• Keine Ergebnisse gefunden

LPS PMA=Phorbol

6. Natural products as source for therapeutic intervention

6.2. Pharmacological modulation of neutrophil functions

Many plant extracts and compounds are able to induce phagocytosis such as selenium and vitamin E (Mukherjee, 2008). The aqueous extract of roots of Baliospermum montanum can significantly increase the ingestion of Candida albicans by neutrophils (Patil et al., 2009). Another example is the hydroalcoholic extract of Ziziphus jujuba leaves, which has been shown to increase neutrophil phagocytosis (Ganachari et al., 2004). Treatment of neutrophils with plant Santolina chamaecyparissus leaf extracts inhibits the release of elastase, thus inhibits degranulation function (Boudoukha et al., 2016).

Cranberry juice-derived proanthocyanidins (PACs) has anti-adherence properties against Candida albicans through iron chelating from the environment, this leads to decreased proinflammatory cytokines by oral epithelial cells infected with C. albicans (Rane et al., 2014).

Many substances have been found to modulate antimicrobial functions such as cytokine release by neutrophils such as Green tea extract. This attenuates the release of pro-inflammatory cytokines and the inflammatory features of neutrophils from obese rats (Albuquerque et al., 2016). Another example for modulating antimicrobial functions is wariſteine, alkaloid purified from root and leaves of Cissampelos sympodialis. This alkaloid inhibits the antimicrobial events such as production of NETs. Warifteine has been used as a potential treatment for inflammatory diseases associated with NETs production (Lima et al., 2014). The ethanolic extracts from leaves and fruits of Schinus molle var. areira are useful in the treatment of lipid pathologies, they identified a significant increase in the percentage of neutrophils (Bras et al., 2010) The data are summarized in (Table. 3).

23

Table 3: Some natural products and their modulatory effect Plant extracts Action Compoumnd

concentration

oral exposure (Bras et al., 2010)

Selenium and

(IUs) means International units 1 IU of the natural form is equivalent to 0.67 mg of alpha-tocopherol.

24 7. The aim of the work

Staphylococcus aureus is a serious human pathogen and can cause life-threatening disease, which are difficult to treat due to the emergence of multiple antibiotic resistances. The first-line of natural defense against S. aureus is the innate immune system including phagocytes. Traditional herbal medicine provides a lot of therapies to support the body's resistance to sickness through effects on the innate immune system. The overall goal of this study was to characterize the immune-boosting capacity of natural plant extracts against S. aureus infections. To study the effects of natural plant extracts on the human neutrophils, human neutrophils were needed in this study. Since it is difficult and time-consuming to harvest primary human neutrophils form blood of healthy donors, the first aim of this study was to find an alternative model to human neutrophils. The human leukemia cell line HL-60 cells are considered an alternative cell culture model to study neutrophil differentiation.

1. The first aim was to characterize the antimicrobial activity of dimethylsulfoxid (DMSO) and retinoic acid-differentiated HL-60 cells against the pathogen S.

aureus in comparison to primary human blood-derived neutrophils, with special emphasis on the formation of neutrophil extracellular traps (NETs) (Yaseen et al., 2017) (Chapter 2).

2. In an initial study, the acetone bark extract from Guarea kunthiana (GUKUBA) was used to examine its capability to boost host defence in human and bovine neutrophils against S. aureus (Jerjomiceva et al., 2016) (Chapter 3).

3. The third aim was the screening of novel natural products that have antimicrobial activity and that can boost immune cells against bacterial infections. Twenty-three plant extracts from Costa Rica were screened; three of the tested products significantly reduced the growth number of S. aureus in the presence of human blood without direct antibacterial effects: Byrsonima crassifolia acetone bark extract, Mandevilla veraguasensis acetone extract and Verbesina oersteiana aceton bark extract (VEOEBA) (Yaseen et al., 2017) (Chapter 4).

4. The fourth aim was to study the mechanistical effects of the identified immunomodulatimg plant extracts. The effects of the extracts on the

25

following antibacterial functions were studied: phagocytosis, NETs release and degranulation. Furthermore, vitexin as one active compound was characterized for its ability to boost the antimicrobial effect of neutrophils (Chapter 5).

