• Keine Ergebnisse gefunden

3. Discussion

3.4. Outlook

Despite a novel understanding of the Ubiquitin-proteasome ƉĂƚŚǁĂLJŝŶƉĂŶĐƌĞĂƚŝĐɴ-cell survival and function provided in the current study, many outstanding questions exist, which would be of great interest to further investigate in the near future:

1. The upstream regulators or an upstream signaling pathway that controls the level of FBXO28 protein especially under diabetic conditions.

2. dŚĞ ɴ-cell specific FBXO28 substrates need to be identified. Further studies on the physiologiĐĂů ĨƵŶĐƚŝŽŶƐ ŽĨ ƚŚĞ &yKϮϴ ƐƵďƐƚƌĂƚĞƐ ŝŶ ɴ-cell survival and function are required to understand the molecular mechanisms ŽĨ&yKϮϴĂĐƚŝŽŶŝŶɴ-cell biology.

3. ɴ-cell specific FBXO28 transgene/knockout mice studies would provide further insights into the physiological regulation and function of FBXO28 at the cellular, molecular and organismic level in the control of metabolism.

4. Having established the anti-ĂƉŽƉƚŽƚŝĐ ĞĨĨĞĐƚ ŽĨ h^Wϭ ŝŶŚŝďŝƚŝŽŶ ŝŶ ɴ-cells and isolated human islets in vitro, it is necessary to investigate the impact of USP1 inhibition in ƉĂŶĐƌĞĂƚŝĐɴ-ĐĞůůŝŶƚĞƌŵƐ ŽĨƐƵƌǀŝǀĂůŝŶǀŝǀŽ͘ɴ-cell specific USP1 knockout mice would ƉƌŽǀŝĚĞĨƵƌƚŚĞƌŝŶƐŝŐŚƚƐŝŶƚŽƚŚĞƉŚLJƐŝŽůŽŐŝĐĂůƌŽůĞŽĨh^WϭŝŶɴ-cells in vivo.

5. /ĚĞŶƚŝĨŝĐĂƚŝŽŶŽĨh^Wϭɴ-cell specific substrates, their physiological role in the context of ɴ-cell survival, function, and DDR would reveal therapeutic insightƐ ŝŶ ƌĞƐĐƵŝŶŐ ɴ-cell from DDR induced apoptosis towards diabetes treatment.

6. In depth in vivo experiments, full toxicology and pharmacology and pre-clinical studies with currently available USP1 inhibitors need to be performed in order to develop them as potential therapeutic molecules.

Discussion

91

References

1. Nalepa, G., M. Rolfe, and J.W. Harper, Drug discovery in the ubiquitin–proteasome system. Nature Reviews Drug Discovery, 2006. 5: p. 596.

2. Kratz, A.-S., et al., Fbxo28 promotes mitotic progression and regulates topoisomerase //ɲ-dependent DNA decatenation. Cell Cycle, 2016. 15(24): p. 3419-3431.

3. Cepeda, D., et al., CDK-mediated activation of the SCF(FBXO28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer. EMBO Molecular Medicine, 2013. 5(7): p. 999-1018.

4. Robertson, R.P., Chronic Oxidative Stress as a Central Mechanism for Glucose Toxicity in Pancreatic Islet Beta Cells in Diabetes. Journal of Biological Chemistry, 2004. 279(41): p.

42351-42354.

5. Robertson, R.P. and J.S. Harmon, Diabetes, glucose toxicity, and oxidative stress: A case of doƵďůĞũĞŽƉĂƌĚLJĨŽƌƚŚĞƉĂŶĐƌĞĂƚŝĐŝƐůĞƚɴĐĞůů͘ Free Radical Biology and Medicine, 2006. 41(2): p. 177-184.

6. Broca, C., et al., Proteasome Dysfunction Mediates High Glucose-Induced Apoptosis in Rodent Beta Cells and Human Islets. PLoS ONE, 2014. 9(3): p. e92066.

