• Keine Ergebnisse gefunden

Chapter 4 Discussion

4.6 Outlook

Given the recent advances in the field of single-molecule manipulation, the Nb-GFP complex offers great opportunities for further expansion, e.g. in the cut-and-paste technology [Kufer et al., 2008]. Direct follow-up experiments at this point could include identifying three different types of Nanobodies suited as handles to immo-bilize, pick up and deposit elsewhere GFP-tagged proteins. Based on the findings presented in [Kirchhofer et al., 2010], one of the two steps of this GFP takeover could be realized by the pair referred to as Minimizer and Enhancer in the abovementioned publication, since these two binders display such a hierarchical behavior. Thanks to the popularity of the GFP-tag, most proteins have already been fused to the GFP, which makes this strategy straightforward and ready to use once such a GFP-binder based system has been established.

Appendix A

List of abbreviations

◦ 3D - 3-dimensional

◦ 5hmC - 5-hydroxymethylcytosine

◦ Å - Ångstrom

◦ AFM - Atomic Force Microscope

◦ bp - basepair

◦ BG - benzylguanine

◦ CDR - Complementarity Determining Region

◦ CE - coupling efficiency

◦ CoA - Coenzyme A

◦ Co-IP - Co-Immunoprecipitation

◦ CpG - C-phosphate-G

◦ dCTP - deoxycytidine triphosphate

◦ ddH2O - double-distilled water

◦ DMF - dimethylformamide

◦ DNA - deoxyribonucleic acid

◦ dsDNA - double-stranded deoxyribonucleic acid

◦ dNTP - deoxynucleotide

◦ EDC - 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

106 A. List of abbreviations

◦ dUTP - deoxyuridine triphosphate

◦ eGFP - enhanced Green Fluorescence Protein

◦ EMSA - Electrophoretic Mobility Shift Assay

◦ Fab - Fragment, antigen-binding

◦ FJC - Freely Jointed Chain

◦ fN - femtonewton

◦ FRET - Fluorescence Resonance Energy Transfer

◦ GA - Gibson Assembly

◦ GFP - Green Fluorescence Protein

◦ h - hour

◦ hAGT - human O6-alkylguanine-DNA alkyl transferase

◦ HCAb - heavy-chain-only antibody

◦ HisTag - polyhistidine-tag

◦ Ig - immunoglobulin

◦ kB - Boltzmann constant

◦ Kd - dissociation constant

◦ kb - kilobase

◦ kDa - kilodalton

◦ LB - lysogeny broth

◦ MBD - Methyl-DNA Binding Domain

◦ MeCP2- methyl CpG binding protein 2

◦ MFA - Molecular Force Assay

◦ MFB - Molecular Force Balance

◦ min - minute

◦ mm - millimeter

◦ mM - millimolar

◦ MT - Magnetic Tweezers

◦ µl - microliter

◦ µM - micromolar

107

◦ NA - Neutravidin

◦ Nb - Nanobody

◦ NF - normalization factor

◦ NHS - N-hydroxysuccinimide

◦ nm - nanometer

◦ NMR - Nuclear Magnetic Resonance

◦ PAGE - Polyacrylamide Gel Electrophoresis

◦ PBS - Phosphate-buffered saline

◦ PCR - Polymerase Chain Reaction

◦ PDMS - polydimethylsiloxane

◦ PEG - Polyethylene Glycol

◦ PMSF - phenylmethanesulfonyl fluoride

◦ pN - piconewton

◦ RNA - Ribonucleic acid

◦ RTT - Rett Syndrome

◦ s - second

◦ SA - streptavidin

◦ sfGFP - superfolder Green Fluorescence Protein

◦ SFP - 4´-phosphopantetheinyl transferase

◦ SM - Single-Molecule

◦ TCEP - tris(2-carboxyethyl)phosphine

◦ UHRF1 - Ubiquitin-like containing PHD and RING finger domains 1

◦ UV - ultraviolet

◦ v/v - volume/volume

◦ WDR - WW domain-binding region

◦ WLC - Wormlike Chain

◦ wtGFP - wild-type Green Fluorescence Protein

◦ Y2H - Yeast Two-Hybrid

Appendix B

Declaration

Kamila Klamecka

Bibliography

Adams, V. H., McBryant, S. J., Wade, P. A., Woodcock, C. L. and Hansen, J. C., 2007. Intrinsic disorder and autonomous domain function in the multifunctional nuclear protein, MeCP2. Journal of Biological Chemistry 282(20), pp. 15057–

15064.

