• Keine Ergebnisse gefunden

The CypD-CL1 complex system is a very interesting system for structural investigations of the CypD and its catalytic activity. CL1 enhances or induces large scale motions in CypD that are believed to represent the catalytic cycle. These motions and conformational changes could now be characterized using relaxation dispersion experiments or room temperature crystallography in

discussion

order to allow the population of both conformations. One of the drawbacks of the system is the motion in the intermediate exchange regime in the NMR experiments, leading to line broadening and bad signal to noise. Here mutations that influence the dynamics would be very helpful in order to move the dynamics to another timescale to improve the NMR conditions. Fraser et al describe that the S99T mutant in CypA slows down the protein dynamics (Fraser 2009). Due to the high ho-mology between CypA and CypD this mutation could serve the same purpose in CypD. In addition the experiments could be expanded to a more detailed ligand observed analysis during catalysis, identifying the structural features of the ligand that are involved in the process. This information could be very valuable for a further ligand design, because it could be exploited to trap certain states of the protein or to induce a certain conformation.

appendix

Table 7: Assignment table for CypD apo All assignments were done manually. ResidueNHCAHA*CBHB*CGHG*CDHD*CEHE*CZHZ* SER1117.98.5158.24.52643.9 GLY2111.18.5544.83.97 ASN3122.18.3851.237.9 PRO463.24.7332.30/1.7427.12.15/2.1450.94.15 LEU5121.48.5453.25.5544.81.7226.81.91 VAL6115.29.1558.35.4235.42.671.14/0.93 TYR7116.68.72556.1942.82.80/2.566.586.43 LEU8116.39.0153.84.7645.126.2 ASP91269.1954.55.6641.92.59 VAL10118.98.1460.25.5635.31.75 ASP11127.39.5452.95.2245.32.31 ALA12118.68.6450.25.0821.60.78 ASN13125.99.3453.74.4637.43.39/2.62 GLY141048.8345.74.12/3.71 LYS15122.27.7352.533.2 PRO1664.14.632.42.36/1.9027.62.1251.14.01/3.71 LEU17122.79.854.84.5743.61.7125.91.410.96/0.77 GLY18104.97.6944.14.65/3.73 ARG19121.48.3254.75.5634.31.627.443 VAL20126.69.55614.6134.42.07 VAL21126.88.9261.74.9933.51.921.00/0.88 LEU22128.99.6453.54.9543.10.961.59 GLU23122.68.6454.84.9731.71.736.92.08/1.76 LEU24124.68.5152.14.8842.92.02/1.3126.91.25 LYS25125.28.953.74.5327.71.66/1.5823.41.36/1.251.941.62.92/2.83 ALA26128.68.1954.13.7318.81.48 ASP27114.19.0455.14.2438.42.84/2.74

6 . Appendix

appendix

ResidueNHCAHA*CBHB*CGHG*CDHD*CEHE*CZHZ* VAL28119.97.6263.94.235.41.931.12/0.99 VAL29113.78.2757.631.7 PRO3066.14.3931.42.65/1.9927.52.150.93.61/3.07 LYS31122.610.7960.24.0631.61.71/1.43261.39/1.2129.21.49/1.3941.92.67/2.60 THR32124.710.3567.53.9868.74.160.85 ALA33125.69.27564.1218.61.46 GLU34117.58.04584.528.22.27/1.7333.72.49/2.02 ASN351157.1156.64.0239.62.87/2.33 PHE36117.37.0661.94.0540.33.21/3.147.176.99128.95.9 ARG37119.28.960.63.6230.31.8424.541.3 ALA38118.18.4454.118.11.22 LEU39122.27.9557.23.8140.926.60.910.56/0.91 CYS40120.17.9163.64.44273.31/2.15 THR41107.18.0363.44.1769.24.471.32 GLY42108.27.845.73.84/3.55 GLU43118.58.0158.54.1430.12.22/2.0435.32.10/1.80 LYS44118.79.1554.34.3230.31.66/0.9324.91.08/1.0327.51.4642.22.85/2.68 GLY45105.67.9744.64.34/3.58 PHE46113.86.4154.24.6539.53.15/2.706.647 GLY47104.77.7245.84.28/2.76 TYR48113.26.8657.74.3738.73.11/3.06 LYS49124.58.46613.7531.62.0425.41.36301.98/1.8342.23.31/3.11 GLY50117.99.7445.54.47/3.65 SER51116.48.5858.564.8 THR52107.19.6161.45.8973.54.341.24 PHE53120.88.4657.44.938.96.96.97128.77.43 HIS54119.87.4356.94.7531.83.27/2.786.82 ARG551246.854.84.9632.51.0528.243.43.17/2.99

appendix

ResidueNHCAHA*CBHB*CGHG*CDHD*CEHE*CZHZ* VAL56128.89.3861.94.535.21.821.10/0.76 ILE57127.78.6257.440.8 PRO5862.832.327.152.3 SER591159.69593.8761.64.15/4.03 PHE60114.77.5957.25.0538.33.27/2.997.227.21 MET61112.18.1554.85.1935.228.41.03/0.78 CYS62115.48.4756.84.8430.23.15/2.73 GLN63127.89.4654.930.833.62.57/2.05 ALA64126.28.0150.222.4 GLY65103.98.447.14.04/2.83 ASP66124.510.0951.538.8 PHE67115.76.6356.139 THR68109.87.35624.5568.74.040.74 ASN69120.58.6652.839.4 HIS7057.428.56.77 ASN71112.67.6252.638.9 GLY72110.89.7345.24.66/3.39 THR73112.58.0262.64.4670.94.271.09 GLY74113.38.6245.54.50/3.57 GLY75109.48.143.2 LYS76115.77.03564.6334.61.89/1.5623.40.8729.41.1841.22.15 SER77114.67.8156.85.2469.64.27/4.26 ILE78111.78.6563.74.2337.31.710.720.47 TYR79120.78.1156.24.7438.93.44/2.366.446.13 GLY80106.77.1744 SER8162.8 ARG82115.77.9253.75.5834.31.5526.91.54/1.4743.53.18/2.90 PHE831189.175539.57.327.58