7. Lefaki, M., N. Papaevgeniou, and N. Chondrogianni, Redox regulation of proteasome function. Redox Biology, 2017. 13: p. 452-458.

8. Wojcik, C., et al., Sweet death: a ubiquitination signal for ERAD substrates; The autonomy of axons: no need for a cell body; A new Wave of complexes; An exciting tubular outfit for muscles; The answer is blowing in the Wnt; Membrane traffic: role in polarity and locomotion. Trends in Cell Biology. 12(10): p. 458.

9. Randle, S.J. and H. Laman, F-box protein interactions with the hallmark pathways in cancer. Seminars in Cancer Biology, 2016. 36: p. 3-17.

10. Butler, A.E., et al., ŝĂďĞƚĞƐƵĞƚŽĂWƌŽŐƌĞƐƐŝǀĞĞĨĞĐƚŝŶɴ-Cell Mass in Rats Transgenic for Human Islet Amyloid Polypeptide (HIP Rat). A New Model for Type 2 Diabetes, 2004.

53(6): p. 1509-1516.

11. Hull, R.L., et al., Islet Amyloid: A Critical Entity in the Pathogenesis of Type 2 Diabetes.

The Journal of Clinical Endocrinology & Metabolism, 2004. 89(8): p. 3629-3643.

12. Janson, J., et al., Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(14): p. 7283-7288.

13. Lorenzo, A., et al., Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature, 1994. 368: p. 756.

14. Casas, S., et al., Impairment of the Ubiquitin-Proteasome Pathway Is a Downstream Endoplasmic Reticulum Stress Response Induced by Extracellular Human Islet Amyloid Polypeptide and ContributĞƐƚŽWĂŶĐƌĞĂƚŝĐɴ-Cell Apoptosis. Diabetes, 2007. 56(9): p.

2284-2294.

15. Huang, C.-j., et al., Induction of endoplasmic reticulum stress-ŝŶĚƵĐĞĚɴ-cell apoptosis and accumulation of polyubiquitinated proteins by human islet amyloid polypeptide.

American Journal of Physiology-Endocrinology and Metabolism, 2007. 293(6): p. E1656-E1662.

Discussion

92

16. Yan, F.-F., et al., A ROLE OF THE UBIQUITIN-PROTEASOME DEGRADATION PATHWAY IN d,/K'E^/^&&//EzK&ɴ-CELL ATP-SENSITIVE POTASSIUM CHANNELS.

American journal of physiology. Cell physiology, 2005. 289(5): p. C1351-C1359.

17. Hartley, T., J. Brumell, and A. Volchuk, Emerging roles for the ubiquitin-proteasome ƐLJƐƚĞŵĂŶĚĂƵƚŽƉŚĂŐLJŝŶƉĂŶĐƌĞĂƚŝĐɴ-cells. American Journal of Physiology-Endocrinology and Metabolism, 2009. 296(1): p. E1-E10.

18. Kitiphongspattana, K., et al., Proteasome Inhibition Alters Glucose-stimulated

;WƌŽͿŝŶƐƵůŝŶ^ĞĐƌĞƚŝŽŶĂŶĚdƵƌŶŽǀĞƌŝŶWĂŶĐƌĞĂƚŝĐɴ-Cells. Journal of Biological Chemistry, 2005. 280(16): p. 15727-15734.

19. Bugliani, M., et al., Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin-proteasome system in pancreatic beta cell dysfunction. Mol Cell Endocrinol, 2013. 367(1-2): p. 1-10.

20. McClurg, U.L. and C.N. Robson, Deubiquitinating enzymes as oncotargets. Oncotarget, 2015.

21. Lopez-Castejon, G. and M.J. Edelmann, Deubiquitinases: Novel Therapeutic Targets in Immune Surveillance? Mediators of Inflammation, 2016. 2016: p. 13.

