• Keine Ergebnisse gefunden

Bivalent Argininamide-Type NPY Y 1 Receptor Antagonists

Scheme 6. Synthesis of the potential bivalent tritium ligands 3.42 and 3.43 as well as the potential bivalent PET ligand 3.44

3.3.4 Pharmacology: Cell Culture, Fura-2 Assay and Competition Binding Assay

Cell culture. HEL and SK-N-MC cells were cultured as described elsewhere.31, 32 HEL cells were subcultured by 1:6-dilution with fresh culture medium 24 h prior to the Fura Ca2+-assay.

MCF-7-Y1 cellsa were maintained in MEM (Sigma, Deisenhofen, Germany), supplemented with 5 % FCS (Biochrom AG, Berlin, Germany).

aThis cell line was subcloned from MCF-7 cells in passage 157th and shows a higher Y1R expression (by a factor 2 -3 higher than that of the MCF-7 cells (ATCC number HTB 22)).

Chapter 3 74

Fura-2 assay on HEL cells. The Fura assay was performed with HEL cells as previously described28 using a Perkin-Elmer LS50 B spectrofluorimeter (Perkin Elmer, Überlingen, Germany).

Radioligand competition binding assay. The procedure performed in the radioligand binding assay was deduced from a previously described protocol31 and [3H]-UR-MK114 (2.8b, cf.

chapter 2) was used instead [3H]-propionyl-pNPY. Radioligand concentration was set to 1.5 nM for SK-N-MC cells (KD = 1.2 nM) and 2 nM for MCF-7 cells (KD = 2.9 nM). Cells were seeded in 24-well plates 2 or 3 days prior to the experiment. MCF-7-Y1a cells were seeded in culture medium with 1 % -Estradiol in order to up-regulate the Y1 receptor. On the day of the experiment confluency of the cells was at least 70 %. The culture medium was sucked off, cells were washed once with buffer (500 µL) and covered with binding buffer (200 µL for SK-N-MC, 400 µL for MCF-7 cells). Binding buffer (25/50 µL) and binding buffer (25/50 µL) with radioligand (ten fold concentrated) was added for total binding. For non-specific binding and competition of test compounds with radioligand binding buffer (25/50 µL) with the competing agent (pNPY or test substance, ten fold concentrated) and binding buffer (25/50 µL) with radioligand (ten fold concentrated) was added. During incubation at room temperature (22 – 25 °C) the plates were gently shaken. After incubation (20 min for SK-N-MC, 30 min for MCF-7-Y1 cells) the binding buffer was removed, the cells were washed twice with buffer (500 µL, 4 °C, ≤ 30 s) and covered with lysis solution (200 µL). The plates were gently shaken for at least 30 min. The lysis solution was transferred into 6-mL scintillation vials filled with scintillator (3 mL) and the dishes were washed once with lysis solution (100 µL). Assays were performed in triplicate or duplicate.

3.4 References

1. Prinster, S. C.; Hague, C.; Hall, R. A., Heterodimerization of g protein-coupled receptors:

specificity and functional significance. Pharmacol. Rev. 2005, 57, (3), 289-298.

2. Dinger, M. C.; Bader, J. E.; Kobor, A. D.; Kretzschmar, A. K.; Beck-Sickinger, A. G., Homodimerization of neuropeptide Y receptors investigated by fluorescence resonance energy transfer in living cells. J. Biol. Chem. 2003, 278, (12), 10562-10571.

3. Cvejic, S.; Devi, L. A., Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J. Biol. Chem. 1997, 272, (43), 26959-26964.

4. Hillion, J.; Canals, M.; Torvinen, M.; Casado, V.; Scott, R.; Terasmaa, A.; Hansson, A.;

Watson, S.; Olah, M. E.; Mallol, J.; Canela, E. I.; Zoli, M.; Agnati, L. F.; Ibanez, C. F.; Lluis, C.; Franco, R.; Ferre, S.; Fuxe, K., Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J. Biol. Chem.

2002, 277, (20), 18091-18097.

