• Keine Ergebnisse gefunden

Outlook and possible directions of further research

The experimental oral infection of goats with MAH may be a valuable model for comparative TB research in several aspects:

The different courses of diseases allow the examination of certain TB entities, e.g.

granulomatous lesions seen in intestinal TB or granulomas seen in latent TB.

Especially, granulomas seen in the surviving goats resemble the heterogeneity of lesions reported in cattle and goats after infection with MTC members, as well as lesions in humans with pulmonary TB (VAN RHIJN et al. 2008; LENAERTS et al.

2015). The development of 3rd LT with well-organized granulomas has been reported in few studies only (ULRICHS et al. 2004; ULRICHS et al. 2005; ARANDAY-CORTES et al. 2013). Therefore, the presence of 3rd LT is a major advantage of this model to evaluate the relevance of this feature in the control of mycobacteria by the host immune response. Drug efficacy testing is another aspect for experimental TB models. The plethora of morphologically different granuloma stages could be of great interest for drug testing. Certain features like necrosis, mineralization, extensive fibrosis and vascularization of granulomas directly influence the pharmacodynamics and pharmacokinetics of administered drugs and might be evaluable by histopathology and modern live imaging in this goat model (BASARABA 2008;

BARRY et al. 2009).

The relative small size of goats allows much lower housing and feeding costs when compared with cattle (GONZALEZ-JUARRERO et al. 2013). In comparison to other livestock species, the goat model allows the utilization of modern live imaging systems, e.g. magnetic resonance imaging, computed tomography or positron emission tomography (DE VAL et al. 2011; LENAERTS et al. 2015). This feature could be of special value to monitor granuloma development in experimentally infected goats. The lack of a wide array of immunologic tools is usually considered as a constraint of large animal models (YOUNG 2009). However, the recent

obstacle as indicated recently by cytokine gene expression analysis in bovine pulmonary TB granulomas (PALMER et al. 2015).

Finally, another benefit of the experimental design was the classification of MAH as BSL 2 pathogen allowing an easier experimental performance than BSL 3 condition would have required. Since all MTC members are BSL 3 pathogens, special requirements for housing, occupational safety and tissue processing have to be considered (CHOSEWOOD u. WILSON 2011).

In conclusion, the obvious similarities of granulomas with those seen in bovine and human TB and the association of ectopic lymphoid tissue with organized granulomas highlights this model as appropriate for comparative TB and NTM research and the goat in particular as model species.

7 Summary

Jan Schinköthe:

Experimental oral infection of goats with Mycobacterium avium subsp.

hominissuis: Pathomorphological characterization of lesions in different courses of disease with special focus on cellular composition of granulomas

Goats were experimentally infected with Mycobacterium avium subsp. hominissuis (MAH) to determine the specificity of diagnostic antigens for Mycobacterium avium subsp. paratuberculosis. For this, each of 21 goats was inoculated orally 10-times, every 2-4 days with MAH receiving a total dose of 2.13 x 1010 cfu MAH. An unexpected onset of clinical signs progressing to severe disease was observed in 50

% of the goats at 2-3 mpi. The remaining goats had mild transient clinical signs and were healthy 13 mpi at the end of the trial. The first objective of this study was to characterize lesions in severely sick goats and in surviving goats at 13 mpi and to examine lesions for presence of MAH.

At necropsy, goats were examined for macroscopic lesions. Representative samples of lesions, intestinal tissues, lymphoid organs and large parenchyma were fixed in NBF and snap frozen. Histologic lesions were evaluated in HE stained FFPE sections. Detection of MAH in sampled tissues was performed by IHC and by bacterial cultivation.

Goats necropsied at 2-3 mpi had severe intestinal ulcerations with underlying granulomatous infiltrates in oGALT and large granulomas in ILN with variable quantities of MAH detected in tissue sections. Large amounts of MAH were cultivated from intestinal and ILN lesions and peripheral organs, indicating extra-intestinal spread of MAH. At 13 mpi, multiple small granulomas in oGALT and large granulomas in ILN were seen at necropsy. MAH was detected by IHC in few granulomas (3/9 goats) and cultured in low quantities in 6/9 goats at intestinal sites and ILN only. All goats excreted moderate to high amounts of MAH via feces until 2 mpi. Environmental contamination due to fecal shedding and low amounts of

mycobacteria in granulomas of otherwise healthy goats may represent a potential risk for human health.

