• Keine Ergebnisse gefunden

Activity of the p90rsk in in vitro matured porcine oocytes was analysed with a kinase assay kit from the company Upstate biotechnology. This kit was used in another study analysing the p90rsk in porcine oocytes (SUGIURA et al., 2002). The kit was applied according to the manufacturer’s instructions and the results retrieved revealed an activity course during in vitro maturation very different from the expected.

The kit uses an S6 kinase specific substrate, not p90rsk specific. As there are two major S6 kinases in vivo, p90rsk and p70S6K (BANERJEE et al., 1990), one has to rule out the possibility of measuring the wrong kinase. SUGIURA et al. (1990) discuss that biochemical and molecular studies indicated that Rsk is the protein kinase responsible for S6 phosphorylation during meiotic maturation of Xenopus oocytes (ERIKSON and MALLER, 1985, 1986, 1989) and furthermore that p70S6K was inactive throughout the maturation period of Xenopus and mouse oocytes (GAVIN and SCHORDERET-SLATKINE; 1997; SCHWAB et al., 1999). Therefore the present and measured S6 kinase activity should be the activity of Rsk. On the basis

of the species specific differences that are already distinct comparing the phosphorylation pattern of a kinase, this argument is to be judged critically.

On top of this the company renamed the kinase assay kit during the course of the studies from ‘S6 kinase assay kit’ to ‘p70S6K assay kit’. An inquiry at the company confirmed this renaming but they also confirmed that it can still be used for analysis of the S6 kinases.

As our results, with the activity being high at the start of maturation and declining during the progress of maturation and also the same picture in in vitro matured oocytes with an addition of the inhibitor U0126, resemble the measured activity for p70S6K in Xenopus oocytes (SCHWAB et al., 1999) we conclude that the measured activity in our studies was not the p90rsk but the p70S6K. SCHWAB et al. (1999) observed that p70S6K activity is present in oocytes before induction of maturation by progesterone and a decrease in activity upon the induction.

As there is no specific substrate for the p90rsk available the method of the ‘In Gel’

renatured kinase assay was conducted to be able to differentiate between the activities of these two S6 kinases. The substrate is added directly into the acrylamide solution and becomes incorporated into the gel matrix. With the following electrophoresis a separation of the two kinases by their molecular weights would be possible and they could be analysed separately. Unfortunately the used protocol adapted from SAMPT et al. (2001) and RUBINFELD and SEGER (2004) did not give any results. These studies dealt with somatic cells which might be one reason for the difficulties in adaption. The protocol for the ‘In-Gel’ renatured kinase assay needs further changes for the analysis of oocytes. FISSORE et al. (1996) performed an ‘In-Gel’ renatured kinase assay for the analysis of MAPK in bovine oocytes. They used approximately 50 oocytes for each time point analysed. Therefore the problem might be the quantity of the protein as we only used 20 oocytes though this is unlikely as another study examining the MAPK activity in porcine oocytes only used 10 oocytes for each time point In an ‘In-Gel’ kinase assay (INOUE et al., 1995).

F Summary

Carolin Schuon

Analysis of the protein kinase p90rsk during in vitro and in vivo maturation of porcine oocytes and its dependence on the mitogen-activated protein kinase (MAPK)

The aim of this study was to elucidate the normal kinetics of the p90rsk during in vitro maturation of porcine oocytes, to analyse interdependence with the MAPK, and to compare the in vitro obtained results with the findings during in vivo oocytes maturation.

The overall success of IVP of embryos remains unsatisfactory low especially in the pig. Insufficient media compositions are thought to be one reason for these facts. To be able to improve the in vitro culture conditions it is necessary to throw light on the molecular basis of oocytes maturation. P90rsk and MAPK are two of the major protein kinases involved in the signal transduction pathway that leads to resumption of meiosis after its first arrest during oocyte maturation. Activation of these two protein kinases results from phosphorylation in which p90rsk is known to be activated by mitogen-activated protein kinase in vitro and probably in vivo via phosphorylation.

Cumulus oocyte complexes were collected from slaughtered pigs and matured in vitro (0, 22, 26, 30, 34, 46 h) without and also with an addition of the MEK-specific inhibitor U0126. For in vivo maturation gilts were stimulated with eCG (600-800 IU).

Maturation was induced 72 h later with hCG (500 IU). Oocytes were obtained surgically (0, 22, 30 h). The samples were submitted to electrophoresis and protein blotting analysis. Enhanced chemiluminescence was used for visualisation. The in vitro matured oocytes were further submitted to a radioactive kinase assay to determine the specific kinase activity.