Albrecht, C., Blank, K., Lalic-Mülthaler, M., Hirler, S., Mai, T., Gilbert, I., Schiff-mann, S., Bayer, T., Clausen-SchauSchiff-mann, H. and Gaub, H. E., 2003. Dna: A programmable force sensor. Science 301(5631), pp. 367–370.

Allen, S., Davies, J., Dawkes, A. C., Davies, M. C., Edwards, J. C., Parker, M. C., Roberts, C. J., Sefton, J., Tendler, S. J. B. and Williams, P. M., 1996. In situ observation of streptavidin-biotin binding on an immunoassay well surface using an atomic force microscope. FEBS Letters 390(2), pp. 161–164.

Altintas, I., Kok, R. J. and Schiffelers, R. M., 2012. Targeting epidermal growth factor receptor in tumors: from conventional monoclonal antibodies via heavy chain-only antibodies to nanobodies. Eur J Pharm Sci 45(4), pp. 399–407.

Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U. and Zoghbi, H. Y., 1999. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2), pp. 185–188.

Amstutz, P., Koch, H., Binz, H. K., Deuber, S. A. and Plückthun, A., 2006. Rapid selection of specific MAP kinase-binders from designed ankyrin repeat protein libraries. Protein Engineering Design and Selection 19(5), pp. 219–229.

Arbabi Ghahroudi, M., Desmyter, A., Wyns, L., Hamers, R. and Muyldermans, S., 1997. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414(3), pp. 521–6.

Aschenbrenner, D., Pippig, D. A., Klamecka, K., Limmer, K., Leonhardt, H. and

112 BIBLIOGRAPHY Gaub, H. E., 2014. Parallel force assay for protein-protein interactions. PLoS ONE 9(12), pp. e115049.

Baker, S. A., Chen, L., Wilkins, A. D., Yu, P., Lichtarge, O. and Zoghbi, H. Y., 2013.

An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell 152(5), pp. 984–996.

Baral, T. N., Magez, S., Stijlemans, B., Conrath, K., Vanhollebeke, B., Pays, E., Muyldermans, S. and De Baetselier, P., 2006. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat Med 12(5), pp. 580–4.

Barchuk, A., Cristino, A., Kucharski, R., Costa, L., Simoes, Z. and Maleszka, R., 2007. Molecular determinants of caste differentiation in the highly eusocial hon-eybee Apis mellifera. BMC Developmental Biology 7(1), pp. 70.

Bashor, C. J., Horwitz, A. A., Peisajovich, S. G. and Lim, W. A., 2010. Rewiring cells: Synthetic biology as a tool to interrogate the organizational principles of living systems. Annual Review of Biophysics 39(1), pp. 515–537.

Becker, A., Allmann, L., Hofstätter, M., Casà, V., Weber, P., Lehmkuhl, A., Herce, H. D. and Cardoso, M. C., 2013. Direct homo- and hetero-interactions of MeCP2 and MBD2. PLoS ONE 8(1), pp. e53730.

Bell, J. T. and Spector, T. D., 2011. A twin approach to unraveling epigenetics.

Trends in Genetics 27(3), pp. 116 – 125.

Bhattacharyya, R. P., Reményi, A., Yeh, B. J. and Lim, W. A., 2006. Domains, motifs, and scaffolds: The role of modular interactions in the evolution and wiring of cell signaling circuits. Annual Review of Biochemistry 75(1), pp. 655–680.

Binnig, G., Quate, C. and Gerber, C., 1986. Atomic Force Microscope. Phys. Rev.

Lett. 56, pp. 930–933.

Binz, H., Stumpp, M. T., Forrer, P., Amstutz, P. and Pluckthun, A., 2003. Designing repeat proteins: Well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. Journal of Molecular Biology 332(2), pp. 489 – 503.

Bird, A. P., 1986. CpG-rich islands and the function of DNA methylation. Nature 321(6067), pp. 209–213.