appendix

ResidueNHCAHA*CBHB*CGHG*CDHD*CEHE*CZHZ* PRO8462.6432.92.25/1.6927.41.98/1.9252 ASP85119.88.854.840.9 GLU86132.19.3760.33.831.52.23/1.80352.40/2.32 ASN871077.0552.94.1239.63.38/2.74 PHE88113.28.34566.0138.43.57/2.56 THR89118.28.5766.83.7468.91.18 LEU901198.1654.54.4640.81.5127.31.810.83/0.91 LYS91118.68.3254.24.6934.32.22/1.6225.51.49/1.4228.21.64/1.5742.73.05 HIS92123.510.9156.925.93.10/2.866.6 VAL93113.97.0563.44.0132.82.360.99/0.84 GLY94105.77.3245.7 PRO9562.53227.549.8 GLY96109.99.0444.94.49/3.26 VAL97119.76.6664.53.6333.72.041.39/0.97 LEU98129.97.3853.14.8344.225.7-0.04-1.5625 SER99121.18.3155.45.2365 MET100123.48.5753.731.231.9 ALA101126.58.2551.919.91.39 ASN102113.88.4754.34.640.4 ALA103123.38.8750.34.8119.21.32 GLY104109.38.243.5 PRO105644.3832.12.33/1.8227.82.14/1.9849.33.64/3.52 ASN106118.88.9754.54373.11/2.66 THR107110.810.460.34.4168.94.420.9 ASN108120.27.1355.74.2539.71.54/0.98 GLY1091119.21464.61/3.65 SER110117.38.9257.74.7766.2 GLN111124.98.5257.85.332.135.71.87

appendix

ResidueNHCAHA*CBHB*CGHG*CDHD*CEHE*CZHZ* PHE1121198.8155.35.9143.13.36/3.266.837.81128.86.81 PHE113115.29.7454.95.7343.92.746.756.84 ILE114117.58.7959.25.0540.81.60.760.97 CYS115125.69.1460.429.23.71/2.98 THR116113.78.8961.14.4267.50.82 ILE117118.37.6459.84.3844.11.810.961.13 LYS1181218.3357.433.1224.61.6629.91.77423.04/3.01 THR119121.47.8657.13.55681.06 ASP120121.78.4356.44.239.72.90/2.70 TRP121118.57.459.94.6926.93.40/3.357.057.87.41/6.80 LEU122120.17.1554.34.338.91.3138.90.270.44/0.85 ASP123122.97.5955.95.2439.32.75 GLY124111.69.54453.92/2.87 LYS125115.77.956.44.1535.31.8425.21.27/1.2329.31.6942.43.02 HIS126119.37.5654.93.9731.83.246.91 VAL127124.78.663.84.2133.321.00/1.14 VAL128133.69.762.94.130.91.680.80/-0.00 PHE129117.78.2755.25.13423.10/2.516.627.52131.66.08 GLY130107.47.3146.94.11/4.04 HIS131119.18.5155.55.1234.73.12/2.826.95 VAL132122.88.7264.23.9432.41.960.95/0.74 LYS133132.29.6556.64.5135.11.71/1.67251.58/1.52291.78/1.67423.03 GLU134115.77.9555.14.7733.62.13/1.78362.29/2.18 GLY1351098.946.34.94/4.17 MET136122.69.0656.74.5329.82.0533.12.77/2.64 ASP137116.89.1956.84.2338.92.75/2.59 VAL138124.27.4866.13.3930.92.41.03/0.56 VAL139120.97.5866.93.330.92.561.05/0.75

appendix

ResidueNHCAHA*CBHB*CGHG*CDHD*CEHE*CZHZ* LYS140117.38.19584.1530.21.6624.31.67/1.5726.91.69/1.6041.32.96/2.88 LYS1411217.5659.53.9632.72.14/1.9025.51.75/1.4930.11.6742.32.92 ILE142121.18.16673.33382.050.470.06 GLU143117.78.2758.73.5130.61.7636.72.14 SER144113.57.3560.84.1562.93.71 PHE145119.87.7357.5539.23.57/2.997.27 GLY146105.47.8544.34.48/3.66 SER147110.38.295866.4 LYS148121.59.0860.2 SER149109.88.1559.24.4164.54.14/3.99 GLY150113.48.1244.44.25/3.88 ARG151119.47.3856.74.4530.61.7527.31.75/1.6743.33.26 THR152116.58.8459.85.4871.44.61.31 SER153116.79.52594.4263.54.19/4.04 LYS154118.27.3954.24.44381.26260.829.61.0342.52.92/2.84 LYS155122.78.4756.84.2332.21.88/1.77251.44/1.2129.41.6541.92.90/2.84 ILE156133.89.3959.55.1337.52.360.820.77 VAL157128.38.6961.44.5135.62.140.82/0.76 ILE1581269.0660.74.7137.12.070.910.71 THR159125.68.8564.33.9568.94.011.23 ASP160115.38.1253.44.9644.72.96/2.92 CYS161115.58.2355.14.5230.73.05 GLY162101.66.5745.53.84/3.37 GLN163120.99.1654.85.0630.81.95/1.64332.60/2.46 LEU164127.39.1755.64.5543.51.6727.41.660.89/0.77 SER165120.48.156064.4

appendix

Table 8: Assignment table for CypD in complex with CL1 All NH assignments were obtained manually. The carbon assignments were produced by an automated signal assignment using FLYA. ResidueNHCAHA*CBHB*CGHG*CDHD*CEHE*CZHZ* SER1118,28,458,54,53643.90/3.904,84 GLY2111,18,4744,83.98/3.98 ASN3122,18,3151,15,12382.66/3.548.01/8.39 PRO463,24,732,91.74/2.3227,12.19/2.19514.03/4.17 LEU5121,28,5153,25,5544,91.91/1.91271,720.89/0.90 VAL6115,29,1358,35,435,42,690.93/1.13 TYR7116,58,71556,1942,82.57/2.806.57/6.576.43/6.43 LEU8116,28,9753,64,95451.39/1.9226,40,920.89/0.92 ASP9125,99,1554,45,6641,92.60/2.62 VAL10118,88,160,25,5235,31,740.87/0.90 ASP11127,19,4552,95,2345,32.29/2.29 ALA12119,18,63505,0821,60,76 ASN13125,79,3153,84,4637,42.64/3.387.97/8.11 GLY14104,28,8145,73.69/4.13 LYS15122,27,7252,54,933,11.85/1.9424,71.38/1.5029,11.73/1.7342,23.04/3.047,74 PRO1663,94,5732,51.89/2.3627,62.06/2.1451,23.73/4.03 LEU17122,69,7154,74,5743,51.67/1.68261,410.75/0.94 GLY18104,87,6644,13.73/4.64 ARG19121,38,2354,75,5634,41.60/1.6127,21.60/1.60433.13/3.348,32 VAL20126,59,5261,14,5834,42,070.94/0.95 VAL21126,88,8961,84,9933,41,940.89/1.00 LEU221299,6353,44,9443,20.94/0.9426,81,530.68/0.74 GLU23122,68,6654,84,9631,71.71/1.7136,91.76/2.10 LEU24124,68,4552,34,88431.33/2.01271,270.55/0.55