For the in vitro maturation process it was shown that p90rsk exists in porcine cumulus cells as well as in oocytes and that this kinase becomes phosphorylated during in vitro maturation. With protein blotting analysis of p90rsk, two high-mobility bands were detected prior to GVBD showing that p90rsk is partially phosphorylated already immediately following recovery of the oocytes from the follicles (0 h). The lowest-mobility bands corresponding to full phosphorylation of the molecule were then detected around GVBD and remained present until the end of maturation culture. In addition it was demonstrated that the phosphorylation of p90rsk coincides with the phosphorylation of MAPK. These findings indicated a MAPK dependent phosphorylation of p90rsk. This indication was substantiated by the results of maturation with an addition of the inhibitor U0126 to the maturation medium. Under these conditions GVBD was completely inhibited as well as the phosphorylation of MAPK and p90rsk.

The kinase assay kit for activity analysis that was used in this study revealed an activity pattern resembling the activity pattern shown for the p70S6K in Xenopus and mouse oocytes. It was concluded that the kit is not appropriate to analyse specific p90rsk activity.

Results with in vivo matured oocytes also show a partial phosphorylation at 0 h with a further phosphorylation of p90rsk after 22 h. As expected the phosphorylation of the in vitro matured oocytes was seen at 90 kDa. Instead phosphorylation of the in vivo matured oocytes occurred little below 200 kDa. This is presumably a molecule complex with MAPK not being a component. Therefore the p90rsk molecule in vivo exists as a dimer.

It is concluded that fully grown porcine oocytes possess a partially phosphorylated p90rsk already at the GV stage with a further phosphorylation of the p90rsk molecule occurring between 22-24 h after initiation of cultivation respectively in vivo maturation.

G Zusammenfassung

Carolin Schuon

Analyse der Proteinkinase p90rsk während der In-vitro- und In-vivo-Reifung porziner Eizellen und ihre Abhängigkeit von der Mitogen-activierten Proteinkinase (MAPK)

Ziel dieser Untersuchung war es die Kinetik der p90rsk während der in vitro Reifung porziner Eizellen näher zu charakterisieren, eine gegenseitige Abhängigkeit mit der MAPK zu klären und die in vitro erhaltenen Ergebnisse mit den Abläufen während der in vivo Reifung der Eizellen zu vergleichen.

Der Gesamterfolg der IVP von Embryonen ist immer noch unbefriedigend, insbesondere beim Schwein. Als einer der Gründe hierfür gilt die unzureichende Zusammensetzung der Kulturmedien. Um die In-vitro-Kulturbedingungen verbessern zu können, ist es notwendig die molekularen Vorgänge während der Eizellreifung aufzuklären. Die p90rsk und die MAPK sind zwei der wichtigsten Proteinkinasen, die an dem Signaltransduktionsweg beteiligt sind, der zur Wiederaufnahme der Meiose nach ihrer ersten Arretierung führt. Die Aktivierung dieser beiden Kinase erfolgt durch ihre Phosphorylierung, wobei die p90rsk in vitro und vermutlich auch in vivo durch die MAPK phosphoryliert wird.

Kumulus-Oozyten-Komplexe wurden von Schlachttieren gewonnen und in vitro mit und ohne Zusatz des MEK-spezifischen Hemmstoffes U0126 gereift (0, 22, 26, 30, 34, 46 h). Für die In-vivo-Reifung wurden Jungsauen mit eCG (600-800 I.E.) stimuliert. 72 h später wurde die Reifung mit hCG (500 I.E.) induziert. Die Eizellen wurden chirurgisch gewonnen (0, 22, 30 h). Die Proben wurden mittels Elektrophorese und Immunoblot analysiert. Zur anschließenden Darstellung wurde ein verstärkte Chemilumineszenz eingesetzt. Die in vitro gereiften Eizellen wurden

weiterhin mittels eines radioaktiven Kinase-Assays untersucht, um die spezifische Kinaseaktivität festzustellen.