Bogdanović, O. and Veenstra, G., 2009. DNA methylation and methyl-CpG binding

BIBLIOGRAPHY 113 proteins: developmental requirements and function. Chromosoma 118(5), pp. 549–

565.

Brero, A., Easwaran, H. P., Nowak, D., Grunewald, I., Cremer, T., Leonhardt, H. and Cardoso, M. C., 2005. Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation. The Journal of Cell Biology 169(5), pp. 733–743.

Broisat, A., Hernot, S., Toczek, J., De Vos, J., Riou, L. M., Martin, S., Ahmadi, M., Thielens, N., Wernery, U., Caveliers, V., Muyldermans, S., Lahoutte, T., Fa-gret, D., Ghezzi, C. and Devoogdt, N., 2012. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res 110(7), pp. 927–37.

Bronner, C., Achour, M., Arima, Y., Chataigneau, T., Saya, H. and Schini-Kerth, V. B., 2007. The {UHRF} family: Oncogenes that are drugable targets for cancer therapy in the near future? Pharmacology & Therapeutics 115(3), pp. 419–434.

Buschdorf, J. P. and Strätling, W. H., 2004. A WW domain binding region in methyl-CpG-binding protein MeCP2: impact on Rett syndrome. Journal of Molecular Medicine 82(2), pp. 135–143.

Butt, H. J. and Jaschke, M., 1995. Calculation of thermal noise in atomic force microscopy. Nanotechnology 6(1), pp. 1–7.

Chaiet, L. and Wolf, F. J., 1964. The properties of streptavidin, a biotin-binding protein produced by Streptomycetes. Archives of Biochemistry and Biophysics 106(0), pp. 1 – 5.

Chakravarty, R., Goel, S. and Cai, W., 2014. Nanobody: the magic bullet for molecular imaging? Theranostics 4(4), pp. 386–98.

Chalfie, M., 1995. Green Fluorescent Protein. Photochemistry and Photobiology 62(4), pp. 651–656.

Clausen-Schaumann, H., Rief, M., Tolksdorf, C. and Gaub, H. E., 2000. Mechanical stability of single DNA molecules. Biophysical Journal 78(4), pp. 1997–2007.

Colhoun, E. H. and Smith, M. V., 1960. Neurohormonal properties of royal jelly.

Nature 188(4753), pp. 854–855.

Cortez-Retamozo, V., Backmann, N., Senter, P. D., Wernery, U., De Baetselier, P., Muyldermans, S. and Revets, H., 2004. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res 64(8), pp. 2853–7.

114 BIBLIOGRAPHY Cost, A.-L., Ringer, P., Chrostek-Grashoff, A. and Grashoff, C., 2015. How to mea-sure molecular forces in cells: A guide to evaluating genetically-encoded FRET-based tension sensors. Cellular and Molecular Bioengineering 8(1), pp. 96–105.

Crick, F. and Hughes, A., 1950. The physical properties of cytoplasm: A study by means of the magnetic particle method Part I. experimental. Experimental Cell Research 1(1), pp. 37–80.

Daniel, J. M. and Reynolds, A. B., 1999. The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Molecular and Cellular Biology 19(5), pp. 3614–3623.

De Groeve, K., Deschacht, N., De Koninck, C., Caveliers, V., Lahoutte, T., De-voogdt, N., Muyldermans, S., De Baetselier, P. and Raes, G., 2010. Nanobodies as tools for in vivo imaging of specific immune cell types. J Nucl Med 51(5), pp. 782–9.

Dekker, N. H., Abels, J. A., Veenhuizen, P. T. M., Bruinink, M. M. and Dekker, C., 2004. Joining of long double-stranded RNA molecules through controlled over-hangs. Nucleic Acids Research 32(18), pp. e140–e140.

D’Huyvetter, M., Aerts, A., Xavier, C., Vaneycken, I., Devoogdt, N., Gijs, M., Im-pens, N., Baatout, S., Ponsard, B., Muyldermans, S., Caveliers, V. and Lahoutte, T., 2012. Development of 177Lu-nanobodies for radioimmunotherapy of HER2-positive breast cancer: evaluation of different bifunctional chelators. Contrast Media Mol Imaging 7(2), pp. 254–64.