22. Garcia-Santisteban, I., et al., USP1 deubiquitinase: cellular functions, regulatory

mechanisms and emerging potential as target in cancer therapy. Mol Cancer, 2013. 12:

p. 91.

23. Yu, Z., et al., USP1-UAF1 deubiquitinase complex stabilizes TBK1 and enhances antiviral responses. J Exp Med, 2017. 214(12): p. 3553-3563.

24. Liang, Q., et al., A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat Chem Biol, 2014. 10(4): p. 298-304.

25. Wei, R., et al., Deubiquitinases in cancer. Oncotarget, 2015. 6(15): p. 12872-12889.

26. Oleson, B.J., et al., Nitric Oxide Induces Ataxia Telangiectasia Mutated (ATM) Protein-ĚĞƉĞŶĚĞŶƚɶ,ϮyWƌŽƚĞŝŶ&ŽƌŵĂƚŝŽŶŝŶWĂŶĐƌĞĂƚŝĐɴĞůůƐ͘ The Journal of Biological Chemistry, 2014. 289(16): p. 11454-11464.

27. Jacq, X., et al., Deubiquitylating Enzymes and DNA Damage Response Pathways. Cell Biochemistry and Biophysics, 2013. 67(1): p. 25-43.

28. Sharma, V., et al., Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget, 2016. 7(18): p. 25377-25390.

29. Oleson, B.J., et al., Nitric oxide induces ataxia telangiectasia mutated (ATM) protein-dependent gammaH2AX protein formation in pancreatic beta cells. J Biol Chem, 2014.

289(16): p. 11454-64.

30. Oleson, B.J., et al., Nitric Oxide Suppresses beta-Cell Apoptosis by Inhibiting the DNA Damage Response. Mol Cell Biol, 2016. 36(15): p. 2067-77.

31. Belgardt, B.F., et al., The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat Med, 2015. 21(6): p. 619-27.

32. Tornovsky-Babeay, S., et al., Type 2 diabetes and congenital hyperinsulinism cause DNA double-strand breaks and p53 activity in beta cells. Cell Metab, 2014. 19(1): p. 109-21.

33. Nyblom, H.K., et al., Apoptotic, regenerative, and immune-related signaling in human islets from type 2 diabetes individuals. J Proteome Res, 2009. 8(12): p. 5650-6.

34. Himpe, E., et al., Phenylpropenoic Acid Glucoside from Rooibos Protects Pancreatic Beta Cells against Cell Death Induced by Acute Injury. PLoS One, 2016. 11(6): p. e0157604.

Discussion

93

35. Tornovsky-Babeay, S., et al., Type 2 Diabetes and Congenital Hyperinsulinism Cause DNA Double-^ƚƌĂŶĚƌĞĂŬƐĂŶĚƉϱϯĐƚŝǀŝƚLJŝŶɴĞůůƐ͘ Cell Metabolism, 2014. 19(1): p. 109-121.

36. Nijman, S.M.B., et al., The Deubiquitinating Enzyme USP1 Regulates the Fanconi Anemia Pathway. Molecular Cell, 2005. 17(3): p. 331-339.

37. Polo, S.E. and S.P. Jackson, Dynamics of DNA damage response proteins at DNA breaks:

a focus on protein modifications. Genes & Development, 2011. 25(5): p. 409-433.

38. Wang, X., P.R. Andreassen, and A.D. D'Andrea, Functional Interaction of

Monoubiquitinated FANCD2 and BRCA2/FANCD1 in Chromatin. Molecular and Cellular Biology, 2004. 24(13): p. 5850-5862.

39. Ciccia, A. and S.J. Elledge, The DNA Damage Response: Making It Safe to Play with Knives. Molecular Cell, 2010. 40(2): p. 179-204.

40. Caldecott, K.W., Single-strand break repair and genetic disease. Nat Rev Genet, 2008.

9(8): p. 619-631.

Appendix

94