26

References

Actor, J. (2012). Neutrophil granulocyte. Elsevier‟s integrated review immunology and microbiology (Second Edition), 2012. Retrieved from

https://www.sciencedirect.com/topics/neuroscience/neutrophil-granulocyte

Albuquerque, K. F. F. S., Marinovic, M. P., Morandi, A. C., Bolin, A. P., & Otton, R. (2016). Green tea polyphenol extract in vivo attenuates inflammatory features of neutrophils from obese rats.

European Journal of Nutrition, 55(3), 1261–1274. https://doi.org/10.1007/s00394-015-0940-z

An, F., Wang, S., Tian, Q., & Zhu, D. (2015). Effects of orientin and vitexin from Trollius chinensis on the growth and apoptosis of esophageal cancer EC-109 cells. Oncology Letters, 10(4), 2627–

2633. https://doi.org/10.3892/ol.2015.3618

An, F., Yang, G. D., Tian, J. M., & Wang, S. H. (2012). Antioxidant effects of the orientin and vitexin in trollius chinensis bunge in d-galactose-aged mice. Neural Regeneration Research, 7(33), 2565–

2575. https://doi.org/10.3969/j.issn.1673-5374.2012.33.001

Article, F. (2014). Medical gallery of blausen medical 2014. WikiJournal of Medicine, 1(2).

https://doi.org/10.15347/wjm/2014.010

Ayau, P., Bardossy, A. C., Sanchez, G., Ortiz, R., Moreno, D., Hartman, P., Zervos, M. J. (2017). Risk factors for 30-day mortality in patients with methicillin-resistant Staphylococcus aureus

bloodstream infections. International Journal of Infectious Diseases, 61, 3–6.

https://doi.org/10.1016/j.ijid.2017.05.010

Barth, C. R., Funchal, G. A., Luft, C., de Oliveira, J. R., Porto, B. N., & Donadio, M. V. F. (2016).

Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. European Journal of Immunology, 46(4), 964–970.

https://doi.org/10.1002/eji.201545520

Bassetti, M., Trecarichi, E. M., Mesini, A., Spanu, T., Giacobbe, D. R., Rossi, M., Tumbarello, M.

(2012). Risk factors and mortality of healthcare-associated and community-acquired Staphylococcus aureus bacteraemia. Clinical Microbiology and Infection, 18(9), 862–869.

https://doi.org/10.1111/j.1469-0691.2011.03679.x

Biswal, S., & Godnaik, C. (2013). Incidence and management of infections in patients with acute leukemia following chemotherapy in general wards. Ecancermedical science, 7(1), 1–16.

https://doi.org/10.3332/ecancer.2013.310

Bosnian, T., Species, C., & Copra-jani, A. (2018). HPLC-ED analysis of phenolic compounds in three bosnian Crataegus Species. Foods 2018, 7, 66; doi:10.3390/foods7050066

https://doi.org/10.3390/foods7050066

Boudoukha, C., Bouriche, H., Ortega, E., & Senator, A. (2016). Immunomodulatory effects of Santolina

27

chamaecyparissus leaf extracts on human neutrophil functions. Pharmaceutical Biology, 54(4), 667–673. https://doi.org/10.3109/13880209.2015.1071853

Bras, C., Domínguez, S., Codón, S., Minetti, A., & Ferrero, A. (2010). Exposure to ethanolic exConsequences of subchronictract from fruits and leaves of Schinus molle var. areira L. in mice. Journal of Ethnopharmacology, 132(1), 321–327. https://doi.org/10.1016/j.jep.2010.08.035 Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Weiss, D. S., Weinrauch, Y., & Zychlinsky, A.

(2004). Neutrophil extracellular traps kill bacteria published by : American Association for the Advancement of Science Stable URL : http://www.jstor.org/stable/3836573 . Science, New Series, 303(5663), 1532–1535.

Cascão R.* Rosário H.S.,** Fonseca J.E.*,***. (2009)Neutrophils: Warriors and commanders in immune mediated inflammatory diseases journal Órgão of icialdasociedade portuguesa dereumatologia, 34:313-326, 313–326.