Dietz, H. and Rief, M., 2004. Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proceedings of the National Academy of Sci-ences of the United States of America 101(46), pp. 16192–16197.

Els Conrath, K., Lauwereys, M., Wyns, L. and Muyldermans, S., 2001. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. Journal of Biological Chemistry 276(10), pp. 7346–7350.

Evans, E. and Williams, P., 2002. Dynamic force spectroscopy. In: F. Flyvb-jerg, F. JÃijlicher, P. Ormos and F. David (eds), Physics of bio-molecules and cells. Physique des biomolécules et des cellules, Les Houches - Ecole dâĂŹEte de Physique Theorique, Vol. 75, Springer Berlin Heidelberg, pp. 145–204.

Evans, E., Ritchie, K. and Merkel, R., 1995. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophysical Journal 68(6), pp. 2580 – 2587.

BIBLIOGRAPHY 115 Fatemi, M., Hermann, A., Gowher, H. and Jeltsch, A., 2002. Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. European Journal of Biochemistry 269(20), pp. 4981–4984.

Filion, G. J. P., Zhenilo, S., Salozhin, S., Yamada, D., Prokhortchouk, E. and Defos-sez, P.-A., 2006. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Molecular and Cellular Biology 26(1), pp. 169–181.

Flower, D. R., 1996. The lipocalin protein family: structure and function. Biochem-ical Journal 318(Pt 1), pp. 1–14.

Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., Heine-Suner, D., Cigudosa, J. C., Urioste, M., Benitez, J., Boix-Chornet, M., Sanchez-Aguilera, A., Ling, C., Carlsson, E., Poulsen, P., Vaag, A., Stephan, Z., Spector, T. D., Wu, Y.-Z., Plass, C. and Esteller, M., 2005. Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America 102(30), pp. 10604–10609.

Freitag, S., Le Trong, I., Klumb, L., Stayton, P. S. and Stenkamp, R. E., 1997.

Structural studies of the streptavidin binding loop. Protein Science : A Publication of the Protein Society 6(6), pp. 1157–1166.

Gainkam, L. O., Huang, L., Caveliers, V., Keyaerts, M., Hernot, S., Vaneycken, I., Vanhove, C., Revets, H., De Baetselier, P. and Lahoutte, T., 2008. Compari-son of the biodistribution and tumor targeting of two 99mtc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J Nucl Med 49(5), pp. 788–

95.

Georgel, P. T., Horowitz-Scherer, R. A., Adkins, N., Woodcock, C. L., Wade, P. A.

and Hansen, J. C., 2003. Chromatin compaction by human MeCP2: Assembly of novel secondary chromatin structures in the absence of DNA methylation. Journal of Biological Chemistry 278(34), pp. 32181–32188.

Ghosh, R. P., Horowitz-Scherer, R. A., Nikitina, T., Gierasch, L. M. and Woodcock, C. L., 2008. Rett syndrome-causing mutations in human MeCP2 result in diverse structural changes that impact folding and DNA interactions. Journal of Biological Chemistry 283(29), pp. 20523–20534.

Ghosh, R. P., Horowitz-Scherer, R. A., Nikitina, T., Shlyakhtenko, L. S. and Wood-cock, C. L., 2010a. MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Molecular and Cellular Biology 30(19), pp. 4656–4670.

116 BIBLIOGRAPHY Ghosh, R. P., Nikitina, T., Horowitz-Scherer, R. A., Gierasch, L. M., Uversky, V. N., Hite, K., Hansen, J. C. and Woodcock, C. L., 2010b. Unique physical properties and interactions of the domains of methylated DNA binding protein 2. Biochem-istry 49(20), pp. 4395–4410.

Goethals, L. R., Bos, T. J., Baeyens, L., De Geeter, F., Devoogdt, N. and Lahoutte, T., 2014. Camelid reporter gene imaging: a generic method for in vivo cell tracking.

EJNMMI Res 4, pp. 32.

Gosse, C. and Croquette, V., 2002. Magnetic Tweezers: Micromanipulation and force measurement at the molecular level. Biophysical Journal 82(6), pp. 3314 – 3329.

