• Keine Ergebnisse gefunden

December 15, 2020 k1120217 101/109

thereby the membrane could have been overloaded resulting in less effective transfer and fixation of specific complex and free fragment DNA. The blocking solution used could be optimized for reduced background, possibly eliminating the unspecific protein signal.

Finally, different exposure times, which make a comparison of the HS fragment experiments difficult, should be consistent. A time series for pictures can be set up at the Biorad imager to find the best exposure time.

December 15, 2020 k1120217 102/109

Literaturverzeichnis

Altemose, Nicolas; Noor, Nudrat; Bitoun, Emmanuelle; Tumian, Afidalina; Imbeault, Michael;

Chapman, J. Ross et al. (2017): A map of human PRDM9 binding provides evidence for novel behaviors of PRDM9 and other zinc-finger proteins in meiosis. In: eLife 6. DOI:

10.7554/eLife.28383.

Arbeithuber, Barbara; Betancourt, Andrea J.; Ebner, Thomas; Tiemann-Boege, Irene (2015):

Crossovers are associated with mutation and biased gene conversion at recombination hotspots. In:

Proceedings of the National Academy of Sciences of the United States of America 112 (7), S.

2109–2114. DOI: 10.1073/pnas.1416622112.

Baker, Christopher L.; Kajita, Shimpei; Walker, Michael; Saxl, Ruth L.; Raghupathy, Narayanan;

Choi, Kwangbom et al. (2015a): PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination. In: PLoS genetics 11 (1), e1004916.

DOI: 10.1371/journal.pgen.1004916.

Baker, Christopher L.; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek et al. (2015b): Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots. In: PLoS genetics 11 (9), e1005512. DOI: 10.1371/journal.pgen.1005512.

Baudat, F.; Buard, J.; Grey, C.; Fledel-Alon, A.; Ober, C.; Przeworski, M. et al. (2010): PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. In: Science (New York, N.Y.) 327 (5967), S. 836–840. DOI: 10.1126/science.1183439.

Baudat, Frederic; Imai, Yukiko; Massy, Bernard de (2013): Meiotic recombination in mammals.

Localization and regulation. In: Nature reviews. Genetics 14 (11), S. 794–806. DOI:

10.1038/nrg3573.

Berg, Ingrid L.; Neumann, Rita; Lam, Kwan-Wood G.; Sarbajna, Shriparna; Odenthal-Hesse, Linda;

May, Celia A.; Jeffreys, Alec J. (2010): PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. In: Nature genetics 42 (10), S. 859–863. DOI:

10.1038/ng.658.

Berg, Ingrid L.; Neumann, Rita; Sarbajna, Shriparna; Odenthal-Hesse, Linda; Butler, Nicola J.;

Jeffreys, Alec J. (2011): Variants of the protein PRDM9 differentially regulate a set of human meiotic recombination hotspots highly active in African populations. In: Proceedings of the National

Academy of Sciences of the United States of America 108 (30), S. 12378–12383. DOI:

10.1073/pnas.1109531108.

December 15, 2020 k1120217 103/109

Bhattacharyya, Tanmoy; Walker, Michael; Powers, Natalie R.; Brunton, Catherine; Fine, Alexander D.; Petkov, Petko M.; Handel, Mary Ann (2019): Prdm9 and Meiotic Cohesin Proteins Cooperatively Promote DNA Double-Strand Break Formation in Mammalian Spermatocytes. In: Current biology : CB 29 (6), 1002-1018.e7. DOI: 10.1016/j.cub.2019.02.007.

Billings, Timothy; Parvanov, Emil D.; Baker, Christopher L.; Walker, Michael; Paigen, Kenneth;

Petkov, Petko M. (2013): DNA binding specificities of the long zinc-finger recombination protein PRDM9. In: Genome biology 14 (4), R35. DOI: 10.1186/gb-2013-14-4-r35.

Blackwell, J. R.; Horgan, R. (1991): A novel strategy for production of a highly expressed recombinant protein in an active form. In: FEBS letters 295 (1-3), S. 10–12.

Brick, Kevin; Smagulova, Fatima; Khil, Pavel; Camerini-Otero, R. Daniel; Petukhova, Galina V.