Bivalent Argininamide-Type NPY Y1 Receptor Antagonists 75 5. Lee, S. P.; O'Dowd, B. F.; Ng, G. Y.; Varghese, G.; Akil, H.; Mansour, A.; Nguyen, T.;

George, S. R., Inhibition of cell surface expression by mutant receptors demonstrates that D2 dopamine receptors exist as oligomers in the cell. Mol. Pharmacol. 2000, 58, (1), 120-128.

6. Carrillo, J. J.; Pediani, J.; Milligan, G., Dimers of class A G protein-coupled receptors function via agonist-mediated trans-activation of associated G proteins. J. Biol. Chem.

2003, 278, (43), 42578-42587.

7. Maggio, R.; Vogel, Z.; Wess, J., Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular "cross-talk" between G-protein-linked receptors. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, (7), 3103-3107.

8. Bazin, H.; Trinquet, E.; Mathis, G., Time resolved amplification of cryptate emission: a versatile technology to trace biomolecular interactions. J. Biotechnol. 2002, 82, (3), 233-250.

9. McVey, M.; Ramsay, D.; Kellett, E.; Rees, S.; Wilson, S.; Pope, A. J.; Milligan, G., Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta -opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J. Biol. Chem. 2001, 276, (17), 14092-14099.

10. Maurel, D.; Comps-Agrar, L.; Brock, C.; Rives, M. L.; Bourrier, E.; Ayoub, M. A.; Bazin, H.;

Tinel, N.; Durroux, T.; Prezeau, L.; Trinquet, E.; Pin, J. P., Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 2008, 5, (6), 561-567.

11. Portoghese, P. S.; Larson, D. L.; Sayre, L. M.; Yim, C. B.; Ronsisvalle, G.; Tam, S. W.;

Takemori, A. E., Opioid agonist and antagonist bivalent ligands. The relationship between spacer length and selectivity at multiple opioid receptors. J. Med. Chem. 1986, 29, (10), 1855-1861.

12. Portoghese, P. S., From models to molecules: opioid receptor dimers, bivalent ligands, and selective opioid receptor probes. J. Med. Chem. 2001, 44, (14), 2259-2269.

13. Bhushan, R. G.; Sharma, S. K.; Xie, Z.; Daniels, D. J.; Portoghese, P. S., A bivalent ligand (KDN-21) reveals spinal delta and kappa opioid receptors are organized as heterodimers that give rise to delta(1) and kappa(2) phenotypes. Selective targeting of delta-kappa heterodimers. J. Med. Chem. 2004, 47, (12), 2969-2972.

14. Daniels, D. J.; Kulkarni, A.; Xie, Z.; Bhushan, R. G.; Portoghese, P. S., A bivalent ligand (KDAN-18) containing delta-antagonist and kappa-agonist pharmacophores bridges delta2 and kappa1 opioid receptor phenotypes. J. Med. Chem. 2005, 48, (6), 1713-1716.

15. Mammen, M.; Chio, S.-K.; Whitesides, G. M., Polyvalent interactions in biological systems:

implications for design and use of multivalent ligands and inhibitors. Angewandte Chemie, International Edition 1998, 37, (20), 2755-2794.

16. Glick, G. D.; Knowles, J. R., Molecular recognition of bivalent sialosides by influenza virus.

J. Am. Chem. Soc. 1991, 113, (12), 4701-4703.

17. Van de Water, A.; Janssens, W.; Van Neuten, J.; Xhonneux, R.; De Cree, J.; Verhaegen, H.; Reneman, R. S.; Janssen, P. A., Pharmacological and hemodynamic profile of nebivolol, a chemically novel, potent, and selective beta 1-adrenergic antagonist. J.

Cardiovasc. Pharmacol. 1988, 11, (5), 552-563.

Chapter 3 76

18. Melchiorre, C.; Angeli, P.; Lambrecht, G.; Mutschler, E.; Picchio, M. T.; Wess, J., Antimuscarinic action of methoctramine, a new cardioselective M-2 muscarinic receptor antagonist, alone and in combination with atropine and gallamine. Eur. J. Pharmacol.

1987, 144, (2), 117-124.

19. Melchiorre, C.; Minarini, A.; Angeli, P.; Giardina, D.; Gulini, U.; Quaglia, W., Polymethylene tetraamines as muscarinic receptor probes. Trends Pharmacol. Sci. 1989, Suppl, 55-59.

