• Keine Ergebnisse gefunden

Large-scale planting of exotic and economically relevant tree species was traditionally considered a valid restoration strategy in the tropics but contributed little to improve ecosystem functioning (Lamb et al., 2005). Novel approaches are needed that take the positive relationship of biodiversity and ecosystem functioning into account (Aerts and Honnay, 2011). This is particularly urgent in existing agricultural landscapes, as croplands cover ~40% of the global land surface and contribute dramatically to the global decline in ecosystem functioning and services (Foley, 2005). Oil-palm cultivation in South-East Asia is just one example (Dislich et al., 2016).

Since a further increase of area under oil-palm cultivation is projected (Fitzherbert et al., 2008), the pressure on biota restricted to rainforests will aggravate. Thus, knowledge on effective restoration in agricultural landscapes or reduced-impact farming strategies is becoming increasingly existential for maintaining or increasing biodiversity and ecosystem functioning (Rey Benayas and Bullock, 2012). The experiment that I present in my thesis has the potential to bridge knowledge gaps towards the elaboration of management guidelines for oil-palm landscapes that are both ecologically improved and economically viable. For a translation into management guidelines, extensive monitoring of upcoming changes in biodiversity, ecosystem processes, and ecosystem properties is required. The desired effect of tree islands is not constrained to the core area but includes ecological spillover effects to the directly surrounding oil-palm plantation under management-as-usual, which need to be quantified to allow an extensive evaluation. To upscale the results to the landscape scale, the experiment could be expanded to a larger area and thus interconnect areas of high conservation value. Outcomes of the experiments have the potential to be transferable to other land use systems, but this requires further research in the target system. As one part of the puzzle, the results of this thesis could advance restoration ecology, which is, in E.O.

Wilson’s words, “the means to end the great extinction spasm” (Wilson, 2001).

89

90

6 References

Abood, S.A., Lee, J.S.H., Burivalova, Z., Garcia-Ulloa, J., Koh, L.P., 2015. Relative contributions of the logging, fiber, oil palm, and mining industries to forest loss in Indonesia. Conserv. Lett. 8, 58–67. doi:10.1111/conl.12103

Ådjers, G., Hadengganan, S., Kuusipalo, J., Nuryanto, K., Vesa, L., 1995. Enrichment planting of dipterocarps in logged-over secondary forests: Effect of width, direction and maintenance method of planting line on selected Shorea species. For. Ecol. Manage. 73, 259–270.

doi:10.1016/0378-1127(94)03488-I

Aerts, R., Honnay, O., 2011. Forest restoration, biodiversity and ecosystem functioning. BMC Ecol.

11, 9. doi:10.1186/1472-6785-11-29

Allen, K., Corre, M.D., Tjoa, A., Veldkamp, E., 2015. Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS One 10, e0133325. doi:10.1371/journal.pone.0133325

Amoah, F.M., Nuertey, B.N., Baidoo-Addo, K., Oppong, F.K., Osei-Bonsu, K., Asamoah, T.E.O., 1995. Underplanting oil palm with cocoa in Ghana. Agrofor. Syst. 30, 289–299.

doi:10.1007/BF00705215

Azhar, B., Lindenmayer, D.B., Wood, J., Fischer, J., Manning, A., McElhinny, C., Zakaria, M., 2011.

The conservation value of oil palm plantation estates, smallholdings and logged peat swamp forest for birds. For. Ecol. Manage. 262, 2306–2315. doi:10.1016/j.foreco.2011.08.026

Balvanera, P., Pfisterer, A.B., Buchmann, N., He, J.-S., Nakashizuka, T., Raffaelli, D., Schmid, B., 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services.

Ecol. Lett. 9, 1146–1156. doi:10.1111/j.1461-0248.2006.00963.x

Barnes, A.D., Jochum, M., Mumme, S., Haneda, N.F., Farajallah, A., Widarto, T.H., Brose, U., 2014.

Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning.

Nat. Commun. 5, 5351. doi:10.1038/ncomms6351

Barton, K., 2016. MuMIn: Multi-model inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn

Basiron, Y., 2007. Palm oil production through sustainable plantations. Eur. J. Lipid Sci. Technol.

