 John, V., Beck, J. P., Bienkowski, M. J., Sinha, S., and Heinrikson, R. L. 2003. Human