appendix

ResidueNHCAHA*CBHB*CGHG*CDHD*CEHE*CZHZ* LYS251258,953,84,5227,41.59/1.6723,51.26/1.3627,51.91/1.9141,62.84/2.916,96 ALA26128,68,1854,13,7418,81,49 ASP27114,19,0655,24,2538,62.74/2.84 VAL28119,67,5963,84,2235,31,941.00/1.12 VAL29114,18,2357,74,5931,62,581.00/1.21 PRO3066,14,431,42.00/2.6427,42.00/2.1050,83.09/3.62 LYS31122,510,7660,14,0831,61.45/1.72261.22/1.4229,21.42/1.50422.62/2.6810,79 THR32124,610,3767,54,0268,74,170.88/2.58 ALA33125,79,27564,1518,71,48 GLU34117,68,0358,34,5228,21.75/2.2933,62.04/2.49 ASN35114,87,1756,74,0339,72.33/2.887.16/7.17 PHE36117,67,14624,0840,43.15/3.297.13/7.146.99/7.00128,95,81 ARG37118,98,8160,63,6530,11.85/1.9524,40.94/1.6641,32.85/2.954,84 ALA38118,38,454,24,118,31,24 LEU39121,98,0257,13,8641,31.57/1.5726,60,920.59/0.92 CYS401207,9263,64,48272.17/3.320,94 THR41107,18,0263,54,1569,14,471.33/3.84 GLY42108,27,7745,63.52/3.84 GLU43118,68,0158,54,14302.06/2.2235,31.81/2.10 LYS44118,79,0954,24,3230,30.93/1.6524,91.05/1.0727,51.46/1.4642,12.69/2.854,83 GLY45105,67,9544,73.56/4.32 PHE46113,76,37544,6239,52.67/3.126.64/6.646.97/6.97130,57,46 GLY47104,57,5445,82.72/4.31 TYR48112,76,7458,64,339,43.00/3.126.64/7.106.79/6.86 LYS49123,78,2760,83,7431,71.98/1.9925,11.37/1.3930,11.82/1.9542,23.12/3.284,94 GLY50117,79,7445,53.64/4.45

appendix

ResidueNHCAHA*CBHB*CGHG*CDHD*CEHE*CZHZ* SER51116,48,6558,64,9665,44.29/4.294,95 THR52107,59,24615,73734,31.27/4.30 PHE53120,68,3957,64,9839,31.88/3.006.90/6.916.97/7.05128,77,45 HIS541207,3556,84,97312.78/3.126.86/6.866,94 ARG551226,7254,94,9632,60.98/1.1328,21.66/1.6643,42.98/3.149,14 VAL56129,49,23624,5135,11,820.75/1.09 ILE57126,88,5557,45,17411,86

1.14/1.53/ 1.63

1,14 PRO5862,54,3632,81.71/2.2627,41.91/2.0151,83.75/3.84 SER59114,89,6593,8561,73.97/4.079,61 PHE60113,87,4456,94,9637,33.08/3.397.11/7.117.15/7.15129,96,54 MET61112,38,254,55,13351.61/2.6928,20.95/0.9520,31,14 CYS62114,98,4956,74,9630,72.80/3.090,75 GLN63128,49,41554,5230,72.32/2.5533,42.04/2.487.17/7.17 ALA64125,88,150,54,8523,20,87 GLY65102,67,747,22.74/4.02 ASP66123,69,9451,64,22392.59/2.99 PHE67116,26,3555,74,56392.60/3.967.09/7.107.06/7.45130,45,88 THR68110,27,3662,24,5768,74,040.75/7.36 ASN691218,7952,84,1439,32.77/3.428.08/8.56 HIS70112,16,657,34,5128,33.12/3.287.53/6.725,81 ASN71112,47,5152,84,1439,42.77/3.557.30/8.56 GLY721089,4745,63.37/4.56 THR73112,17,9562,34,5671,34,321.10/1.10 GLY74111,68,1545,63.43/4.57 GLY751108,1143,33.57/4.66

appendix

ResidueNHCAHA*CBHB*CGHG*CDHD*CEHE*CZHZ* LYS76115,16,8655,94,65351.55/1.8423,40.85/0.9629,51.15/1.1541,12.12/2.127,18 SER77114,37,7156,65,3270,14.25/4.257,13 ILE781128,6563,94,2137,31,74

0.73/- 0.39/1.23

0,49 TYR79120,58,0856,14,76392.38/3.466.43/6.436.15/6.15 GLY80106,27,1243,73.90/5.12 SER81114,37,762,94,162,93.98/4.103,99 ARG82114,27,7453,45,6634,41.59/1.6826,31.48/1.4943,42.98/3.144,37 PHE83117,69,0355,15,1839,43.00/3.127.32/7.327.61/7.61132,86,43 PRO8462,6432,81.71/2.2627,41.92/2.0051,93.75/3.84 ASP85119,98,7754,84,1640,81.93/2.40 GLU86132,39,3660,43,831,61.82/2.2534,92.32/2.40 ASN87106,97,0852,94,1439,52.77/3.427.08/8.36 PHE88113,18,3156,16,0238,42.60/3.577.29/7.296.51/7.29130,45,88 THR89118,28,5666,83,7669,13,761.20/8.59 LEU90118,98,1654,54,4840,91.50/1.5027,31,660.82/0.93 LYS91118,78,2854,34,734,41.61/2.2325,71.42/1.4928,31.59/1.6542,73.07/3.076,07 HIS92123,710,8756,74,4225,92.88/3.090.93/6.516,9 VAL931147,0863,63,9732,82,350.84/1.00 GLY94105,77,2945,63.63/4.40 PRO9562,63,7132,21.87/1.9727,51.86/2.1649,73.44/3.62 GLY96109,98,9644,93.25/4.46 VAL97119,76,6564,73,6133,42,020.93/1.38 LEU98130,17,3753,24,7844,40.33/0.5325,6-0,09-1.63 SER99121,38,21555,29642.74/3.801,38 MET100123,68,65545,58322.29/2.7932,12.42/2.4216,92,24

appendix

ResidueNHCAHA*CBHB*CGHG*CDHD*CEHE*CZHZ* ALA101127,48,2252,45,2119,61,39 ASN102114,39,5554,5241,11.47/2.038.22/8.03 ALA103124,78,74,6518,31,24 GLY104105,97,7843,43.57/3.60 PRO10563,94,3732,31.88/2.3627,61.97/2.1649,73.45/3.61 ASN1061198,954,54,0237,22.64/3.098.80/8.90 THR107110,410,2160,44,3868,74,30.82/3.14 ASN108118,46,9555,64,3639,91.04/1.666.95/6.95 GLY109110,89,5945,63.48/4.63 SER110118,29,3956,84,6466,13.67/3.822,74 GLN111125,48,6258,35,432,91.71/2.2635,31.73/1.938.51/8.64 PHE112118,78,8255,66,09433.43/3.446.88/6.887.84/7.84128,76,79 PHE113115,79,9655,35,7743,62.69/2.706.75/6.886.78/6.97130,45,87 ILE114117,48,8659,15,0441,21,57

