• Keine Ergebnisse gefunden

Maximum Likelihood majority rule consensus topologies

Pristocera MAD01

100 Mischocyttarus flavitarsis

Metapolybia cingulata

81

Aglyptacros cf. sulcatus Scolia verticalis

Chyphotes mellipes Sapyga pumila

Aporus niger Dasymutilla aureola

96 Apis mellifera

Chalybion californicum

100

100 Protanilla JAP01

100 Leptanilla GRE01

Leptanilla RSA01

91

Martialis heureka

94

Tatuidris ECU01

99 Onychomyrmex hedleyi

99 Concoctio concenta Prionopelta MAD01 100

84 Amblyopone pallipes

92 Amblyopone mutica

Mystrium mysticum Adetomyrma MAD02

Apomyrma stygia Paraponera clavata 97

61 Discothyrea MAD07

Probolomyrmex tani

100 Proceratium MAD08

Proceratium stictum

100

100 Platythyrea punctata

Platythyrea mocquerysi

100 53

99

Anochetus madagascarensis Leptogenys diminuta Pachycondyla sikorae

Odontomachus coquereli Odontoponera transversa 90

88 Centromyrmex sellaris

85 Psalidomyrmex procerus

93 Loboponera politula Plectroctena ugandensis

98 Hypoponera sakalava

Hypoponera opacior

93 Thaumatomyrmex atrox

Simopelta cf. pergandei

100 100

Cerapachys sexspinus

60

59 Cerapachys augustae Cerapachys larvatus

Simopone marleyi Sphinctomyrmex steinheili 89

92 Cylindromyrmex striatus Acanthostichus kirbyi 100 Leptanilloides nomada

Leptanilloides mckennae 65

73

100 Dorylus laevigatus

Dorylus helvolus Aenictogiton ZAM02 72

100 Aenictus ceylonicus

Aenictus eugenii

100 Cheliomyrmex cf. morosus

100 Neivamyrmex nigrescens Eciton vagans

60

100 Tetraponera punctulata

88 Tetraponera rufonigra

99 Myrcidris epicharis

Pseudomyrmex gracilis 94

Aneuretus simoni

100

Dolichoderus scabridus

91 99

99

100Liometopum occidentale Liometopum apiculatum Tapinoma sessile 100 Technomyrmex difficilis

Technomyrmex MAD05

66

94 Leptomyrmex AUS01 Leptomyrmex erythrocephalus 55 Dorymyrmex bicolor

Forelius pruinosus 53

Papyrius nitidus Azteca ovaticeps Linepithema humile 67

Anonychomyrma gilberti 79 Turneria bidentata

Philidris cordatus

100 Myrmecia pyriformis

Nothomyrmecia macrops

53 100

79

100 Myrmecocystus flaviceps Lasius californicus

72

100 Brachymyrmex depilis

Myrmelachista JTL01 Oecophylla smaragdina Notostigma carazzii 100 Polyergus breviceps