Für die In-vitro-Reifung konnte gezeigt werden, dass die p90rsk in porzinen Kumuluszellen, sowie in den Eizellen existiert, und dass sie während des Reifungsprozesses phosphoryliert wird. Durch die Untersuchung mittels Immunoblot konnten zwei Banden der p90rsk mit hoher Mobilität vor dem GVBD dargestellt werden. Das bedeutet, dass die p90rsk bereits in den Eizellen direkt nach der Isolierung aus dem Follikel (0 h) teilphosphoryliert vorliegt. Die Banden mit der geringsten Mobilität gleichbedeutend mit der vollständigen Phosphorylierung des Moleküls, waren erst um den Zeitpunkt des GVBD vorhanden und blieben bis zum Endpunkt der Reifung bestehen. Zusätzlich wurde gezeigt, dass die Phosphorylierung der p90rsk zeitlich mit der Phosphorylierung der MAPK zusammenfällt. Diese Ergebnisse wiesen auf eine MAPK-abhängige Phosphorylierung der p90rsk hin. Dieser Hinweis wurde durch die Ergebnisse einer Reifung mit Zusatz des Hemmstoffes U0126 zum Maturationsmedium bestätigt.

Unter diesen Bedingungen wurde der GVBD vollständig verhindert, ebenso wie eine Phosphorylierung der MAPK und der p90rsk.

Der Kinase Assay Kit der zur Untersuchung der spezifischen Kinaseaktivität verwendet wurde, ließ ein Aktivitätsmuster erkennen, das dem der p70S6K in Xenopus- und Mauseizellen ähnelt. Daraus wurde geschlossen, das sich dieser Kit nicht zur Untersuchung der spezifischen Aktivität der p90rsk eignet.

Die Ergebnisse der Untersuchung der in vivo gereiften Eizellen zeigten ebenfalls eine Teilphosphorylierung nach 0 h und eine zunehmende Phosphorylierung nach 22 h.

Wie erwartet war die Phosphorylierung bei den in vitro gereiften Eizellen bei etwa 90 kDa zu sehen, bei den in vivo gereiften Eizellen hingegen etwas unterhalb von 200 kDa. Es handelt sich vermutlich um einen Molekülkomplex, von dem gezeigt werden konnte, das die MAPK nicht beteiligt ist. Daher liegt das p90rsk Molekül in vivo als Dimer vor.

Es wurde geschlussfolgert, dass ausgewachsene porzine Eizellen eine bereits teilphosphorylierte p90rsk im GV Stadium enthalten. Eine weitere Phosphorylierung

des Moleküls erfolgt zwischen 22 und 24 h nach Beginn der Kultivierung bzw. Start der In-vivo-Reifung.

H References

ABRIEU, A., M. DORÉE and D. FISHER (2001):

The interplay between cyclin-B-Cdc2 kinase (MPF) and MAP kinase during maturation of oocytes.

J. Cell Sci. 114, 257-267

AHN, N.G. and E.G. KREBS (1990):

Evidence for an epidermal growth factor-stimulated protein kinase cascade in Swiss 3T3 cells.

J. Biol. Chem. 265, 495-501

ANDERSON, N.G., J.L. MALLER, N.K. TONKS and T.W. STURGILL (1990):

Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase.

Nature 343, 651-653

ARAKI, K., K. NAITO, S. HARAGUCHI, R. SUZUKI, M. YOKOYAMA, M. INOUE, S. AIZAWA, Y.

TOYODA and E. SATO (1996):

Meiotic abnormalities of c-mos knockout mouse oocytes: activation after first meiosis or entrance into third meiotic metaphase.

Biol. Reprod. 55, 1315-1324

ARION, D., L. MEIJER, L. BRIZUELA and D. BEACH (1988):

Cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF.

Cell 55, 371-378

ATHERTON-FESSLER, S., F. LIU, B. GABRIELLI, M.S. LEE, C.Y. PENG and H. PIWNICA-WORMS (1994):

Cell cycle regulation of the p34cdc2 inhibitory kinases.

Mol. Biol. Cell 5, 989-1001 BACHVAROVA, R. (1985):

Gene expression during oogenesis and oocyte development in mammals.

In: Developmental Biology. A Comprehensive Synthesis, Vol. 1, Oogenesis; L. W. Browder ed., pp.

453-524. Plenum, New York BACHVAROVA, R. (1988):

Gene expression during growth and meiotic maturation of mouse oocytes.

In: Meiotic Inhibition, Molecular Control of Meiosis: Progress in Clinical and Biological Research;

Haseltine and N. L. First eds., pp. 67-86. Liss, New York BALAKIER, H. (1978):

Induction of maturation in small oocytes from sexually immature mice by fusion with meiotic or mitotic cells.