Green, N. M., 1975. Avidin. Advances in Protein Chemistry, Vol. 29, Academic Press, pp. 85 – 133.

Halford, S. E. and Marko, J. F., 2004. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Research 32(10), pp. 3040–3052.

Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hammers, C., Songa, E. B., Bendahman, N. and Hammers, R., 1993. Naturally occurring antibodies devoid of light chains. Nature 363, pp. 446–448.

Hendrich, B. and Bird, A., 1998. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Molecular and Cellular Biology 18(11), pp. 6538–6547.

Herce, H. D., Deng, W., Helma, J., Leonhardt, H. and Cardoso, M. C., 2013. Visual-ization and targeted disruption of protein interactions in living cells. Nat Commun 4, pp. 2660.

Hmila, I., Saerens, D., Ben Abderrazek, R., Vincke, C., Abidi, N., Benlasfar, Z., Govaert, J., El Ayeb, M., Bouhaouala-Zahar, B. and Muyldermans, S., 2010. A bispecific nanobody to provide full protection against lethal scorpion envenoming.

FASEB J 24(9), pp. 3479–89.

Ho, D., Dose, C., Albrecht, C. H., Severin, P., Falter, K., Dervan, P. B. and Gaub, H. E., 2009. Quantitative detection of small molecule/DNA complexes employing a force-based and label-free dna-microarray. Biophysical Journal 96(11), pp. 4661 – 4671.

Ho, K. L., McNae, I. W., Schmiedeberg, L., Klose, R. J., Bird, A. P. and Walkinshaw, M. D., 2008. MeCP2 binding to {DNA} depends upon hydration at methyl-CpG.

Molecular Cell 29(4), pp. 525 – 531.

BIBLIOGRAPHY 117 Holliday, R., 2006. Epigenetics: A historical overview. Epigenetics 1(2), pp. 76–80.

Hopfner, R., Mousli, M., Jeltsch, J.-M., Voulgaris, A., Lutz, Y., Marin, C., Bellocq, J.-P., Oudet, P. and Bronner, C., 2000. ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIalpha expression. Cancer Research 60(1), pp. 121–128.

Howarth, M., Chinnapen, D. J.-F., Gerrow, K., Dorrestein, P. C., Grandy, M. R., Kelleher, N. L., El-Husseini, A. and Ting, A. Y., 2006. A monovalent streptavidin with a single femtomolar biotin binding site. Nat Meth 3(4), pp. 267–273.

Jeltsch, A., 2006. On the enzymatic properties of Dnmt1: Specificity, processivity, mechanism of linear diffusion and allosteric regulation of the enzyme. Epigenetics 1(2), pp. 63–66.

Jørgensen, H. F., Ben-Porath, I. and Bird, A. P., 2004. Mbd1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains. Molec-ular and CellMolec-ular Biology 24(8), pp. 3387–3395.

Kirchhofer, A., Helma, J., Schmidthals, K., Frauer, C., Cui, S., Karcher, A., Pel-lis, M., Muyldermans, S., Casas-Delucchi, C. S., Cardoso, M. C., Leonhardt, H., Hopfner, K. P. and Rothbauer, U., 2010. Modulation of protein properties in living cells using nanobodies. Nat Struct Mol Biol 17(1), pp. 133–8.

Klose, R. J. and Bird, A. P., 2004. MeCP2 behaves as an elongated monomer that does not stably associate with the Sin3a chromatin remodeling complex. Journal of Biological Chemistry 279(45), pp. 46490–46496.

Klose, R. J., Sarraf, S. A., Schmiedeberg, L., McDermott, S. M., Stancheva, I. and Bird, A. P., 2005. DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Molecular Cell 19(5), pp. 667–678.

Kohler, G. and Milstein, C., 1975. Continuous cultures of fused cells secreting anti-body of predefined specificity. Nature 256(5517), pp. 495–497.

Koide, A., Bailey, C. W., Huang, X. and Koide, S., 1998. The fibronectin type III domain as a scaffold for novel binding proteins. Journal of Molecular Biology 284(4), pp. 1141 – 1151.

Kramers, H., 1940. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), pp. 284 – 304.