Formica moki

95 93

100 Polyrhachis Cyrto01 Polyrhachis Hagio01 94

Calomyrmex albertisi 72

Camponotus hyatti Camponotus maritimus 88 Camponotus conithorax

Camponotus BCA01 Opisthopsis respiciens Anoplolepis gracilipes

Myrmoteras iriodum Notoncus capitatus

Acropyga acutiventris 84

71 Pseudolasius australis Paratrechina hystrix

Prenolepis albimaculata Prenolepis imparis

100 83

100

100 Myrmica tahoensis Myrmica striolagaster Manica bradleyi

Pogonomyrmex subdentatus

95

Orectognathus versicolor Daceton armigerum

55 Microdaceton tibialis

Eurhopalothrix bolaui Acanthognathus ocellatus Myrmicocrypta cf infuscata

Apterostigma auriculatum

100 Acromyrmex versicolor

Trachymyrmex arizonensis Wasmannia auropunctata Procryptocerus scabriusculus

100 Pyramica hoplites

Strumigenys dicomas 99 Pheidole clydei

Pheidole hyatti Basiceros manni

Pilotrochus besmerus 90 Aphaenogaster albisetosa

Messor andrei 62 Stenamma dyscheres

99 Aphaenogaster swammerdami

100 Aphaenogaster occidentalis Messor denticornis 92

100 Solenopsis molesta Solenopsis xyloni

78 Myrmicaria exigua

Monomorium ergatogyna Vollenhovia emeryi

100 Tetramorium validiusculum Tetramorium caespitum

Mayriella ebbei Xenomyrmex floridanus

Eutetramorium mocquerysi Myrmecina graminicola

Crematogaster emeryana Cardiocondyla mauritanica Leptothorax muscorum complex

Nesomyrmex echinatinodis

99 Meranoplus cf. radamae

Cataulacus MAD02 Terataner MAD02

Pheidologeton affinis Temnothorax rugatulus

Metapone madagascarica Rhopalomastix rothneyi

85

100 Acanthoponera minor Heteroponera panamensis 100

85 Gnamptogenys striatula

Typhlomyrmex rogenhoferi

86 Ectatomma opaciventre

Rhytidoponera chalybaea 0 1

outgroup taxa Leptanillinae

Martialinae

'poneroids'

formicoids

Figure A.4: Unmasked, unpartitioned data set. Maximum Likelihood (majority rule consensus) topology inferred from the unmasked, unpartitioned data set with 5,000 bootstrap replicates (-f a; GTR+Γ, see method section Chapter 3). The tree was rooted withPristocera.

Pristocera MAD01

100 Mischocyttarus flavitarsis

Metapolybia cingulata

79

Aglyptacros cf. sulcatus Scolia verticalis

Chyphotes mellipes

55 Sapyga pumila

Dasymutilla aureola

Aporus niger

94 Chalybion californicum

Apis mellifera

100

100 Protanilla JAP01

100 Leptanilla GRE01

Leptanilla RSA01

93

Martialis heureka

92

Tatuidris ECU01

98 Onychomyrmex hedleyi

99 Concoctio concenta Prionopelta MAD01

99

89 Amblyopone pallipes

91 Amblyopone mutica Mystrium mysticum Adetomyrma MAD02

Apomyrma stygia Paraponera clavata

96 Discothyrea MAD07

Probolomyrmex tani

100 Proceratium MAD08 Proceratium stictum

57 100

100 Platythyrea punctata Platythyrea mocquerysi

100 100

Anochetus madagascarensis Leptogenys diminuta Pachycondyla sikorae

62 Odontoponera transversa Odontomachus coquereli

51

94 Thaumatomyrmex atrox

Simopelta cf. pergandei

93

78 Centromyrmex sellaris

73 Psalidomyrmex procerus

87 Loboponera politula Plectroctena ugandensis

100 Hypoponera sakalava

Hypoponera opacior

100 100

Cerapachys sexspinus Cerapachys augustae Cerapachys larvatus

Simopone marleyi Sphinctomyrmex steinheili

50 89 Cylindromyrmex striatus

Acanthostichus kirbyi

100 Leptanilloides nomada Leptanilloides mckennae

59

100 Dorylus helvolus

Dorylus laevigatus Aenictogiton ZAM02

67

100 Aenictus ceylonicus

Aenictus eugenii

100 Cheliomyrmex cf. morosus

100 Neivamyrmex nigrescens Eciton vagans

100 Tetraponera punctulata

93 Tetraponera rufonigra

97 Myrcidris epicharis

Pseudomyrmex gracilis

71

Aneuretus simoni

100

Dolichoderus scabridus

99 98

100Liometopum apiculatum Liometopum occidentale Tapinoma sessile

100 Technomyrmex difficilis Technomyrmex MAD05

70

93 Leptomyrmex AUS01 Leptomyrmex erythrocephalus

65 Dorymyrmex bicolor Forelius pruinosus

58

Papyrius nitidus Azteca ovaticeps Linepithema humile

64

Anonychomyrma gilberti

65 Turneria bidentata Philidris cordatus

100 Myrmecia pyriformis

Nothomyrmecia macrops

51 100

77

99Lasius californicus Myrmecocystus flaviceps

62

99 Brachymyrmex depilis Myrmelachista JTL01

Oecophylla smaragdina Notostigma carazzii

100 Polyergus breviceps Formica moki

91 63

100 Polyrhachis Cyrto01 Polyrhachis Hagio01

94

Calomyrmex albertisi

95

Camponotus hyatti Camponotus maritimus

86 Camponotus BCA01 Camponotus conithorax Opisthopsis respiciens Anoplolepis gracilipes

Myrmoteras iriodum Notoncus capitatus

Acropyga acutiventris

85

Pseudolasius australis Paratrechina hystrix

55

Prenolepis imparis Prenolepis albimaculata

73 100

73 100

100Myrmica tahoensis Myrmica striolagaster Manica bradleyi

Pogonomyrmex subdentatus

97

Orectognathus versicolor Daceton armigerum

Microdaceton tibialis Eurhopalothrix bolaui Acanthognathus ocellatus Myrmicocrypta cf. infuscata