Exp. Cell Res. 112, 137-141

BALLOU, L.M., H. LUTHER and G. THOMAS (1991):

MAP2 kinase and 70K S6 kinase lie on distinct signalling pathways.

Nature 349, 348-350

BANERJEE, P., M.F. AHMAD, J.R. GROVE, C. KOZLOSKY, D.J. PRICE and J. AVRUCH (1990):

Molecular structure of a major insulin/Mitogen-activated 70-kDa S6 protein kinase.

Proc. Natl. Acad. Sci. USA 87, 8550-8554 BAR-AMI, S. and A. TSAFRIRI (1981):

Acquisition of meiotic competence in the rat: role of gonadotropin and estrogen.

Gamete Res. 4, 463-472

BELLE, R., J. DERANCOURT, R. POULHE, J.P. CAPONY, R. OZON and O. MULNER-LORILLON (1989):

A purified complex from Xenopus oocytes contains a p47 protein, an in vivo substrate of MPF, and a p30 protein respectively homologous to elongation factor EF-1 gamma and EF-1 beta.

FEBS Lett. 255(1), 101-104

BHATT, R.R. and J.E FERRELL JR. (1999):

The protein kinase p90 rsk as an essential mediator of cytostatic factor activity.

Science 286, 1362-1365

BJØRBÆCK, C., Y. ZHAO and D.E. MOLLER (1995):

Divergent functional roles for p90rsk kinase domains.

J. Biol. Chem. 270, 18848-18852

BLACK, J.L. and B.H. ERICKSON (1968):

Oogenesis and ovarian development in the prenatal pig.

Anat. Res. 161, 45-56

BLONDIN, P., D. BOUSQUET, H. TWAGIRAMUNGU, F. BARNES and M.A. SIRARD (2002):

Manipulation of follicular development to produce developmentally competent bovine oocytes.

Biol. Reprod. 66, 38-43

BOOHER, R.N., P.S. HOLMAN and A. FATTAEY (1997):

Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity.

J. Biol. Chem. 272, 22300-22306 BORUM, K. (1966):

Oogenesis in the mouse. A study of the origin of the mature ova.

Exp. Cell Res. 45, 39-47

BUCCIONE, R., A.C. SCHROEDER and J.J. EPPIG (1990):

Interactions between somatic cells and germ cells throughout mammalian oogenesis.

Biol. Reprod. 43, 543-547

CHANG, D.C., N. XU and K.Q. LUO (2003):

Degradation of cyclin B is required for the onset of anaphase in mammalian cells.

J. Biol. Chem. 278, 37865-37873

CHAPMAN, D.L. and D.J. WOLGEMUTH (1994):

Regulation of M-phase promoting factor activity during development of mouse male germ cells.

Dev. Biol. 165(2), 500-506

CHEN, R.H., C. ABATE and J. BLENIS (1993):

Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase.

Proc. Natl. Acad. Sci. 90, 10952-10956

CHEN, R.H., C. SARNECKI and J.BLENIS (1992):

Nuclear localization and regulation of erk- and rsk-encoded protein kinases.

Mol. Cell. Biol. 12, 915-927

Induction of precocious germinal vesicle breakdown (GVB) by GVB-incompetent mouse oocytes:

possible role of mitogen-activated protein kinases rather than p34cdc2 kinase.

Biol. Reprod. 52, 895-902

CHOI, T., K. FUKASAWA, R. ZHOU, L. TESSAROLLO, K. BORROR, J. RESAU and G.F. VANDE WOUDE (1996):

The Mos/mitogen-activated protein kinase (MAPK) pathway regulates the size and degradation of the first polar body in maturing mouse oocytes.

Proc. Natl. Acad. Sci. 93, 7032-7035

CHOU, Y.H., J.R. BISCHOFF, D. BEACH and R.D. GOLDMAN (1990):

Intermediate filament reorganization during mitosis is mediated by p34cdc2 phosphorylation of vimentin.

Cell 62(6), 1063-1071

CHRISTMANN, L., T. JUNG and R.M. MOOR (1994):

MPF components and meiotic competence in growing pig oocytes.

Mol. Reprod. Dev. 38, 85-90

CHUNG, J., C.J. KUO, G.R. CRABTREE and J. BLENIS (1992):

Rapamycin-FKBP specifically blocks growth-dependent activation of and signalling by the 70 kd S6 protein kinases.

Cell 69, 1227-1236

COLLAS, P., E.J. SULLIVAN and F.L. BARNES (1993):

Histone H1 kinase activity in bovine oocytes following calcium stimulation.