(2012): Genetic recombination is directed away from functional genomic elements in mice. In:

Nature 485 (7400), S. 642–645. DOI: 10.1038/nature11089.

Brown, Richard C.; Lunter, Gerton (2019): An equivariant Bayesian convolutional network predicts recombination hotspots and accurately resolves binding motifs. In: Bioinformatics (Oxford, England) 35 (13), S. 2177–2184. DOI: 10.1093/bioinformatics/bty964.

Canaves, Jaume M.; Page, Rebecca; Wilson, Ian A.; Stevens, Raymond C. (2004): Protein

biophysical properties that correlate with crystallization success in Thermotoga maritima. Maximum clustering strategy for structural genomics. In: Journal of molecular biology 344 (4), S. 977–991.

DOI: 10.1016/j.jmb.2004.09.076.

Chen, Yao; Lyu, Ruitu; Rong, Bowen; Zheng, Yuxuan; Lin, Zhen; Dai, Ruofei et al. (2020): Refined spatial temporal epigenomic profiling reveals intrinsic connection between PRDM9-mediated H3K4me3 and the fate of double-stranded breaks. In: Cell research 30 (3), S. 256–268. DOI:

10.1038/s41422-020-0281-1.

Choo, Y.; Klug, A. (1993): A role in DNA binding for the linker sequences of the first three zinc fingers of TFIIIA. In: Nucleic acids research 21 (15), S. 3341–3346.

Chou, Chun-Chi; Lou, Yuan-Chao; Tang, Tang K.; Chen, Chinpan (2010): Structure and DNA binding characteristics of the three-Cys(2)His(2) domain of mouse testis zinc finger protein. In:

Proteins 78 (10), S. 2202–2212. DOI: 10.1002/prot.22732.

December 15, 2020 k1120217 104/109

Davies, Benjamin; Hatton, Edouard; Altemose, Nicolas; Hussin, Julie G.; Pratto, Florencia; Zhang, Gang et al. (2016): Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice. In:

Nature 530 (7589), S. 171–176. DOI: 10.1038/nature16931.

Diagouraga, Boubou; Clément, Julie A. J.; Duret, Laurent; Kadlec, Jan; Massy, Bernard de; Baudat, Frédéric (2018): PRDM9 Methyltransferase Activity Is Essential for Meiotic DNA Double-Strand Break Formation at Its Binding Sites. In: Molecular cell 69 (5), 853-865.e6. DOI:

10.1016/j.molcel.2018.01.033.

Fedotova, A. A.; Bonchuk, A. N.; Mogila, V. A.; Georgiev, P. G. (2017): C2H2 Zinc Finger Proteins.

The Largest but Poorly Explored Family of Higher Eukaryotic Transcription Factors. In: Acta naturae 9 (2), S. 47–58.

Francis, Dana M.; Page, Rebecca (2010): Strategies to optimize protein expression in E. coli. In:

Current protocols in protein science Chapter 5, Unit 5.24.1-29. DOI:

10.1002/0471140864.ps0524s61.

Hayashi, Katsuhiko; Yoshida, Kayo; Matsui, Yasuhisa (2005): A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. In: Nature 438 (7066), S. 374–378. DOI:

10.1038/nature04112.

Heissl, Angelika; Betancourt, Andrea J.; Hermann, Philipp; Povysil, Gundula; Arbeithuber, Barbara;

Futschik, Andreas et al. (2019): The impact of poly-A microsatellite heterologies in meiotic recombination. In: Life science alliance 2 (2). DOI: 10.26508/lsa.201900364.

Imai, Yukiko; Baudat, Frederic; Taillepierre, Miguel; Stanzione, Marcello; Toth, Attila; Massy, Bernard de (2017): The PRDM9 KRAB domain is required for meiosis and involved in protein interactions. In: Chromosoma. DOI: 10.1007/s00412-017-0631-z.

Imai, Yukiko; Biot, Mathilde; Clément, Julie Aj; Teragaki, Mariko; Urbach, Serge; Robert, Thomas et al. (2020): PRDM9 activity depends on HELLS and promotes local 5-hydroxymethylcytosine

enrichment. In: eLife 9. DOI: 10.7554/eLife.57117.