109, 289–295. doi:10.1002/ejlt.200600223

Basiron, Y., 2002. Palm oil and its global supply and demand prospects. Oil Palm Ind. Econ. J. 2, 1–

10.

91 Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4.

J. Stat. Softw. 67, 1–48. doi:10.18637/jss.v067.i01

Beckschäfer, P., Seidel, D., Kleinn, C., Xu, J., 2013. On the exposure of hemispherical photographs in forests. iForest - Biogeosciences For. 6, 228–237. doi:10.3832/ifor0957-006

Behera, S.N., Betha, R., Huang, X., Balasubramanian, R., 2015. Characterization and estimation of human airway deposition of size-resolved particulate-bound trace elements during a recent haze episode in Southeast Asia. Environ. Sci. Pollut. Res. 22, 4265–4280. doi:10.1007/s11356-014-3645-6

Bell, T., Lilley, A.K., Hector, A., Schmid, B., King, L., Newman, J.A., 2009. A linear model method for biodiversity – ecosystem functioning experiments. Am. Nat. 174, 836–849.

doi:10.1086/647931

Beukema, H., Danielsen, F., Vincent, G., Hardiwinoto, S., Andel, J., 2007. Plant and bird diversity in rubber agroforests in the lowlands of Sumatra, Indonesia. Agrofor. Syst. 70, 217–242.

doi:10.1007/s10457-007-9037-x

Bhagwat, S.A., Willis, K.J., 2008. Agroforestry as a solution to the oil-palm debate. Conserv. Biol.

22, 1368–1369. doi:10.1111/j.1523-1739.2008.01026.x

Bhagwat, S.A., Willis, K.J., Birks, H.J.B., Whittaker, R.J., 2008. Agroforestry: a refuge for tropical biodiversity? Trends Ecol. Evol. 23, 261–267. doi:10.1016/j.tree.2008.01.005

Bjornstad, O.N., 2013. ncf: spatial nonparametric covariance functions. R package version 1.1-5.

Born, J., Bagchi, R., Burslem, D., Nilus, R., Tellenbach, C., Pluess, A.R., Ghazoul, J., 2014. Differential responses of dipterocarp seedlings to soil moisture and microtopography. Biotropica 47, 49–

58. doi:10.1111/btp.12180

Bradshaw, C.J.A., Sodhi, N.S., Brook, B.W., 2009. Tropical turmoil: a biodiversity tragedy in progress. Front. Ecol. Environ. 7, 79–87. doi:10.1890/070193

Brose, U., Martinez, N.D., Williams, R.J., 2003. Estimating species richness: Sensitivity to sample coverage and insensitivity to spatial patterns. Ecology 84, 2364–2377. doi:10.1890/02-0558 Bruelheide, H., Nadrowski, K., Assmann, T., Bauhus, J., Both, S., Buscot, F., Chen, X.-Y., Ding, B.,

Durka, W., Erfmeier, A., Gutknecht, J.L.M., Guo, D., Guo, L.-D., Härdtle, W., He, J.-S., Klein, A.-M., Kühn, P., Liang, Y., Liu, X., Michalski, S., Niklaus, P.A., Pei, K., Scherer-Lorenzen, M., Scholten, T., Schuldt, A., Seidler, G., Trogisch, S., von Oheimb, G., Welk, E., Wirth, C., Wubet, T., Yang, X., Yu, M., Zhang, S., Zhou, H., Fischer, M., Ma, K., Schmid, B., 2014. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment

92

in subtropical China. Methods Ecol. Evol. 5, 74–89. doi:10.1111/2041-210X.12126

Burdett, A.N., 1990. Physiological processes in plantation establishment and the development of specifications for forest planting stock. Can. J. For. Res. 20, 415–427.

Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M.J., Wu, L., England, M.H., Wang, G., Guilyardi, E., Jin, F.-F., 2014.

Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim.