Mol. Reprod. Dev. 34, 224-231

COLLAS, P., T. CHANG, C. LONG and J.M. ROBL (1995):

Inactivation of histone H1 kinase by Ca 2+ in rabbit oocytes.

Mol. Reprod. Dev. 40, 253-258

COLLEDGE, W.H., M.B.L. CARLTON, G.B. UDY and M.J. EVANS (1994):

Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs.

Nature, 370, 65-67 CRAN, D.G. (1985):

Qualitative and quantitative structural changes during pig oocyte maturation.

J. Reprod. Fertil. 74(1), 237-245

CROSBY, I.M. J.C. OSBORN and R.M. MOOR (1984):

Changes in protein phosphorylation during the maturation of mammalian oocytes in vitro.

J. Exp. Zool. 229, 459-466

CROSS, D.A.E. and C. SMYTHE (1998):

PD 98059 prevents establishment of the spindle assembly checkpoint and inhibits the G2-M transition in meiotic but not mitotic cell cycles in Xenopus.

Exp. Cell Res. 241, 12-22

DALBY, K.N., N. MORRICE, F.B. CAUDWELL, J. AVRUCH and P. COHEN (1998):

Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK.

J. Biol. Chem. 273, 1496-1505 DAVIS, R.J. (1993):

The Mitogen-activated protein kinase signal transduction pathway.

J. Biol. Chem. 268, 14553-14556

DE LA FUENTE R. and J.J. EPPIG (2001) :

Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodelling.

Dev. Biol. 229, 224-236

DE SMEDT, V., N. CROZET and L. GALL (1994):

Morphological and functional changes accompanying the acquisition of meiotic competence in ovarian goat oocyte.

J. Exp. Zool. 269, 128-139

DE VANTÉRY, C., A. STUTZ, J.D. VASSALLI and S. SCHORDERET-SLATKINE (1997):

Acquisition of meiotic competence in growing mouse oocytes is controlled at both translational and posttranslational levels.

Dev. Biol. 187, 43-54

DE VANTÉRY, C., A.C. GAVIN, J.D. VASSALLI and S. SCHORDERET-SLATKINE (1996):

An accumulation of p34cdc2 at the end of mouse oocyte growth correlates with the acquisition of meiotic competence.

Dev. Biol. 174, 335-344

DEDIEU, T., L. GALL, N. CROZET, C. SEVELLEC and S. RUFFINI (1996):

Mitogen-activated protein kinase activity during goat oocyte maturation and the acquisition of meiotic competence.

Mol. Reprod. Dev. 45, 351-358

DELA PENA, E.C., Y. TAKAHASHI, S. KATAGIRI, E.C. ATABAY and M. NAGANO (2002):

Birth of pups after transfer of mouse embryos derived from vitrified preantral follicles.

Reproduction 123, 593-600 DONAHUE, R.D. (1968):

Maturation of the mouse oocyte in vitro I. Sequence and timing of nuclear progression.

J. Exp. Zool. 169, 237-250

DORÉE, M., G. PEAUCELLIER and A. PICARD (1983):

Activity of the maturation-promoting factor and the extent of protein phosphorylation oscillate simultaneously during meiotic maturation of starfish oocytes.

Dev. Biol. 99, 489-501 DOWNS, S.M. (1993):

Factors affecting the resumption of meiotic maturation in mammalian oocytes.

Theriogenology 39, 65-79 DOWNS, S.M. (1995):

Control of the resumption of meiotic maturation in mammalian oocytes.

In: Gametes: The oocyte. (Eds. J.G. Grudzinskas and J.L. Yovich) pp. 150-192, Cambridge University Press, New York

DRAETTA, G., F. LUCA, J. WESTENDORF, L. BRIZUELA, J. RUDERMAN and D. BEACH (1989):

Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF.

Cell 56, 829-838 DUCIBELLA, T. (1996):

The cortical reaction and development of activation competence in mammalian oocytes.

Hum. Reprod. Update. 2(1), 29-42

DUMONT, J., M. UMBHAUER, P. RASSINIER, A. HANAUER and M.H. VERLHAC (2005):

P90rsk is not involved in cytostatic factor arrest in mouse oocytes.

J. Cell. Biol. 169(2), 227-231

DUNPHY, W.G., L. BRIZUELA, D. BEACH and J. NEWPORT (1988):

The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis.