Invitrogen (2010): User Manual Corporate Headquarters 5791 Van Allen Way Carlsbad, CA 92008 T: 1 760 603 7200 F: 1 760 602 6500 E: tech_support@invitrogen.com For country-specific contact information visit our web site at www.invitrogen.com BL21-AI ™ One Shot ® BL21-AI One Shot Chemically Competent E. coli. User Manual. Manual part no. 25-0468. Hg. v. Invitrogen/Thermo Fisher Scientific. Online verfügbar unter

https://www.thermofisher.com/order/catalog/product/C607003, zuletzt geprüft am 25.09.2018.

December 15, 2020 k1120217 105/109

Irie, Shinji; Tsujimura, Akira; Miyagawa, Yasushi; Ueda, Tomohiro; Matsuoka, Yasuhiro; Matsui, Yasuhisa et al. (2009): Single-nucleotide polymorphisms of the PRDM9 (MEISETZ) gene in patients with nonobstructive azoospermia. In: Journal of andrology 30 (4), S. 426–431. DOI:

10.2164/jandrol.108.006262.

Kang, Rhea; Zelazowski, Maciej J.; Cole, Francesca (2018): Missing the Mark. PRDM9-Dependent Methylation Is Required for Meiotic DSB Targeting. In: Molecular cell 69 (5), S. 725–727. DOI:

10.1016/j.molcel.2018.02.021.

Koh-Stenta, Xiaoying; Poulsen, Anders; Li, Rong; Wee, John Liang Kuan; Kwek, Perlyn Zekui;

Chew, Sin Yin et al. (2017): Discovery and characterisation of the automethylation properties of PRDM9. In: The Biochemical journal 474 (6), S. 971–982. DOI: 10.1042/BCJ20161067.

Laity, J. H.; Dyson, H. J.; Wright, P. E. (2000): DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc fingers. In: Journal of molecular biology 295 (4), S. 719–727. DOI: 10.1006/jmbi.1999.3406.

Li, Ran; Bitoun, Emmanuelle; Altemose, Nicolas; Davies, Robert W.; Davies, Benjamin; Myers, Simon R. (2019): A high-resolution map of non-crossover events reveals impacts of genetic diversity on mammalian meiotic recombination. In: Nature communications 10 (1), S. 3900. DOI:

10.1038/s41467-019-11675-y.

LI-COR Biotechnology GmbH: Quantitative Western Blots. Hg. v. LI-COR Biotechnology GmbH.

Online verfügbar unter https://www.licor.com/bio/applications/quantitative_western_blots/#imaging, zuletzt geprüft am 18.09.2018.

Mahgoub, Mohamed; Paiano, Jacob; Bruno, Melania; Wu, Wei; Pathuri, Sarath; Zhang, Xing et al.

(2020): Dual histone methyl reader ZCWPW1 facilitates repair of meiotic double strand breaks in male mice. In: eLife 9. DOI: 10.7554/eLife.53360.

Massy, Bernard de (2003): Distribution of meiotic recombination sites. In: Trends in genetics : TIG 19 (9), S. 514–522. DOI: 10.1016/S0168-9525(03)00201-4.

Merck-Millipore (Hg.): Rosetta™ 2(DE3)pLacI Competent Cells - Novagen. Online verfügbar unter

http://www.merckmillipore.com/AT/de/product/Rosetta-2DE3pLacI-Competent-Cells-Novagen,EMD_BIO-71404, zuletzt geprüft am 25.09.2018.

Myers, Simon; Bowden, Rory; Tumian, Afidalina; Bontrop, Ronald E.; Freeman, Colin; MacFie, Tammie S. et al. (2010): Drive against hotspot motifs in primates implicates the PRDM9 gene in

December 15, 2020 k1120217 106/109

meiotic recombination. In: Science (New York, N.Y.) 327 (5967), S. 876–879. DOI:

10.1126/science.1182363.

Myers, Simon; Freeman, Colin; Auton, Adam; Donnelly, Peter; McVean, Gil (2008): A common sequence motif associated with recombination hot spots and genome instability in humans. In:

Nature genetics 40 (9), S. 1124–1129. DOI: 10.1038/ng.213.