Chang. 5, 1–6. doi:10.1038/nclimate2100

Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S., Naeem, S., 2012. Biodiversity loss and its impact on humanity. Nature 489, 59–67. doi:10.1038/nature11373

Cardinale, B.J., Srivastava, D.S., Duffy, J.E., Wright, J.P., Downing, A.L., Sankaran, M., Jouseau, C., 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992. doi:10.1038/nature05202

Cardinale, B.J., Wright, J.P., Cadotte, M.W., Carroll, I.T., Hector, A., Srivastava, D.S., Loreau, M., Weis, J.J., 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. U. S. A. 104, 18123–18128.

doi:10.1073/pnas.0709069104

Carter, C., Finley, W., Fry, J., Jackson, D., Willis, L., 2007. Palm oil markets and future supply. Eur.

J. Lipid Sci. Technol. 109, 307–314. doi:10.1002/ejlt.200600256

Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M., Palmer, T.M., 2015.

Accelerated modern human – induced species losses: entering the sixth mass extinction. Sci.

Adv. 1, e1400253. doi:10.1126/sciadv.1400253

Chazdon, R.L., 2008. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460. doi:10.1126/science.1155365

Chia, F.R., 2011. Survival and growth performance of teak under monocrop system and intercropped with oil palm. Sepilok Bull. 13 & 14, 33–42.

Clough, Y., Barkmann, J., Juhrbandt, J., Kessler, M., Wanger, T.C., Anshary, A., Buchori, D., Cicuzza, D., Darras, K., Putra, D.D., Erasmi, S., Pitopang, R., Schmidt, C., Schulze, C.H., Seidel, D., Steffan-Dewenter, I., Stenchly, K., Vidal, S., Weist, M., Wielgoss, A.C., Tscharntke, T., 2011. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl.

Acad. Sci. U. S. A. 108, 8311–8316. doi:10.1073/pnas.1016799108

Cole, R.J., Holl, K.D., Zahawi, R.A., 2010. Seed rain under tree islands planted to restore degraded

93 lands in a tropical agricultural landscape. Ecol. Appl. 20, 1255–1269. doi:10.1890/09-0714.1 Corbin, J.D., Holl, K.D., 2012. Applied nucleation as a forest restoration strategy. For. Ecol. Manage.

265, 37–46. doi:10.1016/j.foreco.2011.10.013

Corlett, R.T., Primack, R.B., 2005. Tropical Rain Forests: An Ecological and Biogeographical Comparison. Blackwell Science, Oxford.

Corley, R.H. V., Tinker, P.B., 2003. The Oil Palm, 4th ed. Blackwell Science Limited, Oxford, UK.

Crutzen, P.J., 2002. Geology of mankind. Nature 415, 23. doi:10.1038/415023a

De Graaf, N.R., Hildebrand, J.W., van der Zwan, R.P., Fundter, J.M., 1993. Peronema Jack, in:

Soerianegara, I., Lemmens, R. (Eds.), Plant Resources of South-East Asia No. 5 (1). Timber Trees: Major Commercial Timbers. Pudoc Prosea, Wageningen, pp. 345–349.

De Groot, R.S., Wilson, M.A., Boumans, R.M.J., 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 41, 393–408.

doi:10.1016/S0921-8009(02)00089-7

De Steven, D., 1991. Experiments on mechanisms of tree establishment in old-field succession:

seedling survival and growth. Ecology 72, 1076–1088.

Digel, C., Curtsdotter, A., Riede, J., Klarner, B., Brose, U., 2014. Unravelling the complex structure of forest soil food webs: higher omnivory and more trophic levels. Oikos 1157–1172.

doi:10.1111/oik.00865

Dislich, C., Keyel, A.C., Salecker, J., Kisel, Y., Meyer, K.M., Auliya, M., Barnes, A.D., Corre, M.D., Darras, K., Faust, H., Hess, B., Klasen, S., Knohl, A., Kreft, H., Meijide, A., Nurdiansyah, F., Otten, F., Pe’er, G., Steinebach, S., Tarigan, S., Tölle, M., Tscharntke, T., Wiegand, K., 2016. A review of the ecosystem functions in oil palm plantations, using forests as a reference system.