Kubala, M. H., Kovtun, O., Alexandrov, K. and Collins, B. M., 2010. Structural and

118 BIBLIOGRAPHY thermodynamic analysis of the GFP:GFP-nanobody complex. Protein Sci 19(12), pp. 2389–401.

Kufer, S. K., Puchner, E. M., Gumpp, H., Liedl, T. and Gaub, H. E., 2008. Single-Molecule Cut-and-Paste surface assembly. Science 319(5863), pp. 594–596.

Kumar, A., Kamboj, S., Malone, B. M., Kudo, S., Twiss, J. L., Czymmek, K. J., LaSalle, J. M. and Schanen, N. C., 2008. Analysis of protein domains and Rett syndrome mutations indicate that multiple regions influence chromatin-binding dynamics of the chromatin-associated protein MECP2 in vivo. Journal of cell science 121(Pt 7), pp. 1128–1137.

Kurzban, G., Gitlin, G., Bayer, E., Wilchek, M. and Horowitz, P., 1990. Biotin binding changes the conformation and decreases tryptophan accessibility of strep-tavidin. Journal of Protein Chemistry 9(6), pp. 673–682.

Lansdorp, B. M. and Saleh, O. A., 2012. Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments. The Review of Scientific Instruments 83(2), pp. 025115.

Lewis, J. D., Meehan, R. R., Henzel, W. J., Maurer-Fogy, I., Jeppesen, P., Klein, F. and Bird, A., 1992. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69(6), pp. 905–914.

Limmer, K., Pippig, D. A., Aschenbrenner, D. and Gaub, H. E., 2014. A force-based, parallel assay for the quantification of protein-DNA interactions. PLoS One.

Lo, Y.-S., Zhu, Y.-J., and Thomas P. Beebe, J., 2001. Loading-rate dependence of individual ligand receptor bond-rupture forces studied by atomic force microscopy.

Langmuir 17(12), pp. 3741–3748.

Marko, J. F. and Siggia, E. D., 1995. Statistical mechanics of supercoiled DNA.

Phys. Rev. E 52, pp. 2912–2938.

Marttila, A. T., Laitinen, O. H., Airenne, K. J., Kulik, T., Bayer, E. A., Wilchek, M.

and Kulomaa, M. S., 2000. Recombinant NeutraLite avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties. {FEBS} Letters 467(1), pp. 31 – 36.

Mohr, F., Döhner, K., Buske, C. and Rawat, V. P. S., 2010. Tet genes: new players in DNA demethylation and important determinants for stemness. Experimental Hematology 39(3), pp. 272–281.

BIBLIOGRAPHY 119 Morfill, J., Kühner, F., Blank, K., Lugmaier, R. A., Sedlmair, J. and Gaub, H. E., 2007. B-S transition in short oligonucleotides. Biophysical Journal 93(7), pp. 2400–

2409.

Morin, J. G. and Hastings, J. W., 1971. Energy transfer in a bioluminescent system.

Journal of Cellular Physiology 77(3), pp. 313–318.

Moy, V., Florin, E. and Gaub, H., 1994. Intermolecular forces and energies between ligands and receptors. Science 266(5183), pp. 257–259.

Muyldermans, S., Atarhouch, T., Saldanha, J., Barbosa, J. and Hamers, R., 1994.

Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Engineering 7(9), pp. 1129–1135.

Nan, X., Meehan, R. R. and Bird, A., 1993. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Research 21(21), pp. 4886–4892.

Nikitina, T., Shi, X., Ghosh, R. P., Horowitz-Scherer, R. A., Hansen, J. C. and Woodcock, C. L., 2007. Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin. Molecular and Cellular Biology 27(3), pp. 864–877.

Nord, K., Gunneriusson, E., Ringdahl, J., Stahl, S., Uhlen, M. and Nygren, P.-A., 1996. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotech 15(8), pp. 772–777.

Oberhauser, A. F., Hansma, P. K., Carrion-Vazquez, M. and Fernandez, J. M., 2001.

Stepwise unfolding of titin under force-clamp atomic force microscopy. Proceedings of the National Academy of Sciences 98(2), pp. 468–472.

Ohlson, S., 2008. Designing transient binding drugs: A new concept for drug discov-ery. Drug Discovery Today 13(9âĂŞ10), pp. 433 – 439.