Chambers, H. F. (2001). The changing epidemiology of Staphylococcus aureus. Emerging Infectious Diseases, 7(2), 178–182. https://doi.org/10.3201/eid0702.700178

Chong, A., & Celli, J. (2010). The Francisella intracellular life cycle :Toward molecular mechanisms of intracellular survival and proliferation, 1(December), 1–12.

https://doi.org/10.3389/fmicb.2010.00138

Das, A., Kim, D.-W., Khadka, P., Rakwal, R., & Rohila, J. S. (2017). Unraveling key metabolomic alterations in wheat embryos derived from freshly harvested and water-imbibed seeds of two wheat cultivars with contrasting dormancy status. Frontiers in Plant Science, 8(July), 1–16.

https://doi.org/10.3389/fpls.2017.01203

Delgado-Rizo, V., Martínez-Guzmán, M. A., Iñiguez-Gutierrez, L., García-Orozco, A., Alvarado-Navarro, A., & Fafutis-Morris, M. (2017). Neutrophil extracellular traps and its implications in inflammation: An overview. Frontiers in Immunology, 8(FEB), 1–20.

https://doi.org/10.3389/fimmu.2017.00081

Dempsey, P. W., Vaidya, S. A., & Cheng, G. (2003). The Art of War: Innate and adaptive immune responses. Cellular and Molecular Life Sciences, 60(12), 2604–2621.

https://doi.org/10.1007/s00018-003-3180-y

Dziedzic, K., Górecka, D., Szwengiel, A., Sulewska, H., Kreft, I., Gujska, E., & Walkowiak, J. (2018).

The content of dietary fibre and polyphenols in morphological parts of buckwheat (Fagopyrum tataricum). Plant Foods for Human Nutrition, 73(1), 82–88. https://doi.org/10.1007/s11130-018-0659-0

Falcone Ferreyra, M. L., Rius, S. P., & Casati, P. (2012). Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3(September), 1–15.

https://doi.org/10.3389/fpls.2012.00222

28

Fang, L., Hou, Y., An, J., Li, B., Song, M., Wang, X., Yu, Y. (2016). Genome-wide transcriptional and post-transcriptional regulation of innate immune and defense responses of bovine mammary gland to Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 6(December), 1–17. https://doi.org/10.3389/fcimb.2016.00193

Fedoros, E. I., Orlov, A. A., Zherebker, A., Gubareva, E. A., Maydin, M. A., Konstantinov, A. I., … Anisimov, V. N. (2018). Novel water-soluble lignin derivative BP-Cx-1: Identification of components and screening of potential targets; Oncotarget, 9(26), 18578–18593.

https://doi.org/10.18632/oncotarget.24990

Fiederlein, L. (2017). Functional differentiation of normal human neutrophils. blood, 69(3):937-44.

From www.bloodjournal.org by guest on May 31, 2017.

Ganachari, M. S., Kumar, S., & Bhat, K. G. (2004). Effect of Ziziphus jujuba leaves extract on phagocytosis by human neutrophils. Journal of Natural Remedies, 4(1), 47–51.

Geissmann, F., Jung, S., & Littman, D. R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties,Immunity. 19, 71–82.

Geissmann, F., Manz, M. G., Jung, S., Sieweke, M. H., & Ley, K. (2011). NIH Public Access, 327(5966), 656–661. https://doi.org/10.1126/science.1178331.Development

Giner-Larza, E. M., Máñez, S., Giner, R. M., Recio, M. C., Prieto, J. M., Cerdá-Nicolás, M., & Ríos, J.

L. (2002). Anti-inflammatory triterpenes from Pistacia terebinthus galls. Planta Medica, 68(4), 311–315. https://doi.org/10.1055/s-2002-26749

Griffin, F. M., Griffin, J. A., & Silverstein, S. C. (1976). Studies on the mechanism of phagocytosis. II.