Biol. Rev. doi:10.1111/brv.12295

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Garc, J.R., Gruber, B., Lafourcade, B., Leitão, P.J., Münkenmüller, T., McClean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D., Lautenbach, S., 2012. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 36, 27–46. doi:10.1111/j.1600-0587.2012.07348.x

Drescher, J., Rembold, K., Allen, K., Beckschäfer, P., Buchori, D., Clough, Y., Faust, H., Fauzi, A.M., Gunawan, D., Hertel, D., Irawan, B., Jaya, I.N.S., Klarner, B., Kleinn, C., Knohl, A., Kotowska, M.M., Krashevska, V., Krishna, V., Leuschner, C., Lorenz, W., Meijide, A., Melati, D., Nomura, M., Pérez-Cruzado, C., Qaim, M., Siregar, I.Z., Steinebach, S., Tjoa, A., Tscharntke, T., Wick, B., Wiegand, K., Kreft, H., Scheu, S., 2016. Ecological and socio-economic functions across

94

tropical land use systems after rainforest conversion. Philos. Trans. R. Soc. B 371, 20150275.

doi:10.1098/rstb.2015.0275

Edwards, F.A., Edwards, D.P., Larsen, T.H., Hsu, W.W., Benedick, S., Chung, A., Vun Khen, C., Wilcove, D.S., Hamer, K.C., 2014. Does logging and forest conversion to oil palm agriculture alter functional diversity in a biodiversity hotspot? Anim. Conserv. 17, 163–173.

doi:10.1111/acv.12074

Egbe, N.E., Adenikinju, S.A., 1990. Effect of intercropping on potential yield of cacao in south western Nigeria. Café, Cacao, Thé 34, 281–284.

Eisenhauer, N., Reich, P.B., Scheu, S., 2012. Increasing plant diversity effects on productivity with time due to delayed soil biota effects on plants. Basic Appl. Ecol. 13, 571–578.

doi:10.1016/j.baae.2012.09.002

Erhabor, J.O., Filson, G.C., 1999. Soil fertility changes under an oil palm-based intercropping system. J. Sustain. Agric. 14, 45–61. doi:10.1300/J064v14n02

Erskine, P.D., Lamb, D., Bristow, M., 2006. Tree species diversity and ecosystem function: can tropical multi-species plantations generate greater productivity? For. Ecol. Manage. 233, 205–

210. doi:10.1016/j.foreco.2006.05.013

Euler, M., Krishna, V., Schwarze, S., Siregar, H., Qaim, M., 2015a. Oil palm adoption, household welfare and nutrition among smallholder farmers in Indonesia [WWW Document]. EFForTS Discussion Paper Series, No. 12. URL http://nbn-resolving.de/ urn:nbn:de:gbv:7-webdoc-3955-0

Euler, M., Schwarze, S., Siregar, H., Qaim, M., 2015b. Oil palm expansion among smallholder farmers in Sumatra, Indonesia [WWW Document]. EFForTS Discussion Paper Series, No. 8.

URL http://nbn-resolving.de/urn:nbn:de:gbv:7-webdoc-3946-0

Evans, J., Turnbull, J., 2004. Plantation Forestry in the Tropics, Third Edit. ed. Oxford University Press, New York, United States.

Ewel, J.J., Celis, G., Schreeg, L., 2015. Steeply increasing growth differential between mixture and monocultures of tropical trees. Biotropica 0, 1–10. doi:10.1111/btp.12190

Ewers, R.M., Boyle, M.J.W., Gleave, R.A., Plowman, N.S., Benedick, S., Bernard, H., Bishop, T.R., Bakhtiar, E.Y., Chey, V.K., Chung, A.Y.C., Davies, R.G., Edwards, D.P., Eggleton, P., Fayle, T.M., Hardwick, S.R., Homathevi, R., Kitching, R.L., Khoo, M.S., Luke, S.H., March, J.J., Nilus, R., Pfeifer, M., Rao, S. V, Sharp, A.C., Snaddon, J.L., Stork, N.E., Struebig, M.J., Wearn, O.R., Yusah, K.M., Turner, E.C., 2015. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836. doi:10.1038/ncomms7836

95 FAO, 2016. FAOSTAT online statistical service. Food and Agriculture Organization of the United

Nations [WWW Document]. URL http://faostat.fao.org (accessed 4.15.16).