Apterostigma auriculatum

100 Acromyrmex versicolor

Trachymyrmex arizonensis Wasmannia auropunctata Procryptocerus scabriusculus

100 Pyramica hoplites Strumigenys dicomas

96 Pheidole clydei Pheidole hyatti Basiceros manni

Pilotrochus besmerus

96 Aphaenogaster albisetosa Messor andrei Stenamma dyscheres

94 Aphaenogaster swammerdami

100

Aphaenogaster occidentalis Messor denticornis

86

100 Solenopsis molesta Solenopsis xyloni

83 Myrmicaria exigua Monomorium ergatogyna Vollenhovia emeryi

100 Tetramorium validiusculum Tetramorium caespitum

Mayriella ebbei Xenomyrmex floridanus

Eutetramorium mocquerysi Myrmecina graminicola

Crematogaster emeryana Cardiocondyla mauritanica Leptothorax muscorum complex

Nesomyrmex echinatinodis

75 Meranoplus cf. radamae Cataulacus MAD02 Terataner MAD02

Pheidologeton affinis Temnothorax rugatulus

Metapone madagascarica Rhopalomastix rothneyi

91

100 Acanthoponera minor Heteroponera panamensis

100

88 Typhlomyrmex rogenhoferi Gnamptogenys striatula

96 Ectatomma opaciventre Rhytidoponera chalybaea

0.1

outgroup taxa Leptanillinae

Martialinae

'poneroids'

formicoids

Figure A.5: Masked, unpartitioned data set. Maximum Likelihood (majority rule consensus) topology inferred from the masked, unpartitioned data set with 5,000 boot-strap replicates (-f a; GTR+Γ, see method section Chapter3). The tree was rooted with Pristocera.