The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. The Journal of Experimental Medicine, 144(3), 788–809.

https://doi.org/10.1084/jem.144.3.788

Hartmann, J., Scepek, S., Lindau, M., Zellforschung, A. M., & Forschung, M. (1995). Regulation of granule size in human and horse eosinophils by number of fusion events among unit granules,J Physiol, 201–209.

Helms, K. M., Wilson, R. C., Ogungbe, I. V, & Setzer, W. N. (2011). vitexin inhibits polyubiquitin synthesis by the ubiquitin-conjugating Enzyme E2-25K. Natural Product Communications Vol. 6 (10), 1440-1446.

Heras, B., & Hortelano, S. (2009). Molecular basis of the anti-inflammatory effects of terpenoids.

Inflammation & Allergy-Drug Targets, 8(1), 28–39. https://doi.org/10.2174/187152809787582534

Hirade, Y., Kotoku, N., Terasaka, K., Saijo-Hamano, Y., Fukumoto, A., & Mizukami, H. (2015).

Identification and functional analysis of 2-hydroxyflavanone C-glucosyltransferase in soybean (Glycine max). FEBS Letters, 589(15), 1778–1786. https://doi.org/10.1016/j.febslet.2015.05.010

29

Jablonska, E., Jablonski, J., & Holownia, A. (2000). Role of neutrophils in release of some cytokines and their soluble receptors. Immunology Letters, 70(3), 191–197. https://doi.org/10.1016/S0165-2478(99)00148-0

Jiang, D., Niwa, M., Koong, A. C., & Diego, S. (2016). HHS Public Access. European Journal of Vascular and Endovascular Surgery, 49(1), 48–56.

https://doi.org/10.1016/j.semcancer.2015.04.010.Targeting

Joseph, C., Togawa, Y., & Shindo, N. (2013). Bacterial and viral infections associated with influenza.

Influenza and Other Respiratory Viruses, 7(SUPPL.2), 105–113.

https://doi.org/10.1111/irv.12089

Khan, M. A. (2018). Hypertonic saline suppresses nadph oxidase-dependent neutrophil extracellular trap formation and promotes apoptosis, Frontiers in Immunology, 9(March), 1–18.

https://doi.org/10.3389/fimmu.2018.00359

Kim, Y. H., Oh, T. W., Park, E., Yim, N. H., Park, K. Il, Cho, W. K., & Ma, J. Y. (2018).

Anti-inflammatory and anti-apoptotic effects of acer palmatum Thumb. extract, KIOM-2015EW, in a hyperosmolar-stress-induced in vitro dry eye model. Nutrients, 10(3), 12–14.

https://doi.org/10.3390/nu10030282

Kluytmans, J., van Belkum, a, & Verbrugh, H. (1997). Nasal carriage of Staphylococcus aureus:

epidemiology, underlying mechanisms, and associated risks. Clinical Microbiology Reviews, 10(3), 505–520. https://doi.org/. doi:10.1016/S0006-3207(03)00146-0

Konar, J., & Das, S. (2013). Bacteriological Profile of Diabetic Foot Ulcers, With a Special Reference To Antibiogram in a Tertiary Care Hospital in Eastern India. Journal of Evolution of Medical and Dental Sciences, 2(48), 9323–9328. Retrieved from https://jemds.com/lates

Kurtagić, H., Redžić, S., Memić, M., & Sulejmanović, J. (2013). Bullet in of the che mi sts and technologi t s of bosia and he rzegov in a identification and quantification of quercetin , Naringenin and Hesperetin by RP LC – DAD in honey samples from B & H.

Lacy, P. (2006). Mechanisms of degranulation in neutrophils. Allergy, Asthma & Clinical Immunology, 2(3), 98. https://doi.org/10.1186/1710-1492-2-3-98

Lahiri, S. D., & Alm, R. A. (2016). Identification of non-PBP2a resistance mechanisms in

Staphylococcus aureus after serial passage with ceftaroline: Involvement of other PBPs. Journal of Antimicrobial Chemotherapy, 71(11), 3050–3057. https://doi.org/10.1093/jac/dkw282

Lebowitz, D., Gariani, K., Kressmann, B., Dach, E. von, Huttner, B., Bartolone, P., Uçkay, I. (2017).