FAO, 1977. FAO Economic and Social Development Series 3: The Oil Palm. Food and Agriculture Organization of the United Nations, Rome.

Feintrenie, L., Chong, W.K., Levang, P., 2010. Why do farmers prefer oil palm? Lessons learnt from Bungo district, Indonesia. Small-scale For. 9, 379–396. doi:10.1007/s11842-010-9122-2

Fitzherbert, E.B., Struebig, M.J., Morel, A., Danielsen, F., Brühl, C.A., Donald, P.F., Phalan, B., 2008.

How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 23, 538–545.

doi:10.1016/j.tree.2008.06.012

Foley, J.A., 2005. Global consequences of land use. Science 309, 570–574.

doi:10.1126/science.1111772

Forrester, D.I., 2014. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. For. Ecol. Manage. 312, 282–292.

doi:10.1016/j.foreco.2013.10.003

Forrester, D.I., Pretzsch, H., 2015. Tamm Review: On the strength of evidence when comparing ecosystem functions of mixtures with monocultures. For. Ecol. Manage. 356, 41–53.

doi:10.1016/j.foreco.2015.08.016

Foster, W.A., Snaddon, J.L., Turner, E.C., Fayle, T.M., Cockerill, T.D., Ellwood, M.D.F., Broad, G.R., Chung, A.Y.C., Eggleton, P., Khen, C. V., Yusah, K.M., 2011. Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philos. Trans. R. Soc. B Biol. Sci. 366, 3277–3291. doi:10.1098/rstb.2011.0041

Franco, J.L. de A., 2013. The concept of biodiversity and the history of conservation biology: from wilderness preservation to biodiversity conservation. História (São Paulo) 32, 21–47.

doi:10.1017/CBO9781107415324.004

Gatto, M., Wollni, M., Qaim, M., 2015. Oil palm boom and land-use dynamics in Indonesia: The role of policies and socioeconomic factors. Land use policy 46, 292–303.

doi:10.1016/j.landusepol.2015.03.001

Gaveau, D.L.A., Salim, M.A., Hergoualc’h, K., Locatelli, B., Sloan, S., Wooster, M., Marlier, M.E., Molidena, E., Yaen, H., DeFries, R., Verchot, L., Murdiyarso, D., Nasi, R., Holmgren, P., Sheil, D., 2014. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Sci. Rep. 4, 6112. doi:10.1038/srep06112

Germer, J., Sauerborn, J., 2008. Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ. Dev. Sustain. 10, 697–716. doi:10.1007/s10668-006-9080-1

96

Gillison, A.N., Jones, D.T., Susilo, F.-X., Bignell, D.E., 2003. Vegetation indicates diversity of soil macroinvertebrates: a case study with termites along a land-use intensification gradient in lowland Sumatra. Org. Divers. Evol. 3, 111–126. doi:10.1078/1439-6092-00072

Google Earth, 2015. GoogleEarth [WWW Document]. June 25, 2007. URL www.earth.google.de (accessed 26.11.15).

Guillaume, T., Muhammad, D., Kuzyakov, Y., 2015. Losses of soil carbon by converting tropical forest to plantations: Erosion and decomposition estimated by δ 13 C. Glob. Chang. Biol. 21, 3548–3560. doi:10.1111/gcb.12907

Günter, S., Gonzalez, P., Álvarez, G., Aguirre, N., Palomeque, X., Haubrich, F., Weber, M., 2009.