Overbeke, W. V., Verhelle, A., Everaert, I., Zwaenepoel, O., Vandekerckhove, J., Cuvelier, C., Derave, W. and Gettemans, J., 2014. Chaperone nanobodies pro-tect gelsolin against MT1-MMP degradation and alleviate amyloid burden in the gelsolin amyloidosis mouse model. Mol Ther pp. 1768–1778.

Parry, L. and Clarke, A. R., 2011. The roles of the methyl-CpG binding proteins in cancer. Genes & Cancer 2(6), pp. 618–630.

Paul, W. E., 2003. Fundamental immunology. 5th edn, Lippincott, Philadelphia.

120 BIBLIOGRAPHY Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. and Waldo, G. S., 2006.

Engineering and characterization of a superfolder green fluorescent protein. Nat Biotech 24(1), pp. 79–88.

Petronis, A., 2006. Epigenetics and twins: three variations on the theme. Trends in Genetics 22(7), pp. 347 – 350.

Pippig, D. A., Baumann, F., Strackharn, M., Aschenbrenner, D. and Gaub, H. E., 2014. Protein-DNA chimeras for nano assembly. ACS Nano 8(7), pp. 6551–6555.

Pradhan, S., Bacolla, A., Wells, R. D. and Roberts, R. J., 1999. Recombinant human DNA (cytosine-5) methyltransferase: I. expression, purification, and comparison of de novo and maintenance methylation. Journal of Biological Chemistry 274(46), pp. 33002–33010.

Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. and Cormier, M. J., 1992. Primary structure of the aequorea victoria green-fluorescent protein.

Gene 111(2), pp. 229 – 233.

Ravelli, R. B. G., Gigant, B., Curmi, P. A., Jourdain, I., Lachkar, S., Sobel, A. and Knossow, M., 2004. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428(6979), pp. 198–202.

Rothbauer, U., Zolghadr, K., Tillib, S., Nowak, D., Schermelleh, L., Gahl, A., Back-mann, N., Conrath, K., Muyldermans, S., Cardoso, M. C. and Leonhardt, H., 2006. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3(11), pp. 887–9.

Rudolph, J., 2007. Inhibiting transient protein-protein interactions: lessons from the Cdc25 protein tyrosine phosphatases. Nat Rev Cancer 7(3), pp. 202–211.

Ryabinin, V. A., Boutorine, A. S., Hélène, C., Pyshnyi, D. V. and Sinyakov, A. N., 2004. Oligonucleotide–minor groove binder conjugates and their complexes with complementary DNA: Effect of conjugate structural factors on the thermal stability of duplexes. Nucleosides, Nucleotides and Nucleic Acids 23(5), pp. 789–803.

Schumakovitch, I., Grange, W., Strunz, T., Bertoncini, P., Güntherodt, H.-J. and Hegner, M., 2002. Temperature dependence of unbinding forces between comple-mentary DNA strands. Biophysical Journal 82(1 Pt 1), pp. 517–521.

Severin, P. M. D. and Gaub, H. E., 2012. DNA-protein binding force chip. Small 8(21), pp. 3269–3273.

BIBLIOGRAPHY 121 Severin, P. M. D., Ho, D. and Gaub, H. E., 2011. A high throughput molecular force

assay for protein-DNA interactions. Lab Chip 11, pp. 856–862.

Shimomura, O., Johnson, F. H. and Saiga, Y., 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. Journal of Cellular and Comparative Physiology 59(3), pp. 223–239.

Singh, S., Murphy, B. and O’Reilly, R., 2002. Epigenetic contributors to the discor-dance of monozygotic twins. Clinical Genetics 62(2), pp. 97–103.

Stein, A., Pache, R. A., Bernadó, P., Pons, M. and Aloy, P., 2009. Dynamic inter-actions of proteins in complex networks: a more structured view. FEBS Journal 276(19), pp. 5390–5405.

Stevens, M. M., Allen, S., Davies, M. C., Roberts, C. J., Schacht, E., Tendler, S. J. B., VanSteenkiste, S., and Williams, P. M., 2002. The development, characterization, and demonstration of a versatile immobilization strategy for biomolecular force measurements. Langmuir 18(17), pp. 6659–6665.