0.74/0.85/ 1.85

0,95 CYS1151259,0560,84,4129,42.93/3.724,69 THR116113,48,95614,4267,64,40.80/1.96 ILE117118,77,6259,84,33441,77

0.93/1.28/ 1.40

1,08 LYS118121,48,1957,53,7533,11.93/2.1324,51.66/1.72301.76/1.7642,13.00/3.007,94 THR119120,57,6957,23,5468,12,871.01/3.80 ASP120122,18,4156,74,2339,52.72/2.88 TRP121119,67,59594,58273.33/3.467,057.75/9.287.37/6.55 LEU122117,97,354,24,4438,31.27/1.2738,80,330.33/0.75 ASP1231247,7755,95,2539,52.72/2.87 GLY124111,69,6144,82.94/3.96

appendix

ResidueNHCAHA*CBHB*CGHG*CDHD*CEHE*CZHZ* LYS125115,77,9356,94,2135,21.82/1.93261.22/1.3329,51.61/1.6242,23.05/3.114,84 HIS126119,77,72553,9131,33.34/3.337.92/6.937,28 VAL127124,48,4763,94,2333,52,041.01/1.16 VAL128133,29,6634,01311,67-0.02 PHE129117,68,2655,55,1242,12.55/3.126.63/6.637.46/7.60131,76,16 GLY130107,47,2946,93.99/4.12 HIS1311198,5155,55,1134,62.81/3.108.72/6.946,91 VAL132122,98,7264,13,9132,41,960.74/0.94 LYS1331329,6256,54,5135,11.68/1.6924,91.51/1.5429,11.68/1.7942,13.01/3.049,66 GLU134115,87,9355,24,7733,51.79/2.12362.19/2.29 GLY135109,18,8546,34.16/4.93 MET136122,68,9956,74,5229,92.02/2.1233,12.62/2.7716,81,96 ASP137116,79,1556,84,2238,92.59/2.74 VAL1381247,4866,13,4312,40.56/1.04 VAL139120,87,53673,3230,82,550.74/1.04 LYS140117,48,1858,14,1330,11.66/1.7624,41.57/1.6626,91.59/1.6841,42.86/2.958,21 LYS141121,37,659,53,9632,71.90/2.1425,51.50/1.73301.76/1.7642,22.90/2.917,61 ILE142121,18,16673,3237,92,06

0.43/1.76/ 1.76

0,1 GLU143117,88,2358,73,5130,51.75/1.7536,82.11/2.11 SER144113,87,4260,94,1562,93.75/3.757,44 PHE145119,57,757,74,9839,32.99/3.557.09/7.287.28/7.281327,28 GLY146105,57,8944,33.58/4.48 SER147109,18,2157,63,7566,13.67/3.873,98 LYS148118,98,8160,53,6629,61.26/1.2723,20.84/1.2529,60.83/1.2642,32.84/2.924,84 SER149109,98,2358,64,3563,93.90/4.217,06

appendix

ResidueNHCAHA*CBHB*CGHG*CDHD*CEHE*CZHZ* GLY150113,38,4645,23.88/4.44 ARG151118,47,4256,44,4930,11.76/1.7626,91.74/1.7443,33.26/3.388,23 THR152115,68,7759,85,571,24,61.28/5.50 SER153116,99,46594,4163,54.06/4.164,17 LYS154117,97,354,24,4537,91.10/1.2525,80.75/0.8229,41.04/1.0542,32.85/2.927,09 LYS155123,48,556,94,2132,41.78/1.88251.21/1.4529,41.66/1.66422.85/2.918,51 ILE156133,29,2959,55,1237,42,3

0.76/1.32/ 1.50

0,7 VAL157128,38,761,24,5535,82,120.75/0.84 ILE158125,78,9760,94,6936,92,11

0.90/0.92/ 1.89

0,72 THR159126,18,8664,33,9569,13,961.24/2.60 ASP160115,18,1353,44,9544,72.94/2.94 CYS161115,48,29554,5230,73.04/3.084,76 GLY162101,56,5645,53.36/3.83 GLN163120,79,0854,85,0630,81.66/1.9633,12.48/2.628.70/9.15 LEU164127,19,155,64,5743,51.66/1.6627,31,660.78/0.89 SER165120,58,1160,14,2864,23.90/3.901,51

appendix

Table 9: Predicted protein parameters .

The listed parameters of the used constructs are predicted using ProtParam (Wilkins 1999)

Construct Number of

amino acids Molecular

weight Theoretical

pI Extinction coefficient

His-CypD43-207 189 20.573 8.32 12950

CypD43-207 165 17.730 9.06 9970

AT-hASIC1a 549 62.535 5.92 51895

His-MSP1-Flag 225 26.304 5.61 26930

His-MSP1E3D1 272 31.962 6.00 28420

references

7 . References

Abdine, A., M. A. Verhoeven, et al. (2011). „Cell-free expression and labeling strategies for a new decade in solid-state NMR.“ New biotechnology 28(3): 272-276.

Aceti, D. J., C. A. Bingman, et al. (2015). „Expression platforms for producing eukaryotic pro-teins: a comparison of E. coli cell-based and wheat germ cell-free synthesis, affinity and solubility tags, and cloning strategies.“ Journal of structural and functional genomics.

Alavian, K. N., G. Beutner, et al. (2014). „An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore.“ Proceedings of the National Academy of Sciences of the United States of America 111(29): 10580-10585.

Andrey, F., T. Tsintsadze, et al. (2005). „Acid sensing ionic channels: modulation by redox re-agents.“ Biochimica et biophysica acta 1745(1): 1-6.

Aoki, M., T. Matsuda, et al. (2009). „Automated system for high-throughput protein production using the dialysis cell-free method.“ Protein expression and purification 68(2): 128-136.

Askwith, C. C., C. Cheng, et al. (2000). „Neuropeptide FF and FMRFamide potentiate acid-evo-ked currents from sensory neurons and proton-gated DEG/ENaC channels.“ Neuron 26(1): 133-141.

Azzolin, L., N. Antolini, et al. (2011). „Antamanide, a derivative of Amanita phalloides, is a novel inhibitor of the mitochondrial permeability transition pore.“ PLoS ONE 6(1): e16280.