Determinants for successful reforestation of abandoned pastures in the Andes: Soil conditions and vegetation cover. For. Ecol. Manage. 258, 81–91. doi:10.1016/j.foreco.2009.03.042

Hansen, M.C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S. V, Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of 21st-century forest cover change. Science 342, 850–3. doi:10.1126/science.1244693

Harvey, C.A., 2000. Windbreaks enhance seed dispersal into agricultural landscapes in Monteverde, Costa Rica. Ecol. Appl. 10, 155–173. doi:10.1890/1051-0761(2000)010[0155:WESDIA]2.0.CO;2

Hassler, E., Corre, M.D., Tjoa, A., Damris, M., Utami, S.R., Veldkamp, E., 2015. Soil fertility controls soil–atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations. Biogeosciences 12, 5831–5852.

doi:10.5194/bg-12-5831-2015

Hatta, G.M., 1999. Sungkai (Peronema canescens) a promising pioneer tree: an experimental provenance study in Indonesia. [PhD thesis]. Wageningen Universiteit.

Hector, A., 1999. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127. doi:10.1126/science.286.5442.1123

Hector, A., Philipson, C., Saner, P., Chamagne, J., Dzulkifli, D., O’Brien, M., Snaddon, J.L., Ulok, P., Weilenmann, M., Reynolds, G., Godfray, H.C.J., 2011. The Sabah Biodiversity Experiment: a long-term test of the role of tree diversity in restoring tropical forest structure and functioning.

Philos. Trans. R. Soc. Lond. B. Biol. Sci. 366, 3303–15. doi:10.1098/rstb.2011.0094

Henson, I.E., Dolmat, M.T., 2003. Physiological analysis of an oil palm density trial on a peat soil. J.

Oil Palm Res. 15, 1–27.

Hobbs, R.J., Cramer, V.A., 2008. Restoration ecology: interventionist approaches for restoring and

97 maintaining ecosystem function in the face of rapid environmental change. Annu. Rev.

Environ. Resour. 33, 39–61. doi:10.1146/annurev.environ.33.020107.113631

Hooper, D.U., Adair, E.C., Cardinale, B.J., Byrnes, J.E.K., Hungate, B.A., Matulich, K.L., Gonzalez, A., Duffy, J.E., Gamfeldt, L., O’Connor, M.I., 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108. doi:10.1038/nature11118

Hooper, D.U., Vitousek, P.M., 2007. The effects of plant composition and diversity on ecosystem processes. Science. 277, 1302–1305. doi:10.1126/science.277.5330.1302

Hunt, R., 2003. Growth analysis, individual plants, in: Thomas, B., Murphy, D.J., Murray, D. (Eds.), Encyclopedia of Applied Plant Sciences. Academic Press, London, pp. 579–588.

doi:10.1093/aob/mcf214

IAN Image, 2015. IAN images by Tracey, D, Thomas, J and others, Integration and Application Network, University of Maryland Center for Environmental Science.

Immerzeel, D.J., Verweij, P.A., van der Hilst, F., Faaij, A.P.C., 2014. Biodiversity impacts of bioenergy crop production: a state-of-the-art review. GCB Bioenergy 6, 183–209.

doi:10.1111/gcbb.12067

Index Mundi, 2016. Oil palm-production, consumption, exports and imports statistics [WWW Document]. URL http://www.indexmundi.com/commodities/?commodity=palm-oil&months=360

IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. doi:10.1017/CBO9781107415324.004

IUCN, 2015. Red List of threatened species [WWW Document]. Int. Union Conserv. Nat. URL www.iucnredlist.org

Jucker, T., Bouriaud, O., Avacaritei, D., Coomes, D.A., 2014. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol.

Lett. 17, 1560–1569. doi:10.1111/ele.12382

Kareiva, P., Marvier, M., 2012. What is conservation science? Bioscience 62, 962–969.

doi:10.1525/bio.2012.62.11.5

Kirui, B.Y.K., Kairo, J.G., Skov, M.W., Mencuccini, M., Huxham, M., 2012. Effects of species richness, identity and environmental variables on growth in planted mangroves in Kenya.