Stijlemans, B., Caljon, G., Natesan, S. K., Saerens, D., Conrath, K., Perez-Morga, D., Skepper, J. N., Nikolaou, A., Brys, L., Pays, E., Magez, S., Field, M. C., De Baetselier, P. and Muyldermans, S., 2011. High affinity nanobodies against the Trypanosome brucei VSG are potent trypanolytic agents that block endocytosis.

PLoS Pathog 7(6), pp. e1002072.

Stumpp, M. T., Binz, H. K. and Amstutz, P., 2008. DARPins: A new generation of protein therapeutics. Drug Discovery Today 13(15âĂŞ16), pp. 695 – 701.

Stuss, D. P., Cheema, M., Ng, M. K., Martinez de Paz, A., Williamson, B., Missiaen, K., Cosman, J. D., McPhee, D., Esteller, M., Hendzel, M., Delaney, K. and Ausió, J., 2013. Impaired in vivo binding of MeCP2 to chromatin in the absence of its DNA methyl-binding domain. Nucleic Acids Research 41(9), pp. 4888–4900.

Szulik, M. W., Voehler, M. W., Ganguly, M., Gold, B. and Stone, M. P., 2013. Site-specific stabilization of DNA by a tethered major groove amine, 7-aminomethyl-7-deaza-2’-deoxyguanosine. Biochemistry 52(43), pp. 7659–7668.

Vandenbroucke, K., de Haard, H., Beirnaert, E., Dreier, T., Lauwereys, M., Huyck, L., Van Huysse, J., Demetter, P., Steidler, L., Remaut, E., Cuvelier, C. and Rot-tiers, P., 2009. Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol 3(1), pp. 49–56.

Vaneycken, I., D’Huyvetter, M., Hernot, S., De Vos, J., Xavier, C., Devoogdt, N.,

122 BIBLIOGRAPHY Caveliers, V. and Lahoutte, T., 2011. Immuno-imaging using nanobodies. Curr Opin Biotechnol 22(6), pp. 877–81.

Vaneycken, I., Govaert, J., Vincke, C., Caveliers, V., Lahoutte, T., De Baetselier, P., Raes, G., Bossuyt, A., Muyldermans, S. and Devoogdt, N., 2010. In vitro analysis and in vivo tumor targeting of a humanized, grafted nanobody in mice using pinhole SPECT/micro-CT. J Nucl Med 51(7), pp. 1099–106.

Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C. et al., 2004. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659), pp. 844–848.

Vilfan, I., Lipfert, J., Koster, D., Lemay, S. and Dekker, N., 2009. Magnetic tweezers for single-molecule experiments. In: P. Hinterdorfer and A. Oijen (eds), Handbook of Single-Molecule Biophysics, Springer US, pp. 371–395.

Vincke, C., Loris, R., Saerens, D., Martinez-Rodriguez, S., Muyldermans, S. and Conrath, K., 2009. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 284(5), pp. 3273–84.

Vogel, M., Keller-Gautschi, E., Baumann, M. J., Amstutz, P., Ruf, C., Kricek, F. and Stadler, B. M., 2007. Designed ankyrin repeat proteins as anti-idiotypic-binding molecules. Annals of the New York Academy of Sciences 1109(1), pp. 9–18.

Wade, P. A., Gegonne, A., Jones, P. L., Ballestar, E., Aubry, F. and Wolffe, A. P., 1999. Mi-2 complex couples DNA methylation to chromatin remodelling and his-tone deacetylation. Nat Genet 23(1), pp. 62–66.

Ward, W. W., Cody, C. W., Hart, R. C. and Cormier, M. J., 1980. Spectropho-tometric identity of the energy transfer chromophores in Renilla and Aequorea green-fluorescent proteins. Photochemistry and Photobiology 31(6), pp. 611–615.

Watson, J. D. and Crick, F. H. C., 1953. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 171(4356), pp. 737–738.

Weber, P. C., Ohlendorf, D. H., Wendoloski and Salemme, F. R., 1989. Structural Origins of High-Affinity Biotin Binding to Streptavidin. Science 243, pp. 85–88.

Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L. and Lieber, C. M., 1998.

Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature 394(6688), pp. 52–55.