100 Mischocyttarus flavitarsis Metapolybia cingulata

62

Aglyptacros cf. sulcatus Scolia verticalis

Chyphotes mellipes

72 Sapyga pumila

Dasymutilla aureola Aporus niger

87 Chalybion californicum

Apis mellifera

100

100 Protanilla JAP01

100 Leptanilla GRE01

Leptanilla RSA01

93

91

Tatuidris ECU01

100 Onychomyrmex hedleyi

100 Concoctio concenta Prionopelta MAD01

100

Amblyopone pallipes Amblyopone mutica Mystrium mysticum Adetomyrma MAD02

Apomyrma stygia Paraponera clavata

98 Discothyrea MAD07

80 Probolomyrmex tani

100 Proceratium MAD08 Proceratium stictum

68 100

100 Platythyrea punctata Platythyrea mocquerysi

100 100

Anochetus madagascarensis Leptogenys diminuta

55

Pachycondyla sikorae

74

Odontoponera transversa Odontomachus coquereli

84

98 Thaumatomyrmex atrox Simopelta cf. pergandei

98

91 Centromyrmex sellaris

89

Psalidomyrmex procerus

96

Loboponera politula Plectroctena ugandensis

100 Hypoponera sakalava Hypoponera opacior

100 100

Cerapachys sexspinus Cerapachys augustae Cerapachys larvatus

Simopone marleyi

62

100 Dorylus laevigatus Dorylus helvolus Aenictogiton ZAM02

73

100 Aenictus ceylonicus Aenictus eugenii

100 Cheliomyrmex cf. morosus

100 Neivamyrmex nigrescens Eciton vagans

66 Acanthostichus kirbyi Cylindromyrmex striatus

100 Leptanilloides mckennae Leptanilloides nomada Sphinctomyrmex steinheili

63 57

100 Tetraponera punctulata

99 Tetraponera rufonigra

98 Myrcidris epicharis Pseudomyrmex gracilis

81

Aneuretus simoni

100

Dolichoderus scabridus

70 97

95

100Liometopum occidentale Liometopum apiculatum Tapinoma sessile

100 Technomyrmex difficilis Technomyrmex MAD05

77

94Leptomyrmex AUS01 Leptomyrmex erythrocephalus

59 Dorymyrmex bicolor Forelius pruinosus

58

Papyrius nitidus

68 Azteca ovaticeps Linepithema humile

69

Anonychomyrma gilberti

64

Turneria bidentata Philidris cordatus

100 Myrmecia pyriformis Nothomyrmecia macrops

100 86 100Lasius californicus

Myrmecocystus flaviceps

70

98 Brachymyrmex depilis Myrmelachista JTL01 Oecophylla smaragdina Notostigma carazzii

100Polyergus breviceps Formica moki

84 64

100Polyrhachis Cyrto01 Polyrhachis Hagio01

96

Calomyrmex albertisi

93Camponotus hyatti Camponotus maritimus

82 Camponotus BCA01 Camponotus conithorax Opisthopsis respiciens Anoplolepis gracilipes

Myrmoteras iriodum Notoncus capitatus

Acropyga acutiventris

88

Pseudolasius australis Paratrechina hystrix

Prenolepis imparis Prenolepis albimaculata

67 100

100

100Myrmica tahoensis Myrmica striolagaster Manica bradleyi

Pogonomyrmex subdentatus

97

Orectognathus versicolor Daceton armigerum

Microdaceton tibialis Eurhopalothrix bolaui Acanthognathus ocellatus

Myrmicocrypta cf. infuscata Apterostigma auriculatum

100 Acromyrmex versicolor Trachymyrmex arizonensis Wasmannia auropunctata Procryptocerus scabriusculus

100 Pyramica hoplites Strumigenys dicomas

99Pheidole clydei Pheidole hyatti Basiceros manni

Pilotrochus besmerus

98 Aphaenogaster albisetosa Messor andrei

79

Stenamma dyscheres

98

Aphaenogaster swammerdami

100

Aphaenogaster occidentalis Messor denticornis

90

100 Solenopsis molesta Solenopsis xyloni

60 Myrmicaria exigua Monomorium ergatogyna Vollenhovia emeryi

100 Tetramorium validiusculum Tetramorium caespitum

Mayriella ebbei Xenomyrmex floridanus

Eutetramorium mocquerysi Myrmecina graminicola

Crematogaster emeryana

65

Cardiocondyla mauritanica Leptothorax muscorum complex

Nesomyrmex echinatinodis

88 Meranoplus cf. radamae Cataulacus MAD02 Terataner MAD02

Pheidologeton affinis Temnothorax rugatulus

Metapone madagascarica Rhopalomastix rothneyi

96

100 Acanthoponera minor Heteroponera panamensis

100

90 Gnamptogenys striatula Typhlomyrmex rogenhoferi Ectatomma opaciventre Rhytidoponera chalybaea

0 1

'poneroids'

Martialis heureka

Leptanillinae

formicoids Martialinae

outgroup taxa

Figure A.6: Masked, partitioned data set.Maximum Likelihood (majority rule consen-sus) topology inferred from the masked, partitioned data set with 5,000 bootstrap replicates (-f a; GTR+Γ, see method section Chapter3). The tree was rooted withPristocera.

LoBraTe

B.1 Flowchart of the LoBraTe Process Pipeline

LoBraTe (Long Branch Test) is a process pipeline designed to infer the behaviour of different branch lengths on Maximum Likelihood inference under different evolution-ary model assumptions. Additionally, LoBraTe calculates branch length relations of correct and incorrect relationships with a special mathematical algorithm including a likelihood ratio test and chi square test. LoBraTe is actually used to test the mathematical algorithm for its efficiency to identify long branch attraction between strongly derived taxa. LoBraTe was also used for the simulation analyses of chapter 5 and 4. For chapter 5, over 800,000 simulations are automatically analyzed with LoBraTe.

4 alignments [INDELIBLE]

JC+INV [0.30]+GAM [1.0]

L = 2000 , 3000 , 4000, 10000 bp

Single ML-analyses [PhyML]

JC+all combinations of ...