Mar. Ecol. Prog. Ser. 465, 1–10. doi:10.3354/meps09999

Kochummen, K.M., Wong, W.C., Fundter, J.M., Sosef, M.S.M., 1993. Shorea Roxb. ex Gaertner f. (red meranti), in: Soerianegara, I., Lemmens, R. (Eds.), Plant Resources of South-East Asia No. 5

98

(1). Timber Trees: Major Commercial Timbers. Pudoc Prosea, Wageningen, pp. 384–404.

Koh, L.P., 2008. Can oil palm plantations be made more hospitable for forest butterflies and birds?

J. Appl. Ecol. 45, 1002–1009. doi:10.1111/j.1365-2664.2007.0

Koh, L.P., Ghazoul, J., 2010. Spatially explicit scenario analysis for reconciling agricultural expansion, forest protection, and carbon conservation in Indonesia. Proc. Natl. Acad. Sci. U.

S. A. 107, 11140–11144. doi:10.1073/pnas.1000530107

Koh, L.P., Levang, P., Ghazoul, J., 2009. Designer landscapes for sustainable biofuels. Trends Ecol.

Evol. 24, 431–438. doi:10.1016/j.tree.2009.03.012

Kotowska, M.M., Leuschner, C., Triadiati, T., Meriem, S., Hertel, D., 2015. Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia). Glob. Chang. Biol. 21, 3620–3634. doi:10.1111/gcb.12979

Kueffer, C., Kaiser-Bunbury, C.N., 2014. Reconciling conflicting perspectives for biodiversity conservation in the Anthropocene. Front. Ecol. Environ. 12, 131–137. doi:10.1890/120201 Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2016. lmerTest: Tests in Linear Mixed Effects

Models. R package version 2.0-32. https://CRAN.R-project.org/package=lmerTest.

Lal, R., Ghuman, B.S., Shearer, W., 1992. Cropping systems effects of a newly-cleared ultisol in Southern Nigeria. Soil Technol. 5, 27–38. doi:10.1016/0933-3630(92)90004-K

Laliberté, E., Legendre, P., Shipley, B., 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.

Lamb, D., Erskine, P.D., Parrotta, J.A., 2005. Restoration of degraded tropical forest landscapes.

Science 310, 1628–1632. doi:10.1126/science.1111773

Laumonier, Y., Uryu, Y., Stüwe, M., Budiman, A., Setiabudi, B., Hadian, O., 2010. Eco-floristic sectors and deforestation threats in Sumatra: identifying new conservation area network priorities for ecosystem-based land use planning. Biodivers. Conserv. 19, 1153–1174.

doi:10.1007/s10531-010-9784-2

Lee, A.K., Kasbi, H., 1980. Intercropping cocoa and oil palm, in: Proceedings of the International Conference on Cocoa and Coconuts. Kuala Lumpur, Malaysia, June 21 24, 1978. pp. 158–171.

Lefcheck, J.S., 2015. piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579. doi:10.1111/2041-210X.12512 Legendre, P., De Cáceres, M., 2013. Beta diversity as the variance of community data: Dissimilarity

coefficients and partitioning. Ecol. Lett. 16, 951–963. doi:10.1111/ele.12141

Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L., 2013. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol.

99 49, 764–766. doi:10.1016/j.jesp.2013.03.013

Li, Y., Härdtle, W., Bruelheide, H., Nadrowski, K., Scholten, T., von Wehrden, H., von Oheimb, G., 2014. Site and neighborhood effects on growth of tree saplings in subtropical plantations (China). For. Ecol. Manage. 327, 118–127. doi:10.1016/j.foreco.2014.04.039

Lin, B.B., 2011. Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61, 183–193. doi:10.1525/bio.2011.61.3.4

Luskin, M.S., Potts, M.D., 2011. Microclimate and habitat heterogeneity through the oil palm lifecycle. Basic Appl. Ecol. 12, 540–551. doi:10.1016/j.baae.2011.06.004

MacKinnon, J., Phillipps, K., Andrew, P., 1993. A Field Guide to Birds of Borneo, Sumatra and Bali:

The Greater Sunda Islands. Oxford University Press.