Baconguis, I., C. J. Bohlen, et al. (2014). „X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na+-selective channel.“ Cell 156(4): 717-729.

Baconguis, I. and E. Gouaux (2012). „Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes.“ Nature 489(7416): 400-405.

Bain, A. D. (2003). „Chemical exchange in NMR.“ Progress in Nuclear Magnetic Resonance Spectroscopy 43(3–4): 63-103.

Baines, C. P., R. A. Kaiser, et al. (2005). „Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death.“ Nature 434(7033): 658-662.

Baron, A. and E. Lingueglia (2015). „Pharmacology of acid-sensing ion channels - Physiological and therapeutical perspectives.“ Neuropharmacology.

Baron, A., L. Schaefer, et al. (2001). „Zn2+ and H+ are coactivators of acid-sensing ion channels.“

The Journal of biological chemistry 276(38): 35361-35367.

Basso, E., L. Fante, et al. (2005). „Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D.“ The Journal of biological chemistry 280(19): 18558-18561.

Basso, E., V. Petronilli, et al. (2008). „Phosphate is essential for inhibition of the mitochondrial

references

permeability transition pore by cyclosporin A and by cyclophilin D ablation.“ The Journal of biological chemistry 283(39): 26307-26311.

Bax, A., G. M. Clore, et al. (1990). „1H-1H correlation via isotropic mixing of 13C magnetizati-on, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins.“ Journal of Magnetic Resonance (1969) 88(2): 425-431.

Beebe, E. T., S. Makino, et al. (2014). „Automated cell-free protein production methods for struc-tural studies.“ Methods in molecular biology 1140: 117-135.

Bissantz, C., B. Kuhn, et al. (2010). „A medicinal chemist‘s guide to molecular interactions.“ Jour-nal of mediciJour-nal chemistry 53(14): 5061-5084.

Bohlen, C. J., A. T. Chesler, et al. (2011). „A heteromeric Texas coral snake toxin targets acid-sen-sing ion channels to produce pain.“ Nature 479(7373): 410-414.

Chi, C. N., B. Vogeli, et al. (2015). „A Structural Ensemble for the Enzyme Cyclophilin Reveals an Orchestrated Mode of Action at Atomic Resolution.“ Angewandte Chemie.

Chinopoulos, C. and V. Adam-Vizi (2012). „Modulation of the mitochondrial permeability tran-sition by cyclophilin D: moving closer to F(0)-F(1) ATP synthase?“ Mitochondrion 12(1):

41-45.

Clarke, S. J., G. P. McStay, et al. (2002). „Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A.“ The Journal of biological chemistry 277(38): 34793-34799.

Davis, T. L., J. R. Walker, et al. (2010). „Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases.“ PLoS biology 8(7): e1000439.

Dawson, R. J., J. Benz, et al. (2012). „Structure of the acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1.“ Nature communications 3: 936.

Denisov, I. G., Y. V. Grinkova, et al. (2004). „Directed self-assembly of monodisperse phospho-lipid bilayer Nanodiscs with controlled size.“ Journal of the American Chemical Society 126(11): 3477-3487.

Diochot, S., A. Baron, et al. (2004). „A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons.“ Embo J 23(7): 1516-1525.

Diochot, S., A. Baron, et al. (2012). „Black mamba venom peptides target acid-sensing ion chan-nels to abolish pain.“ Nature 490(7421): 552-555.

Dötsch, V., R. E. Oswald, et al. (1996). „Amino-acid-type-selective triple-resonance experiments.“

Journal of magnetic resonance. Series B 110(1): 107-111.

Du, H., L. Guo, et al. (2008). „Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer‘s disease.“ Nature medicine 14(10): 1097-1105.

Dube, G. R., S. G. Lehto, et al. (2005). „Electrophysiological and in vivo characterization of

references

A-317567, a novel blocker of acid sensing ion channels.“ Pain 117(1-2): 88-96.

Eisenmesser, E. Z., O. Millet, et al. (2005). „Intrinsic dynamics of an enzyme underlies catalysis.“

Nature 438(7064): 117-121.

Elrod, J. W., R. Wong, et al. (2010). „Cyclophilin D controls mitochondrial pore-dependent Ca2+

exchange, metabolic flexibility, and propensity for heart failure in mice.“ The Journal of clinical investigation 120(10): 3680-3687.

Escoubas, P., J. R. De Weille, et al. (2000). „Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels.“ The Journal of biological chemistry 275(33): 25116-25121.

Farmer, B. T., 2nd, R. A. Venters, et al. (1992). „A refocused and optimized HNCA: increased sensitivity and resolution in large macromolecules.“ Journal of biomolecular NMR 2(2): 195-202.

Fayaz, S. M., Y. V. Raj, et al. (2015). „CypD: The Key to the Death Door.“ CNS & neurological disorders drug targets 14(5): 654-663.

Fraser, J. S., M. W. Clarkson, et al. (2009). „Hidden alternative structures of proline isomerase essential for catalysis.“ Nature 462(7273): 669-673.

Galat, A. and S. M. Metcalfe (1995). „Peptidylproline cis/trans isomerases.“ Progress in biophy-sics and molecular biology 63(1): 67-118.

Gao, J., B. Duan, et al. (2005). „Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death.“ Neuron 48(4): 635-646.

Gee, C. T., E. J. Koleski, et al. (2015). „Fragment screening and druggability assessment for the CBP/p300 KIX domain through protein-observed 19F NMR spectroscopy.“ Angewandte Chemie 54(12): 3735-3739.

Gething, M. J. and J. Sambrook (1992). „Protein folding in the cell.“ Nature 355(6355): 33-45.

Giorgio, V., E. Bisetto, et al. (2009). „Cyclophilin D modulates mitochondrial F0F1-ATP syntha-se by interacting with the lateral stalk of the complex.“ The Journal of biological chemistry 284(49): 33982-33988.

Gossert, A. D., A. Hinniger, et al. (2011). „A simple protocol for amino acid type selective isoto-pe labeling in insect cells with improved yields and high reproducibility.“ Journal of biomo-lecular NMR 51(4): 449-456.

Gottstein, D., D. K. Kirchner, et al. (2012). „Simultaneous single-structure and bundle represen-tation of protein NMR structures in torsion angle space.“ Journal of biomolecular NMR 52(4): 351-364.

Grunder, S. and M. Pusch (2015). „Biophysical properties of acid-sensing ion channels (ASICs).“

Neuropharmacology.

Grzesiek, S., J. Anglister, et al. (1993). „Correlation of Backbone Amide and Aliphatic Side-Chain Resonances in 13C/15N-Enriched Proteins by Isotropic Mixing of 13C Magnetization.“

Journal of Magnetic Resonance, Series B 101(1): 114-119.

references

Grzesiek, S. and A. Bax (1992a). „Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR.“ Journal of the American Chemical Society 114(16): 6291-6293.