Paiano, Jacob; Wu, Wei; Yamada, Shintaro; Sciascia, Nicholas; Callen, Elsa; Paola Cotrim, Ana et al. (2020): ATM and PRDM9 regulate SPO11-bound recombination intermediates during meiosis.

In: Nature communications 11 (1), S. 857. DOI: 10.1038/s41467-020-14654-w.

Paigen, Kenneth; Petkov, Petko M. (2018): PRDM9 and Its Role in Genetic Recombination. In:

Trends in genetics : TIG 34 (4), S. 291–300. DOI: 10.1016/j.tig.2017.12.017.

Parvanov, Emil D.; Tian, Hui; Billings, Timothy; Saxl, Ruth L.; Spruce, Catrina; Aithal, Rakesh et al.

(2017): PRDM9 interactions with other proteins provide a link between recombination hotspots and the chromosomal axis in meiosis. In: Molecular biology of the cell 28 (3), S. 488–499. DOI:

10.1091/mbc.E16-09-0686.

Patel, Anamika; Horton, John R.; Wilson, Geoffrey G.; Zhang, Xing; Cheng, Xiaodong (2016):

Structural basis for human PRDM9 action at recombination hot spots. In: Genes & development 30 (3), S. 257–265. DOI: 10.1101/gad.274928.115.

Patel, Anamika; Zhang, Xing; Blumenthal, Robert M.; Cheng, Xiaodong (2017): Structural basis of human PR/SET domain 9 (PRDM9) allele C-specific recognition of its cognate DNA sequence. In:

The Journal of biological chemistry 292 (39), S. 15994–16002. DOI: 10.1074/jbc.M117.805754.

Persikov, Anton V.; Singh, Mona (2014): De novo prediction of DNA-binding specificities for Cys2His2 zinc finger proteins. In: Nucleic acids research 42 (1), S. 97–108. DOI:

10.1093/nar/gkt890.

Petronczki, Mark; Siomos, Maria F.; Nasmyth, Kim (2003): Un menage a quatre. The molecular biology of chromosome segregation in meiosis. In: Cell 112 (4), S. 423–440.

Pfister, Sophia X.; Ahrabi, Sara; Zalmas, Lykourgos-Panagiotis; Sarkar, Sovan; Aymard, François;

Bachrati, Csanád Z. et al. (2014): SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. In: Cell reports 7 (6), S. 2006–2018. DOI:

10.1016/j.celrep.2014.05.026.

December 15, 2020 k1120217 107/109

Powers, Natalie R.; Parvanov, Emil D.; Baker, Christopher L.; Walker, Michael; Petkov, Petko M.;

Paigen, Kenneth (2016): The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo. In: PLoS genetics 12 (6), e1006146. DOI:

10.1371/journal.pgen.1006146.

Pratto, Florencia; Brick, Kevin; Khil, Pavel; Smagulova, Fatima; Petukhova, Galina V.; Camerini-Otero, R. Daniel (2014): DNA recombination. Recombination initiation maps of individual human genomes. In: Science (New York, N.Y.) 346 (6211), S. 1256442. DOI: 10.1126/science.1256442.

Qian, C.; Zhou, M-M (2006): SET domain protein lysine methyltransferases: Structure, specificity and catalysis. In: Cellular and molecular life sciences : CMLS 63 (23), S. 2755–2763. DOI:

10.1007/s00018-006-6274-5.

Rosano, Germán L.; Ceccarelli, Eduardo A. (2014): Recombinant protein expression in Escherichia coli. Advances and challenges. In: Frontiers in microbiology 5, S. 172. DOI:

10.3389/fmicb.2014.00172.

Schwarz, Theresa; Striedner, Yasmin; Horner, Andreas; Haase, Karin; Kemptner, Jasmin;

Zeppezauer, Nicole et al. (2019): PRDM9 forms a trimer by interactions within the zinc finger array.

In: Life science alliance 2 (4). DOI: 10.26508/lsa.201800291.

Segurel, Laure; Leffler, Ellen Miranda; Przeworski, Molly (2011): The case of the fickle fingers. How the PRDM9 zinc finger protein specifies meiotic recombination hotspots in humans. In: PLoS biology 9 (12), e1001211. DOI: 10.1371/journal.pbio.1001211.