Margono, B.A., Potapov, P. V, Turubanova, S., Stolle, F., Hansen, M.C., 2014. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Chang. 1–6. doi:10.1038/NCLIMATE2277 Mendenhall, C.D., Karp, D.S., Meyer, C.F.J., Hadly, E.A., Daily, G.C., 2014. Predicting biodiversity

change and averting collapse in agricultural landscapes. Nature 509, 213–217.

doi:10.1038/nature13139

Merten, J., Röll, A., Guillaume, T., Meijide, A., Tarigan, S., Agusta, H., Dislich, C., Dittrich, C., Faust, H., Gunawan, D., Hein, J., Hendrayanto, Knohl, A., Kuzyakov, Y., Wiegand, K., Hölscher, D., 2016. Water scarcity and oil palm expansion: social views and environmental processes. Ecol.

Soc. 21, 5. doi:http://dx.doi.org/10.5751/ES-08214-210205

Millenium Ecosystem Assessment, 2003. Ecosystems and Human Well-being: A Framework for Assessment. Island Press, Washington, DC. doi:10.1079/PHN2003467

Moreira, X., Abdala-Roberts, L., Parra-Tabla, V., Mooney, K.A., 2014. Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species. PLoS One 9, e105438. doi:10.1371/journal.pone.0105438

Morin, X., Fahse, L., de Mazancourt, C., Scherer-Lorenzen, M., Bugmann, H., 2014. Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol. Lett. 17, 1526–1535. doi:10.1111/ele.12357

Morin, X., Fahse, L., Scherer-Lorenzen, M., Bugmann, H., 2011. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol.

Lett. 14, 1211–1219. doi:10.1111/j.1461-0248.2011.01691.x

Muryunika, R., 2015. Strategi pengelolaan dan pengembangan agroforestri berbasis kelapa sawit di Jambi. [master’s thesis]. University of Bogor.

Myers, N., 1979. The Sinking Ark: A New Look at the Problem of Disappearing Species. Pergamon

100

Press, Oxford, UK.

Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. doi:10.1038/35002501

Naeem, S., Chapin, F.S.I., Costanza, R., Ehrlich, P.R., Golley, F.B., Hooper, D.U., Lawton, J.H., O’Neill, R. V, Mooney, H.A., Sala, O.E., Symstad, A.J., Tilman, D., 1999. Biodiversity and ecosystem functioning: maintaining natural life support processes. Issues Ecol. 4, 1–12.

Naeem, S., Thompson, L.J., Lawler, S.P., Lawton, J.H., Woodfin, R.M., 1995. Empirical evidence that declining species diversity may alter the performance of terrestrial ecosystems. Philos. Trans.

R. Soc. B Biol. Sci. 347, 249–262. doi:10.1098/rstb.1995.0025

Nazeeb, M., Tang, M.K., Loong, S.G., Syed Shahar, S.A.B., 2008. Variable density plantings for oil palms (Elaeis guineensis) in Peninsular Malaysia. J. Oil Palm Res. 61–90.

Nielsen, I.C., 1992. Flora Malesiana - Series I, Volume 11, part I: Mimosaceae (Leguminosae - Mimosideae). Rijksherbarium / Hortus Botanicus, Leiden University, Leiden, The Netherlands.

Nussbaum, R., Anderson, J., Spencer, T., 1995. Factors limiting the growth of indigenous tree seedlings planted on degraded rainforest soils in Sabah, Malaysia. For. Ecol. Manage. 74, 149–

159. doi:10.1016/0378-1127(94)03496-J

Okpala, A., 1995. Resources, environment and economic development in Nigeria. J. Dev. Soc. 11, 151–158.

Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R., Simpson, G.L., Solymos, P., Stevens, M. Henry, H., Wagner, H., 2016. vegan: community ecology package. R package version 2.3-3. doi:10.4135/9781412971874.n145

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G., Solymos, P., Stevens, M. Henry, H., Wagner, H., 2015. vegan: community ecology package. R package version 2.3-0.

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G., Solymos, P., Stevens, M. Henry, H., Wagner, H., 2015. vegan: community ecology package. R package version 2.3-0.