Since large numbers of morphologically heterogeneous granulomas were found in goats at 2-3 mpi and 13 mpi, the second objective was to characterize their cellular composition and to compare them with granulomas seen in human and bovine tuberculosis. In consecutive frozen sections, CD4+, CD8+, γδ T lymphocytes, B lymphocytes, plasma cells, CD68+, CD25+, MHC-II+, proliferative and endothelial cells were labeled by IHC. Furthermore, collagen and AFB were stained by Azan, respectively, Kinyoun method.

Granulomas with extensive necrosis, little mineralization and variable numbers of AFB surrounded by many CD4+ T cells, but only few epitheloid macrophages were observed in severely sick goats at 2-3 mpi. They were interpreted as exuberant immune reaction. Organized granulomas with very few AFB were seen in clinically healthy goats at 13 mpi. The necrotic cores were surrounded by a zone of granulomatous infiltrate with many epitheloid macrophages and few lymphocytes.

This zone was initially wide and highly vascularized and became progressively smaller. It was enclosed by an increasing layer of connective tissue. All organized granulomas were surrounded by compartimentalized tertiary lymphoid tissue. The granulomas in experimental infection of goats with MAH reflect the heterogeneity of lesions seen in mycobacterial infections of humans and ruminants.

In conclusion, the experimental infection of goats with MAH resulted in different courses of disease, morphologically different granulomas with striking similarities to those seen in bovine and human TB, and the development of ectopic lymphoid tissue in organized granulomas. These features highlight this model as appropriate for comparative TB and NTM research and the goat in particular as model species.

8 Zusammenfassung

Jan Schinköthe:

Experimentelle orale Infektion von Ziegen mit Mycobacterium avium subsp.

hominissuis: Pathomorphologische Charakterisierung der Läsionen bei verschiedenen Krankheitsverläufen unter besonderer Berücksichtigung der zellulären Zusammensetzung der Granulome

Ziegen wurden experimentell mit Mycobacterium avium subsp. hominissuis (MAH) infiziert, um die Spezifität von diagnostischen Antigenen gegen Mycobacterium avium subsp. paratuberculosis zu testen. Hierfür wurde eine Gruppe von 21 Ziegen 10-mal, alle 2-4 Tage mit einer Gesamtdosis von 2,13 x 1010 KBE MAH oral inokuliert. Unerwartet traten bei 50% der Ziegen 2-3 Monate nach Erstinfektion (Mpi) schwere klinische Symptome auf und mehrere Tiere verendeten spontan oder mussten aus ethischen Gründen getötet werden. Die überlebenden Ziegen zeigten milde transiente klinische Symptome und waren bei der Sektion 13 Mpi klinisch gesund. Das erste Ziel dieser Studie war, die Läsionen sowohl bei den hochgradig Erkrankten als auch bei den überlebenden Ziegen zu charakterisieren und auf das Vorhandensein von MAH zu untersuchen.

Bei der Sektion wurden die makroskopischen Läsionen dokumentiert und repräsentative Proben von den Läsionen, intestinalen Geweben sowie lymphatischen und peripheren Organen entnommen und in Formalin fixiert bzw. kryokonserviert. Die histopathologische Analyse der Läsionen fand an HE-gefärbten Paraffinschnitten statt. Der Nachweis von MAH wurde mit Immunhistochemie (IHC) am Schnitt und mit bakterieller Kultivierung durchgeführt.