Are antibiotic-resistant pathogens more common in subsequent episodes of diabetic foot infection? International Journal of Infectious Diseases, 59, 61–64.

https://doi.org/10.1016/j.ijid.2017.04.012

30

Levels, T., Defense, O. F., & Recognition, I. (2000). First of two parts three levels of defense. October, 37–50. https://doi.org/10.1056/NEJM200007063430107

Lima, T. F. A., Rocha, J. D. B., Guimarães-Costa, A. B., Barbosa-Filho, J. M., Decoté-Ricardo, D., Saraiva, E. M., Peçanha, L. M. T. (2014). Warifteine, an alkaloid purified from cissampelos sympodialis, inhibits neutrophil migration in vitro and in vivo. Journal of Immunology Research, 2014. https://doi.org/10.1155/2014/752923

Lobanovska, M., & Pilla, G. (2017). Penicillin ‟ s discovery and antibiotic resistance : Lessons for the Future , 90, 135–145.

Lögters, T., Margraf, S., Altrichter, J., Cinatl, J., Mitzner, S., Windolf, J., & Scholz, M. (2009). The clinical value of neutrophil extracellular traps. Medical Microbiology and Immunology, 198(4), 211–219. https://doi.org/10.1007/s00430-009-0121-x

MacMicking, J. D., Nathan, C., Hom, G., Chartrain, N., Fletcher, D. S., Trumbauer, M., Mudget, J. S.

(1995). Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell, 81(4), 641–650. https://doi.org/10.1016/0092-8674(95)90085-3 Mangili, A., Bica, I., Snydman, D. R., & Hamer, D. H. (2018). Bacteremia, Brief report, 40(July), 1058–

1060.

McGarvey, D. J. (1995). Terpenoid Metabolism. The Plant Cell Online, 7(7), 1015–1026.

https://doi.org/10.1105/tpc.7.7.1015

McGuinness, W. A., Malachowa, N., & DeLeo, F. R. (2017). Vancomycin resistance in staphylococcus aureus
. The Yale Journal of Biology and Medicine, 90(2), 269–281. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/28656013%0Ahttp://www.pubmedcentral.nih.gov/articlerend er.fcgi?artid=PMC5482303

Medzhitov, R., & Janeway, C. A. (1997). Innate immunity : The virtues of a nonclonal system of recognition,Cell, 91, 295–298.

Merien, F. (2016). A Journey with elie Metchnikoff : From innate cell mechanisms in infectious diseases to quantum biology. Frontiers in Public Health, 4(June), doi:

10.3389/fpubh.2016.00125. https://doi.org/10.3389/fpubh.2016.00125 Mesa, M. A., & Vasquez, G. (2013). NETosis. Autoimmune Diseases, 2013.

https://doi.org/10.1155/2013/651497

Metschnikoff, E. (1891). Lecture on phagocytosis and immunity. British Medical Journal, 1(1570), 213–

217. https://doi.org/10.1136/bmj.1.1570.213

Mohamed, N., Wang, M. Y., Le Huec, J. C., Liljenqvist, U., Scully, I. L., Baber, J., Anderson, A. S.

(2017). Vaccine development to prevent Staphylococcus aureus surgical-site infections. British Journal of Surgery, 104(2), e41–e54. https://doi.org/10.1002/bjs.10454

31

Mukherjee, R. (2008). Selenium and vitamin e increases polymorphonuclear cell phagocytosis and antioxidant levels during acute mastitis in riverine buffaloes. Veterinary Research

Communications, 32(4), 305–313. https://doi.org/10.1007/s11259-007-9031-9

Naegelen, I., Beaume, N., Plançon, S., Schenten, V., Tschirhart, E. J., Bréchard, S. (2015). Regulation of neutrophil degranulation and cytokine secretion : A Novel model approach based on linear fitting, Journal of Immunolgy Resaerch,15. https://doi.org/10.1155/2015/817038

Natalja Jerjomiceva, Hisham Seri, Ragheda Yaseen, Nicole de Buhr, William N. Setzer, Hassan Y.