Grzesiek, S. and A. Bax (1992b). „An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins.“ Journal of Magnetic Resonance (1969) 99(1):

201-207.

Grzesiek, S. and A. Bax (1992c). „Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein.“ Journal of Magnetic Resonance (1969) 96(2): 432-440.

Güntert, P. (2004). „Automated NMR structure calculation with CYANA.“ Methods Mol Biol 278: 353-378.

Guichou, J.F., Colliandre, L. et al. (2011). „New inhibitors of cyclophilins and uses thereof“ In-ternational patent, patent number WO 2011/076784 A2

Guo, H. X., F. Wang, et al. (2005). „Novel cyclophilin D inhibitors derived from quinoxaline exhibit highly inhibitory activity against rat mitochondrial swelling and Ca2+ uptake/ release.“

Acta pharmacologica Sinica 26(10): 1201-1211.

Haberstock, S., C. Roos, et al. (2012). „A systematic approach to increase the efficiency of mem-brane protein production in cell-free expression systems.“ Protein expression and purificati-on 82(2): 308-316.

Hajduk, P. J. and J. Greer (2007). „A decade of fragment-based drug design: strategic advances and lessons learned.“ Nature reviews. Drug discovery 6(3): 211-219.

Halestrap, A. P. (2009). „What is the mitochondrial permeability transition pore?“ Journal of mo-lecular and cellular cardiology 46(6): 821-831.

Halestrap, A. P., C. P. Connern, et al. (1997). „Cyclosporin A binding to mitochondrial cyclophi-lin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury.“ Molecular and cellular biochemistry 174(1-2): 167-172.

Halestrap, A. P., G. P. McStay, et al. (2002). „The permeability transition pore complex: another view.“ Biochimie 84(2-3): 153-166.

Hein, C., E. Henrich, et al. (2014). „Hydrophobic supplements in cell-free systems: Designing artificial environments for membrane proteins.“ Engineering in Life Sciences 14(4): 365-379.

Henrich, E., C. Hein, et al. (2015). „Membrane protein production in Escherichia coli cell-free lysates.“ FEBS letters.

Huber, W., S. Perspicace, et al. (2004). „SPR-based interaction studies with small molecular weight ligands using hAGT fusion proteins.“ Anal Biochem 333(2): 280-288.

Immke, D. C. and E. W. McCleskey (2001). „Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons.“ Nature neuroscience 4(9): 869-870.

Immke, D. C. and E. W. McCleskey (2003). „Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade.“ Neuron 37(1): 75-84.

references

Jahnke, W., R. M. Grotzfeld, et al. (2010). „Binding or bending: distinction of allosteric Abl kinase agonists from antagonists by an NMR-based conformational assay.“ Journal of the American Chemical Society 132(20): 7043-7048.

Jasti, J., H. Furukawa, et al. (2007). „Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH.“ Nature 449(7160): 316-323.

Jeremy Craven, C., M. Al-Owais, et al. (2007). „A systematic analysis of backbone amide assign-ments achieved via combinatorial selective labelling of amino acids.“ J Biomol NMR 38(2):

151-159.

Jobe, S. M., K. M. Wilson, et al. (2008). „Critical role for the mitochondrial permeability transiti-on pore and cyclophilin D in platelet activatitransiti-on and thrombosis.“ Blood 111(3): 1257-1265.

Junge, F., S. Haberstock, et al. (2011). „Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins.“ New biotechnology 28(3): 262-271.

Junge, F., B. Schneider, et al. (2008). „Large-scale production of functional membrane proteins.“

Cell Mol Life Sci 65(11): 1729-1755.

Kai, L., E. Orban, et al. (2015). „Co-translational stabilization of insoluble proteins in cell-free expression systems.“ Methods in molecular biology 1258: 125-143.

Kainosho, M., T. Torizawa, et al. (2006). „Optimal isotope labelling for NMR protein structure determinations.“ Nature 440(7080): 52-57.

Kajitani, K., M. Fujihashi, et al. (2008). „Crystal structure of human cyclophilin D in complex with its inhibitor, cyclosporin A at 0.96-A resolution.“ Proteins 70(4): 1635-1639.

Kallen, J., V. Mikol, et al. (1998). „X-ray structures and analysis of 11 cyclosporin derivatives complexed with cyclophilin A.“ Journal of molecular biology 283(2): 435-449.

Kallen, J., R. Sedrani, et al. (2005). „Structure of human cyclophilin A in complex with the novel immunosuppressant sanglifehrin A at 1.6 A resolution.“ The Journal of biological chemistry 280(23): 21965-21971.

Kay, L. E., M. Ikura, et al. (1990). „Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins.“ Journal of Magnetic Resonance (1969) 89(3): 496-514.

Kellenberger, S. and L. Schild (2002). „Epithelial sodium channel/degenerin family of ion chan-nels: a variety of functions for a shared structure.“ Physiological reviews 82(3): 735-767.

Kim, H. C. and D. M. Kim (2009). „Methods for energizing cell-free protein synthesis.“ Journal of bioscience and bioengineering 108(1): 1-4.

Kim, T. W., J. W. Keum, et al. (2006). „Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system.“ J Biotechnol 126(4): 554-561.

Kokoszka, J. E., K. G. Waymire, et al. (2004). „The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore.“ Nature 427(6973): 461-465.

Koradi, R., M. Billeter, et al. (2000). „Point-centered domain decomposition for parallel molecular

references

dynamics simulation.“ Computer Physics Communications 124(2–3): 139-147.

Krauskopf, A., O. Eriksson, et al. (2006). „Properties of the permeability transition in VDAC1(-/-) mitochondria.“ Biochimica et biophysica acta 1757(5-6): 590-595.

Krishtal, O. A. and V. I. Pidoplichko (1980). „A receptor for protons in the nerve cell membra-ne.“ Neuroscience 5(12): 2325-2327.

le Maire, A., M. Gelin, et al. (2011). „In-plate protein crystallization, in situ ligand soaking and X-ray diffraction.“ Acta crystallographica. Section D, Biological crystallography 67(Pt 9):

747-755.

Leung, A. W., P. Varanyuwatana, et al. (2008). „The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition.“ The Journal of biological chemistry 283(39): 26312-26323.

Linser, R., V. Gelev, et al. (2014). „Selective methyl labeling of eukaryotic membrane proteins using cell-free expression.“ Journal of the American Chemical Society 136(32): 11308-11310.

Löhr, F., A. Laguerre, et al. (2014). „Time-shared experiments for efficient assignment of trip-le-selectively labeled proteins.“ Journal of magnetic resonance 248: 81-95.