- INV [ - ] [0.3] [var]

- GAM [100] [1.0] [0.1] [var]

Branch elongation 1 (stepwise) L = 0.01 , 0.05 , 0.1 , 0.3 , 0.5

for each step

Branch elongation 2 (stepwise) L = 0.1 , 0.3 , 0.5 , 0.7 ... 1.5

for each step

each alignment Given Topologies

for each topology e.g.:

ML examination

100 times

output

Out T1 T2 T3T4 T7T8 T9

T10

L5 L6

2

2 1

Example of a given Topology

Figure B.1: Overview of the LoBraTe simulation and analyse processes.

Output

For each Branch elongation 1

- Reconstruction success of a single setup under 4 different alignment Length per repeat step

0 1 2 3 4

0.1 0.20.30.40.50.60.70.80.9 1 1.11.21.31.4

Occure of LBA, non-LBA & LBAII

Branch elongation2

Alignment

lbaIII nonlba lba_II

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

024681012141618202224262830 Split Support

Alignments

N Symetric Splits

lbaIII non-lba l5+st non-lba l6+st lbaII l5+st lbaII l6+st

- Split occurence of a single setup per repeat step

0 1 2 3 4 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Occure of LBAIII splits

Branch elongation2

Split support %

lbaIII nonlba L5+st nonlba L6+st

- Split occurence of a single setup summarized over 4 different alignment lengths per repeat step

-85000 -80000 -75000 -70000 -65000 -60000 -55000 -50000 -45000 -40000 -35000 -30000 -25000 -20000 -15000 -10000 -5000

02468101214161820222426283032343638404244464850525456586062646668707274767880828486

single best likelihood values

Branch elongation2

likelihood

lbaIII trees nonlba trees lbaII trees

- Maximum Likelihood scores of a single setup per repeat step

0 10 20 30 40 50 60 70 80 90 100

123 456 78910 111213 141516 171819 202122 232425 262728 293031 32

Parametric Bootstrap Support

Branch elongation2

Reconstruction Success for 100 repeats

lbaIII nonlba lbaII

- Reconstruction success of a single setup summarized over 100 repeats

-90000 -85000 -80000 -75000 -70000 -65000 -60000 -55000 -50000 -45000 -40000 -35000 -30000 -25000 -20000 -15000 -10000 -5000

1 234 567 891011 121314 151617 181920 21222324 252627 282930 3132

Likelihood Inference

Branch elongation2

ln-Values

ln_mean ln_max ln_min

- Maximum Likelihood scores of a single setup summarized over 100 repeats

0 10 20 30 40 50 60 70 80 90 100

123 45 678 9101112 131415 1617 181920 212223 2425 262728 293031 32

Parameter Inference

Branch elongation2

Values

gamma_mean gamma_max gamma_min invar_mean invar_max invar_min

- Parameter estimates of a single setup summarized over 100 repeats

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013

0 2 4 6 81012141618202224262830323436384042444648

single nce/nc ratios

ML trees

likelihood

lbaIII trees nonlba trees nonlba trees

- Branch length calculation of a single setup per repeat step

Figure B.2: Overview of single LoBraTe output plots.

RAxTAX

C.1 Flowchart of the RAxTAX Process Pipeline

RAxTAX is a process pipeline is designed to execute a full phylogenetic analyses starting from raw sequence data and ending by a full Maximum Likelihood analysis.

FigureC.1 gives an schematic overview about optional and stringent starting com-mands and the handling of an optional given taxon-restriction inputfile. FigureC.2 shows all single subprocesses of a full RAxTAX analysis in which only concatenated data is completely analysed. Parallel to this, RAxTAX can completely analyse all single masked and unmasked files within the same process run.

Restriction File (optional) Commands

(stringent) Raw Data (stringent)

Trees

RAxTAX

Infofiles

Commands

-Alignment Method (stringent) -Refinement (optional) -Likelihood Method (stringent) -Substitution Model (stringent) -Model Parameters (stringent) -Number of Bootstrap Replicates (optional)

Restriction File

-Taxa which should be excluded before a RAxTAX process run have to be named in the same line - Starting from the first line, demand RAxTAX runs are connected in series - Output files are stored with different prefix names for each process run

Figure C.1: Schematic overview about input and output of RAxTAX.