Naim and Maren von Köckritz-Blickwede. (2016). Guarea kunthiana bark extract enhances the antimicrobial activities of human and bovine neutrophils Natalja. Natural Product

Communications, 11, 767–770.

Nathan, C., & Shiloh, M. U. (2000). Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proceedings of the National Academy of Sciences, 97(16), 8841–8848. https://doi.org/10.1073/pnas.97.16.8841

Nüsse, O. (2011). Biochemistry of the phagosome: The challenge to study a transient organelle.

TheScientificWorldJournal, 11, 2364–2381. https://doi.org/10.1100/2011/741046

Paemka, L., McCullagh, B. N., Abou Alaiwa, M. H., Stoltz, D. A., Dong, Q., Randak, C. O., McCray, P.

B. (2017). Monocyte derived macrophages from CF pigs exhibit increased inflammatory responses at birth. Journal of Cystic Fibrosis, 16(4), 471–474.

https://doi.org/10.1016/j.jcf.2017.03.007

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5. https://doi.org/10.1017/jns.2016.41

Patel, K., Gadewar, M., Tripathi, R., Prasad, S. K., & Patel, D. K. (2012). A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid “ Harmine.” Asian Pacific Journal of Tropical Biomedicine, 2(8), 660–664.

https://doi.org/10.1016/S2221-1691(12)60116-6

Patil, K. S., Jalalpure, S. S., & Wadekar, R. R. (2009). Effect of baliospermum montanum root extract on phagocytosis by human neutrophils. indian Journal of Pharmaceutical Sciences, 71(1), 68–

71. https://doi.org/10.4103/0250-474X.51966

Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63(7), 1035–1042.

https://doi.org/10.1021/np9904509

Rane, H. S., Bernardo, S. M., Howell, A. B., & Lee, S. A. (2014). Cranberry-derived proanthocyanidins prevent formation of Candida albicans biofilms in artificial urine through biofilm- and adherence-specific mechanisms. Journal of Antimicrobial Chemotherapy, 69(2), 428–436.

https://doi.org/10.1093/jac/dkt398

32

Schwarz, S., & Werckenthin, C. (2000). Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri, Antimicrob Agents Chemother, 44(9), 2530–2533.

Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A., & Pamer, E. G. (2003). TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity, 19(1), 59–70. https://doi.org/10.1016/S1074-7613(03)00171-7

Shah, B., Burg, N., & Pillinger, M. H. (2017). Chapter 11 - Neutrophils. Kelley and Firestein’s Textbook of Rheumatology, 2-Volume Set (Tenth Edit). Elsevier Inc. https://doi.org/10.1016/B978-0-323-31696-5.00011-5

Smith, A. (1994). sword and inflammation : a double-edged, 56(December).

Smith, R. P., Baltch, A. L., Ritz, W. J., Michelsen, P. B., & Bopp, L. H. (2010). IFN-γ enhances killing of methicillin-resistant Staphylococcus aureus by human monocytes more effectively than GM-CSF in the presence of daptomycin and other antibiotics. Cytokine, 51(3), 274–277.

https://doi.org/10.1016/j.cyto.2010.06.004

Stoltz, D. A., Meyerholz, D. K., Pezzulo, A. A., Ramachandran, S., Rogan, P., Davis, G. J., Welsh, M.

J. (2010). Bacterial eradication at birth. Sci Transl Med, 2(29), 1–18.

https://doi.org/10.1126/scitranslmed.3000928.Cystic

Stryjewski, M. E., & Corey, G. R. (2014). Methicillin-Resistant Staphylococcus aureus : An Evolving Pathogen,Clin Infect Dis, 58(Suppl 1), 10–19. https://doi.org/10.1093/cid/cit613

Talwar Gp, Singh O, P. R. et al. (1994). Neutrophils. National Academy of Science of the USA, 91, 8532–8536.

Tecchio, C., Micheletti, A., & Cassatella, M. A. (2014). Neutrophil-derived cytokines: Facts beyond expression. Frontiers in Immunology, 5(OCT), 1–7. https://doi.org/10.3389/fimmu.2014.00508 Thompson, B. A., & Schwabacher, H. (1951). The incidence of penicillin-resistant staphylococci in a

semi-closed community, 350–355.