Löhr, F., S. Reckel, et al. (2012). „Combinatorial triple-selective labeling as a tool to assist mem-brane protein backbone resonance assignment.“ Journal of biomolecular NMR 52(3): 197-210.

Löhr, F., F. Tumulka, et al. (2015). „An extended combinatorial 15N, 13Cα , and 13C‘ labeling appro-ach to protein backbone resonance assignment.“ Journal of biomolecular NMR.

Lu, K. P., Y. C. Liou, et al. (2002). „Pinning down proline-directed phosphorylation signaling.“

Trends in cell biology 12(4): 164-172.

Luvisetto, S., E. Basso, et al. (2008). „Enhancement of anxiety, facilitation of avoidance behavior, and occurrence of adult-onset obesity in mice lacking mitochondrial cyclophilin D.“ Neu-roscience 155(3): 585-596.

Merlini, L., A. Angelin, et al. (2008). „Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies.“ Proceedings of the National Academy of Sciences of the United States of America 105(13): 5225-5229.

Millay, D. P., M. A. Sargent, et al. (2008). „Genetic and pharmacologic inhibition of mitochondri-al-dependent necrosis attenuates muscular dystrophy.“ Nature medicine 14(4): 442-447.

Murray, J. B., S. D. Roughley, et al. (2014). „Off-Rate Screening (ORS) By Surface Plasmon Reso-nance. An Efficient Method to Kinetically Sample Hit to Lead Chemical Space from Unpu-rified Reaction Products.“ Journal of medicinal chemistry.

Navratilova, I., J. Besnard, et al. (2011). „Screening for GPCR Ligands Using Surface Plasmon Resonance.“ ACS medicinal chemistry letters 2(7): 549-554.

Nguyen, T. T., M. V. Stevens, et al. (2011). „Cysteine 203 of cyclophilin D is critical for cyclophi-lin D activation of the mitochondrial permeability transition pore.“ The Journal of

biologi-references

cal chemistry 286(46): 40184-40192.

Palmer, L. G. (1982). „Ion selectivity of the apical membrane Na channel in the toad urinary bladder.“ The Journal of membrane biology 67(2): 91-98.

Parker, M. J., M. Aulton-Jones, et al. (2004). „A combinatorial selective labeling method for the assignment of backbone amide NMR resonances.“ J Am Chem Soc 126(16): 5020-5021.

Poirot, O., M. Vukicevic, et al. (2004). „Selective regulation of acid-sensing ion channel 1 by seri-ne proteases.“ The Journal of biological chemistry 279(37): 38448-38457.

Proverbio, D., E. Henrich, et al. (2014). Membrane Protein Quality Control in Cell-Free Expressi-on Systems: Tools, Strategies and Case Studies. Membrane Proteins ProductiExpressi-on for Structu-ral Analysis. I. Mus-Veteau, Springer New York: 45-70.

Quast, R. B., O. Kortt, et al. (2015). „Automated production of functional membrane proteins using eukaryotic cell-free translation systems.“ J Biotechnol 203: 45-53.

Rao, V. K., E. A. Carlson, et al. (2014). „Mitochondrial permeability transition pore is a potential drug target for neurodegeneration.“ Biochimica et biophysica acta 1842(8): 1267-1272.

Reckel, S., D. Gottstein, et al. (2011). „Solution NMR structure of proteorhodopsin.“ Angewand-te Chemie 50(50): 11942-11946.

Reckel, S., S. Sobhanifar, et al. (2008). „Transmembrane segment enhanced labeling as a tool for the backbone assignment of alpha-helical membrane proteins.“ Proc Natl Acad Sci U S A 105(24): 8262-8267.

Reese, M. L. and V. Dotsch (2003). „Fast mapping of protein-protein interfaces by NMR spec-troscopy.“ J Am Chem Soc 125(47): 14250-14251.

Roos, C., M. Zocher, et al. (2012). „Characterization of co-translationally formed nanodisc com-plexes with small multidrug transporters, proteorhodopsin and with the E. coli MraY trans-locase.“ Biochimica et biophysica acta 1818(12): 3098-3106.

Schagger, H. (2006). „Tricine-SDS-PAGE.“ Nat Protoc 1(1): 16-22.

Schagger, H. and G. von Jagow (1987). „Tricine-sodium dodecyl sulfate-polyacrylamide gel elec-trophoresis for the separation of proteins in the range from 1 to 100 kDa.“ Anal Biochem 166(2): 368-379.

Schinzel, A. C., O. Takeuchi, et al. (2005). „Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia.“

Proceedings of the National Academy of Sciences of the United States of America 102(34):

12005-12010.

Schlatter, D., R. Thoma, et al. (2005). „Crystal engineering yields crystals of cyclophilin D diffrac-ting to 1.7 A resolution.“ Acta crystallographica. Section D, Biological crystallography 61(Pt 5): 513-519.

Schmidt, E. and P. Guntert (2012). „A new algorithm for reliable and general NMR resonance assignment.“ Journal of the American Chemical Society 134(30): 12817-12829.

references

Schneider, B., F. Junge, et al. (2010). „Membrane protein expression in cell-free systems.“ Me-thods in molecular biology 601: 165-186.

Schwarz, D., F. Junge, et al. (2007). „Preparative scale expression of membrane proteins in Esche-richia coli-based continuous exchange cell-free systems.“ Nat Protoc 2(11): 2945-2957.

Shuker, S. B., P. J. Hajduk, et al. (1996). „Discovering high-affinity ligands for proteins: SAR by NMR.“ Science 274(5292): 1531-1534.

Staunton, D., R. Schlinkert, et al. (2006). „Cell-free expression and selective isotope labelling in protein NMR.“ Magn Reson Chem 44 Spec No: S2-9.

Strop, P. and A. T. Brunger (2005). „Refractive index-based determination of detergent concent-ration and its application to the study of membrane proteins.“ Protein science : a publication of the Protein Society 14(8): 2207-2211.

Su, X. C., C. T. Loh, et al. (2011). „Suppression of isotope scrambling in cell-free protein synthe-sis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O.“ Journal of biomolecular NMR 50(1): 35-42.

Svarstad, H., H. Bugge, et al. (2000). „From Norway to Novartis: cyclosporin from Tolypocladi-um inflatTolypocladi-um in an open access bioprospecting regime.“ Biodiversity & Conservation 9(11):

1521-1541.

Swinehart, D. F. (1962). „The Beer-Lambert Law.“ Journal of Chemical Education 39(7): 333.

Ugawa, S., T. Ueda, et al. (2002). „Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors.“ The Journal of clinical investigation 110(8): 1185-1190.