RAxTAX

Raw Sequence Data (FASTA)

Multiple Sequence Alignment

Alignment Refinement

Alignment Masking

Sequence Concatenation

Alignment Evaluation

FASTA to PHYLIP Tree Reconstruction

Tree Evaluation

l-ins-i e-insi g-ins-i

MUSCLE T-COFFEE Dialign-TX

aligned

FASconCAT

03_aliscore ALISCORE

ALICUT

aligned/refined/

masked

info Listfile masked

01_raw_data

aligned unaligned

Degap Data

unaligned

02_msa

MUSCLE aligned/

refined

aligned

supermatrix 04_fasconcat

FASconCAT supermatrix

info 05_aligroove1 AliGROOVE

similarity-matrix

06_ml RAxML

PhyML

info supermatrix PHYLIP trees

07_aligroove2 AliGROOVE

Tree-Tag

Make_directory

02_msa

aligned

aligned/refined

Restriction File

YES|NO EXIT

Taxon Exclusion

Figure C.2: Overview of all subprocesses during a complete RAxTAX analysis.

Manual FASconCAT

D.1 Introduction

FASconCAT is designed to concatenate sequence alignment files into one super-matrix file in a convenient manner. The supersuper-matrix, for which different output formats are selectable (FASTA, PHYLIP, NEXUS) can be directly used for phy-logenetic purposes. It considers standard nucleotide sequence alignments, recoded nucleotide sequences (e.g. with the third position of a codon RY coded), and amino acid alignments. Provided structure strings (in dot-bracket format), often used e.g.

in ribosomal RNA analyses, are recognized and concatenated as well. FASconCAT can handle input files in PHYLIP, CLUSTAL and FASTA format in one single run, there has to be no unique input format. Within a sequence file, sequences must have equal length. The software extracts taxon specific associated gene- or struc-ture sequences out of given input files and links them to one string. Missing taxon sequences in single files are replaced either by ’N’ (nucleotide data), ’X’ (amnino acid data) or by ’.’ (structure strings in ’dot-bracket’ format), dependent on their taxon associated data level. It is possible to concatenate nucleotide and amino acid files into one supermatrix file. FASconCAT can read sequences in interleaved and non-interleaved format. For given FASTA files, the program tolerates line breaks in sequences, but not in sequence (taxon) names. Sequence names may only include alphanumeric signs, underscores (_) and blanks. FASconCAT will issue an error prompt and die if any non-alphanumeric sign is encountered in sequence names.

FASconCAT was written on Linux and works on WindowsPCs, Mac OS and Linux running systems. Input files originating from Windows, CRFL line feeds should be converted into Unix (LF) line feeds in advance, especially, if the user changes the operating system. This can be done in several editors like e.g. Bioedit, Notepad++ orScite. FASconCAT usually replaces them, but might not succeed in every instance.

Ambiguities and indels are allowed. Any other sign in sequences, except for those covered by the universal DNA/RNA or amino acid code, will also lead to an error prompt. Structure information (e.g. of ribosomal RNA sequences) are also recognized, analyzed and concatenated. Structure information should be present in each file once and associated with equal taxon names, e.g. “structure”. Otherwise, the software will interrupt with a specific error prompt. FASconCAT provides ad-ditionally information about each input file and the new concatenated supermatrix in .xls format. The file includes single range information of each gene (gene frag-ment or partition) and a list of all concatenated sequences. If structure strings have

been included, it lists the number and percentage of unpaired and paired alignment positions of each single file and the supermatrix file. Optionally, extended infor-mation is provided. The extended inforinfor-mation setting includes reports about e.g.

base composition of single files and the supermatrix file for nucleotide data. Fur-ther, if structure strings in dot-bracket format have been included, the concatenated structure composition of loop and stem positions are printed in a separate .txt file (-i, see below). For a more detailed report about additional information see section

’Usage/Options’.

As another option, FASconCAT can generate NEXUS files of concatenated se-quences, either with commands which can be directly executed in PAUPorMrBayes, or without any specific commands. It is also possible to generate output files in PHYLIP format with relaxed– (unlimited signs) or strict (limited up to ten signs) sequence names while sequences are always printed out as non-interleaved. FAS-conCAT can be started directly via command line or indirectly, guided by menu options.