Cell. 54(3), 423-431

EBELING, S., C. BÖSEBECK and B. MEINECKE (2004):

Phosphorylation o Mitogen-activated protein kinase (MAPK) in porcine oocytes and cumulus cells during in vitro maturation.

Vet. Med. Austria/Wien. Tierärztl. Mschr. 91, Suppl.2, S.20 EBELING; S., C. BOESEBECK and B. MEINECKE (2005):

Mitogen-activated protein kinase in porcine cumulus cells.

Reprod. Fert. Dev. 17 (1,2)

Proceedings of the Annual Conference of the International Embryo Transfer Society, Copenhagen, Denmark, 8-12 January 2005

EKHOLM, C. and C. MAGNUSSON (1979):

Rat oocyte maturation: effect of protein synthesis inhibitors.

Biol. Reprod. 21, 1287-1293

ELRICK, R.H. and R.P. PARKER (1966):

The assay of β-emmitting radioisotopes using Cerenkov counting.

Int. J. Appl. Rad. Isot. 17, 4-5 EPPIG, J.J. (1991):

Intercommunication between mammalian oocytes and companion somatic cells.

BioEssays 13, 569-574

EPPIG, J.J. (1993):

Regulation of mammalian oocytes maturation.

In: ADSHI, E.Y. and P.C.K. LEUNG (eds.): The ovary, Raven Press, New York, 185-208 EPPIG, J.J. (1996):

Coordination of nuclear and cytoplasmic maturation in eutherian mammals.

Reprod. Fert. Dev. 8, 485-489

ERIKSON, E. and J.L. MALLER (1985):

A protein kinase from Xenopus eggs specific for ribosomal protein S6.

Proc. Natl. Acad. Sci. 82, 742-746 ERIKSON, E. and J.L. MALLER (1986):

Purification and characterization of a protein kinase from Xenopus eggs highly specific for ribosomal protein S6.

J. Biol. Chem. 261, 350-355

ERIKSON, E. and J.L. MALLER (1989):

In vivo phosphorylation and activation of ribosomal protein S6 kinases during Xenopus oocytes maturation.

J. Biol. Chem. 264, 13711-13717

FAIR, T., P. HYTTEL and T. GREVE (1995):

Bovine oocyte diameter in relation to maturational competence and transcriptional activity.

Mol. Reprod. Dev. 42 (4), 437-442

FAIR, T., S.C. HULSHOF, P. HYTTEL, T. GREVE and M. BOLAND (1997):

Oocyte ultrastructure in bovine primordial to early tertiary follicles.

Anat. Embryol (Berl). 195 (4), 327-336 FAN, H.Y. and Q.Y. SUN (2004):

Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals.

Biol. Reprod. 70, 535-547

FAN, H.Y. C. TONG, L. LIAN, S.W. LI, W.X. GAO, Y. CHENG, D.Y. CHEN, H. SCHATTEN and Q.Y.

SUN (2003a):

Characterization of ribosomal S6 protein kinase p90rsk during meiotic maturation and fertilization in pig oocytes: mitogen-activated protein kinase-associated activation and localization.

Biol. Reprod. 68, 968-977

FAN, H.Y., L.J. HUO, X.Q. MENG, Z.S. ZHONG, Y. HUO, D.Y. CHEN and Q.Y. SUN (2003b):

Involvement of calcium/calmodulin-dependent protein kinase II (CaMKII) in the meiotic maturation and activation of pig oocytes.

Biol. Reprod. 69, 1552-1564 FISHER, T. and J. BLENIS (1996):

Evidence for two catalytically active kinase domains in pp90rsk. Mol. Cell. Biol. 16, 1212-1219

FISSORE, R.A., C.L. HE and G.F. VANDE WOUDE (1996):

Potential role of mitogen-activated protein kinase during meiosis resumption in bovine oocytes.

Biol. Reprod. 55, 1261-1270

FRÖDIN, M. and S. GAMMELTOFT (1999):

Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction.

Mol. Cell. Endocrinol. 151, 65-77

FULKA, J. Jr., T. JUNG and R.M. MOOR (1992):

The fall of biological maturation promoting factor (MPF) and histone H1 kinase activity during anaphase and telophase in mouse oocytes.

Mol. Reprod. Dev. 32, 378-382

FULKA, J., J. MOTLIK, J. FULKA and N. CROZET (1985):

Inhibition of nuclear maturation in fully grown porcine and mouse oocytes after their fusion with growing porcine oocytes.

Inhibition of nuclear maturation in fully grown porcine and mouse oocytes after their fusion with growing porcine oocytes.