Vajpai, N., A. Strauss, et al. (2008a). „Solution conformations and dynamics of ABL kinase-inhi-bitor complexes determined by NMR substantiate the different binding modes of imatinib/

nilotinib and dasatinib.“ The Journal of biological chemistry 283(26): 18292-18302.

Vajpai, N., A. Strauss, et al. (2008b). „Backbone NMR resonance assignment of the Abelson kinase domain in complex with imatinib.“ Biomolecular NMR assignments 2(1): 41-42.

Villemagne, B., M. Flipo, et al. (2014). „Ligand efficiency driven design of new inhibitors of My-cobacterium tuberculosis transcriptional repressor EthR using fragment growing, merging, and linking approaches.“ Journal of medicinal chemistry 57(11): 4876-4888.

Vogeli, B. (2014). „The nuclear Overhauser effect from a quantitative perspective.“ Progress in Nuclear Magnetic Resonance Spectroscopy 78: 1-46.

Vogeli, B., S. Kazemi, et al. (2012). „Spatial elucidation of motion in proteins by ensemble-ba-sed structure calculation using exact NOEs.“ Nature structural & molecular biology 19(10):

1053-1057.

Wang, P. and J. Heitman (2005). „The cyclophilins.“ Genome biology 6(7): 226.

Watashi, K., N. Ishii, et al. (2005). „Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase.“ Mol Cell 19(1): 111-122.

references

Weigelt, J., M. van Dongen, et al. (2002). „Site-selective screening by NMR spectroscopy with labeled amino acid pairs.“ Journal of the American Chemical Society 124(11): 2446-2447.

Wemmie, J. A., C. C. Askwith, et al. (2003). „Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning.“ The Journal of neuroscience : the official journal of the Society for Neuroscience 23(13): 5496-5502.

Wemmie, J. A., M. P. Price, et al. (2006). „Acid-sensing ion channels: advances, questions and therapeutic opportunities.“ Trends in neurosciences 29(10): 578-586.

Wilkins, M. R., E. Gasteiger, et al. (1999). „Protein identification and analysis tools in the ExPASy server.“ Methods Mol Biol 112: 531-552.

Williamson, M. P. (2013). „Using chemical shift perturbation to characterise ligand binding.“ Pro-gress in Nuclear Magnetic Resonance Spectroscopy 73: 1-16.

Wu, P. S., K. Ozawa, et al. (2006). „Amino-acid type identification in 15N-HSQC spectra by com-binatorial selective 15N-labelling.“ Journal of biomolecular NMR 34(1): 13-21.

Xu, Y., J. Lee, et al. (2015). „Production of bispecific antibodies in „knobs-into-holes“ using a cell-free expression system.“ mAbs 7(1): 231-242.

Yamazaki, T., J. D. Forman-Kay, et al. (1993). „Two-dimensional NMR experiments for cor-relating carbon-13.beta. and proton.delta./.epsilon. chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings.“ Journal of the American Chemical Society 115(23): 11054-11055.

Yin, G., E. D. Garces, et al. (2012). „Aglycosylated antibodies and antibody fragments produced in a scalable in vitro transcription-translation system.“ mAbs 4(2): 217-225.

Yokoyama, J., T. Matsuda, et al. (2011). „A practical method for cell-free protein synthesis to avoid stable isotope scrambling and dilution.“ Anal Biochem 411(2): 223-229.

Zimmerman, E. S., T. H. Heibeck, et al. (2014). „Production of site-specific antibody-drug con-jugates using optimized non-natural amino acids in a cell-free expression system.“ Bioconjug Chem 25(2): 351-361.

Zubay, G. (1973). „In vitro synthesis of protein in microbial systems.“ Annual review of genetics 7: 267-287.

acknowledgemenTs

Acknowledgements

I would like to thank Volker Dötsch for his support during my time as a student in his lab and for the supervision of my PhD thesis. I enjoyed my time in the group, where you managed to create a cooperative and creative working environment. I appreciate the space and the time you gave me for my personal and scientific development. I was able to pursue my own ideas, plan and develop my projects in nearly any way I wanted, work on a whole bouquet of different subjects and had the freedom to establish cooperations. In addition I would like to thank you for your great sense of humor, even in awkward or special situations.

Further I would like to thank Daniel Schwarz for his great support during the whole project.

Thank you for establishing the cooperation that made my thesis possible and for all the organiza-tional work connected with the project. Thank you for your great feedback on my data, my ideas, my presentations and my final thesis, as well as your ideas and help, especially during the critical and difficult times of the thesis.

I would further like to thank Jörg Bombke, Ansgar Wegener, Djordje Musil, Ulrich Graedler and Matthias Frech from the Merck MIB team for scientific input and support during the thesis, as well as Norbert, Ivonne, Eva and Gerlinde for their help in the MIB lab.

Special thanks go to Frank Löhr (Murph) for your enormous efforts with all my NMR samples.

Your support and input saved my PhD thesis.

I would like to thank my cooperation partners, that helped me in a lot of projects even if the projects are not mentioned in this thesis. My thanks go to:

• Oliver Peetz for his MS measurements and for always having time for my samples, even on very short notice.

• Albert Konijnenberg for the cooperation on another MS project.

• Lilia Leisle and Chris Ahern for their big effort in synthesizing modified tRNAs and for their input during the cooperation project.

• Francis Valayaveetil and his lab for the great support on the protein refolding

• Martin Caffrey and Coilin Boland for their work on LCP crystallization of my samples.

• Ekaterina Zaitseva for electrophysiology measurements on a lot of samples.

• Sina Kazemi for all the work concerning the automated assignment and structure calcula-tion as well as the fun during the music festivals and concerts.

I would like to thank Sigrid Oğuzer-Fachinger, who did a great job helping me with all the bu-reaucratic problems; Manfred Strupf, for being better than anyone else in fixing equipment, you kept the lab running and Brigit Schäfer for being the good soul of the lab.

But the most influence on my time had the people I worked with on an everyday basis in the lab. Here I‘d like to thank Susanne Stefer for introducing me to the cell free expression and for the great cooperation during the first six months of my PhD, in which I worked with her on the Get project. I want to thank Sebastian Richers, who was probably the most helpful postdoc in the lab and had an endless amount of great tips, and hands on support. I want to thank Aisha Laguerre for her honest and open conversations and for sharing her postdoc wisdom on what a PhD thesis is about and how it works, as well as her ideas about life, the universe and everything. Further to the former lab members Gergor Deutsch, Robert Hänsel-Hertsch, Peter Tufar, Alena Busche, Sina Reckel, Alexis Rozenknop, Christian Roos and Stefan Haberstock for a warm welcome in the