Thoppil, R. J., & Bishayee, A. (2011). Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World Journal of Hepatology, 3(9), 228–249.

https://doi.org/10.4254/wjh.v3.i9.228

Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management.

Clinical Microbiology Reviews, 28(3), 603–661. https://doi.org/10.1128/CMR.00134-14

Torres, D., Janot, L., Quesniaux, V. F. J., Grivennikov, S. I., Maillet, I., Sedgwick, J. D., … Erard, F.

(2005). Membrane tumor necrosis factor confers partial protection to Listeria infection. American Journal of Pathology, 167(6), 1677–1687. https://doi.org/10.1016/S0002-9440(10)61250-3

33

Tran, T. T., Munita, J. M., Arias, C. A., Santiago, A. De, Genetics, M., & Unit, A. R. (2016). HHS Public Access, (1), 32–53. https://doi.org/10.1111/nyas.12948.Mechanisms

Van Der Fits, L., & Memelink, J. (2000). ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science, 289(5477), 295–297.

https://doi.org/10.1126/science.289.5477.295

Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P & T : A Peer-Reviewed Journal for Formulary Management (2015), 40(4), 277–283. https://doi.org/Article

Venturini, C. L., Macho, A., Arunachalam, K., de Almeida, D. A. T., Rosa, S. I. G., Pavan, E., Martins.

(2018). Vitexin inhibits inflammation in murine ovalbumin-induced allergic asthma. Biomedicine and Pharmacotherapy, 97(2367), 143–151. https://doi.org/10.1016/j.biopha.2017.10.073

Von Köckritz-Blickwede, M., & Nizet, V. (2009). Innate immunity turned inside-out: Antimicrobial defense by phagocyte extracellular traps. Journal of Molecular Medicine, 87(8), 775–783.

https://doi.org/10.1007/s00109-009-0481-0

Wertheim, H. F. L., Melles, D. C., Vos, M. C., Leeuwen, W. Van, Belkum, A. Van, Verbrugh, H. a, &

Nouwen, J. L. (2005). Review The role of nasal carriage in Staphylococcus aureus infections, Lancet Infect Dis, 5(December), 751–762.

Whellan, D. J., Ellis, S. J., Kraus, W. E., Hawthorne, K., Piña, I. L., Keteyian, S. J., Connor, C. M. O.

(2013). NIH Public Access, 151(6), 414–420. https://doi.org/10.1097/CCM.0b013e31823e986a.A Wylie, E. B., & Johnson, M. J. (1962). Effect of penicillin on the cell wall of escherichia coli. BBA -

Biochimica et Biophysica Acta, 59(2), 450–457. https://doi.org/10.1016/0006-3002(62)90195-6

Yamazaki, Y., & Kawano, Y. (2011). Inhibitory effects of herbal alkaloids on the tumor necrosis factor-α and nitric oxide production in lipopolysaccharide-stimulated RAW264 macrophages. Chemical

& Pharmaceutical Bulletin, 59(3), 388–391. https://doi.org/10.1248/cpb.59.388

Yaseen, R., Blodkamp, S., Lüthje, P., Reuner, F., Völlger, L., & Naim, H. Y. (2017). Antimicrobial activity of HL-60 cells compared to primary blood-derived neutrophils against Staphylococcus aureus,Journal of Negative Results in BioMedicine, 1–7. https://doi.org/10.1186/s12952-017-0067-2

Yaseen, R., Branitzki-Heinemann, K., Moubasher, H., Setzer, W., Naim, H., & von Köckritz-Blickwede, M. (2017). In vitro testing of crude natural plant extracts from Costa Rica for their ability to boost innate immune cells against Staphylococcus aureus. Biomedicines, 5(4), 40.

https://doi.org/10.3390/biomedicines5030040

Zwenger, S., & Basu, C. (2008). Plant terpenoids : Applications and future potentials. Biotechnology and Molecular Biology Reviews, 3(February), 1–7. https://doi.org/10.5897/BMBR

34

35

Chapter II

Antimicrobial Activity of HL-60 Cells