20. Portoghese, P. S.; Lin, C. E.; Farouz-Grant, F.; Takemori, A. E., Structure-activity relationship of N17'-substituted norbinaltorphimine congeners. Role of the N17' basic group in the interaction with a putative address subsite on the kappa opioid receptor. J.

Med. Chem. 1994, 37, (10), 1495-1500.

21. Halazy, S.; Perez, M.; Fourrier, C.; Pallard, I.; Pauwels, P. J.; Palmier, C.; John, G. W.;

Valentin, J. P.; Bonnafous, R.; Martinez, J., Serotonin dimers: application of the bivalent ligand approach to the design of new potent and selective 5-HT(1B/1D) agonists. J. Med.

Chem. 1996, 39, (25), 4920-4927.

22. Doughty, M. B.; Chu, S. S.; Miller, D. W.; Li, K.; Tessel, R. E., Benextramine: a long-lasting neuropeptide Y receptor antagonist. Eur. J. Pharmacol. 1990, 185, (1), 113-114.

23. Melchiorre, C.; Romualdi, P.; Bolognesi, M. L.; Donatini, A.; Ferri, S., Binding profile of benextramine at neuropeptide Y receptor subtypes in rat brain areas. Eur. J. Pharmacol.

1994, 265, (1-2), 93-98.

24. Rudolf, K.; Eberlein, W.; Engel, W.; Wieland, H. A.; Willim, K. D.; Entzeroth, M.; Wienen, W.; Beck-Sickinger, A. G.; Doods, H. N., The first highly potent and selective non-peptide neuropeptide Y Y1 receptor antagonist: BIBP3226. Eur. J. Pharmacol. 1994, 271, (2-3), R11-13.

25. Brennauer, A.; Dove, S.; Buschauer, A., Structure-Activity Relationships of Nonpeptide Neuropeptide Y Receptor Antagonists. In Handbook of Experimental Pharmacology. Vol.

162. Michel, M.C. (ed). 2004, pp. 506-537.

26. Weiss, S.; Keller, M.; Bernhardt, G.; Buschauer, A.; Konig, B., Modular synthesis of non-peptidic bivalent NPY Y(1) receptor antagonists. Bioorg. Med. Chem. 2008, 16, (22), 9858-9866.

27. Boon, J. M.; Lambert, T. N.; Smith, B. D.; Beatty, A. M.; Ugrinova, V.; Brown, S. N., Structure/Activity Study of Tris(2-aminoethyl)amine-Derived Translocases for Phosphatidylcholine. J. Org. Chem. 2002, 67, (7), 2168-2174.

28. Muller, M.; Knieps, S.; Gessele, K.; Dove, S.; Bernhardt, G.; Buschauer, A., Synthesis and neuropeptide Y Y1 receptor antagonistic activity of N,N-disubstituted omega-guanidino- and omega-aminoalkanoic acid amides. Arch. Pharm. (Weinheim). 1997, 330, (11), 333-342.

29. Schneider, E.; Keller, M.; Brennauer, A.; Hoefelschweiger, B. K.; Gross, D.; Wolfbeis, O.

S.; Bernhardt, G.; Buschauer, A., Synthesis and characterization of the first fluorescent nonpeptide NPY Y1 receptor antagonist. Chembiochem 2007, 8, (16), 1981-1988.

30. Desai, D. M.; Gal, J., Enantiospecific drug analysis via the ortho-phthalaldehyde/homochiral thiol derivatization method. J. Chromatogr. 1993, 629, (2), 215-228.

Bivalent Argininamide-Type NPY Y1 Receptor Antagonists 77 31. Aiglstorfer, I.; Uffrecht, A.; Gessele, K.; Moser, C.; Schuster, A.; Merz, S.; Malawska, B.;

Bernhardt, G.; Dove, S.; Buschauer, A., NPY Y1 antagonists: structure-activity relationships of arginine derivatives and hybrid compounds with arpromidine-like partial structures. Regul. Pept. 1998, 75-76, 9-21.

32. Biedler, J. L.; Helson, L.; Spengler, B. A., Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 1973, 33, (11), 2643-2652.

Chapter 4