Smith, J. F.; Hawkins, J.; Leonard, R. E.; Hanas, J. S. (1991): Structural elements in the N-terminal half of transcription factor IIIA required for factor binding to the 5S RNA gene internal control region.

In: Nucleic acids research 19 (24), S. 6871–6876.

Spruce, Catrina; Dlamini, Sibongakonke; Ananda, Guruprasad; Bronkema, Naomi; Tian, Hui;

Paigen, Kenneth et al. (2020): HELLS and PRDM9 form a pioneer complex to open chromatin at meiotic recombination hot spots. In: Genes & development 34 (5-6), S. 398–412. DOI:

10.1101/gad.333542.119.

Steiner, Cynthia C.; Ryder, Oliver A. (2013): Characterization of Prdm9 in equids and sterility in mules. In: PloS one 8 (4), e61746. DOI: 10.1371/journal.pone.0061746.

Striedner, Yasmin; Schwarz, Theresa; Welte, Thomas; Futschik, Andreas; Rant, Ulrich; Tiemann-Boege, Irene (2017): The long zinc finger domain of PRDM9 forms a highly stable and long-lived

December 15, 2020 k1120217 108/109

complex with its DNA recognition sequence. In: Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology 25 (2), S. 155–172.

DOI: 10.1007/s10577-017-9552-1.

Sun, Fengyun; Fujiwara, Yasuhiro; Reinholdt, Laura G.; Hu, Jianjun; Saxl, Ruth L.; Baker, Christopher L. et al. (2015): Nuclear localization of PRDM9 and its role in meiotic chromatin modifications and homologous synapsis. In: Chromosoma 124 (3), S. 397–415. DOI:

10.1007/s00412-015-0511-3.

Thermo Fisher Scientific (Hg.): Detergents for Cell Lysis and Protein Extraction. Pierce Protein Methods. Online verfügbar unter https://www.thermofisher.com/at/en/home/life-science/protein-

biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/detergents-cell-lysis-protein-extraction.html, zuletzt geprüft am 25.09.2018.

Thibault-Sennett, Sarah; Yu, Qi; Smagulova, Fatima; Cloutier, Jeff; Brick, Kevin; Camerini-Otero, R.

Daniel; Petukhova, Galina V. (2018): Interrogating the Functions of PRDM9 Domains in Meiosis. In:

Genetics 209 (2), S. 475–487. DOI: 10.1534/genetics.118.300565.

Tian, Hui; Billings, Timothy; Petkov, Petko M. (2020): EWSR1 affects PRDM9-dependent histone 3 methylation and provides a link between recombination hotspots and the chromosome axis protein REC8. In: Molecular biology of the cell, mbcE20090604. DOI: 10.1091/mbc.E20-09-0604.

Tiemann-Boege, Irene; Schwarz, Theresa; Striedner, Yasmin; Heissl, Angelika (2017): The consequences of sequence erosion in the evolution of recombination hotspots. In: Philosophical transactions of the Royal Society of London. Series B, Biological sciences 372 (1736). DOI:

10.1098/rstb.2016.0462.

Walker, Michael; Billings, Timothy; Baker, Christopher L.; Powers, Natalie; Tian, Hui; Saxl, Ruth L.

et al. (2015): Affinity-seq detects genome-wide PRDM9 binding sites and reveals the impact of prior chromatin modifications on mammalian recombination hotspot usage. In: Epigenetics & chromatin 8, S. 31. DOI: 10.1186/s13072-015-0024-6.

Wells, Daniel; Bitoun, Emmanuelle; Moralli, Daniela; Zhang, Gang; Hinch, Anjali; Jankowska, Julia et al. (2020): ZCWPW1 is recruited to recombination hotspots by PRDM9 and is essential for meiotic double strand break repair. In: eLife 9. DOI: 10.7554/eLife.53392.

Wolfe, S. A.; Nekludova, L.; Pabo, C. O. (2000): DNA recognition by Cys2His2 zinc finger proteins.

In: Annual review of biophysics and biomolecular structure 29, S. 183–212. DOI:

10.1146/annurev.biophys.29.1.183.