Ziegen zum Zeitpunkt 2-3 Mpi wiesen hochgradige intestinale Ulzerationen mit zugrunde liegenden granulomatösen Infiltraten in organisiertem Darm-assoziierten lymphatischen Gewebe (oGALT) und große Granulome in intestinalen Lymphknoten (ILN) auf. MAH konnte mit IHC in variabler Zahl intra- und extrazellulär nachgewiesen werden. Eine hohe Erregerlast wurde in intestinalen und ILN Läsionen sowie in

extraintestinale Verbreitung von MAH hin. 13 Mpi wurden bei allen untersuchten Ziegen mehrere kleine Granulome in oGALT und/oder große Granulome in ILN bei der Sektion gefunden. MAH ließ sich nur in wenigen Granulomen (3/9 Ziegen) durch IHC nachweisen bzw. aus 6/9 Ziegen in geringen Mengen kultivieren. Alle infizierten Ziegen schieden bis 2 Mpi moderate bis hohe Mengen an MAH über den Kot aus.

Die dabei eintretende Umgebungskontamination sowie das Vorhandensein von Mykobakterien in Granulomen von gesunden Ziegen könnte ein mögliches Risiko für die menschliche Gesundheit darstellen.

Da in den Ziegen 2-3 und 13 Mpi eine große Anzahl morphologisch heterogener Granulome gefunden wurde, war das zweite Ziel dieser Studie herauszufinden, wie die zelluläre Zusammensetzung der Granulome ist und diese mit denen bei der Tuberkulose der Rindes und des Menschen zu vergleichen. Dafür wurden in Konsekutivschnitten CD4+, CD8+, γδ-T-Lymphozyten, B-Lymphozyten, Plasmazellen, CD68+, CD25+, MHC-II+, proliferative Zellen und Endothelzellen mittels IHC markiert.

Kollagen und säurefeste Bakterien (AFB) wurden mit Azan- bzw. Kinyounfärbung dargestellt.

Granulome mit extensiven verkäsenden Nekrosen, die minimale Mineralisierungen und viele AFB enthielten, waren umgeben von vielen CD4+ T Lymphozyten mit wenigen epitheloiden Makrophagen und waren nur in ILN 2-3 Mpi vorhanden. Diese Befunde wurden als überschießende Immunantwort interpretiert. Organisierte Granulome mit sehr wenigen AFB wurden in klinisch gesunden Ziegen 13 Mpi gefunden. Die nekrotischen Zentren dieser Granulome waren umgeben von einer Zone aus granulomatösem Infiltrat mit vielen epitheloiden Makrophagen und wenigen Lymphozyten. Diese Zone war zu Beginn breit und gut vaskularisiert. Sie wurde fortschreitend schmaler und stattdessen entwickelte sich eine immer breiter werdende Schicht aus Bindegewebe. Alle organisierten Granulome waren zusätzlich von organisiertem tertiärem lymphatischem Gewebe umgeben. Die Heterogenität der Granulome bei MAH infizierten Ziegen zeigte eine große Ähnlichkeit mit Granulomen der Tuberkulose des Rindes und des Menschen.

Die verschiedenen Krankheitsverläufe mit Latenzphase, das Auftreten von morphologisch heterogenen Granulomen und die Entwicklung von tertiärem

lymphatischem Gewebe in organisierten Granulomen machen die experimentelle Infektion der Ziege mit MAH zu einem für die vergleichende Forschung an Infektionen mit tuberkulösen und nicht tuberkulösen Mykobakterien hervorragend geeigneten Modell.

9 References

ABDALLAH, A. M., N. C. GEY VAN PITTIUS, P. A. CHAMPION, J. COX, J. LUIRINK, C. M. VANDENBROUCKE-GRAULS, B. J. APPELMELK u. W. BITTER (2007):

Type VII secretion--mycobacteria show the way.

Nat. Rev. Microbiol. 5, 883-891

AGDESTEIN, A., T. B. JOHANSEN, O. KOLBJORNSEN, A. JORGENSEN, B.

DJONNE u. I. OLSEN (2012):

A comparative study of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. hominissuis in experimentally infected pigs.

BMC Vet. Res. 8, 11

AGDESTEIN, A., I. OLSEN, A. JØRGENSEN, B. DJØNNE u. T. B. JOHANSEN (2014):

Novel insights into transmission routes of Mycobacterium avium in pigs and possible implications for human health.

Vet. Res. 45, 46

AMENI, G., M. VORDERMEIER, R. FIRDESSA, A. ASEFFA, G. HEWINSON, S. V.

GORDON u. S. BERG (2011):

Mycobacterium tuberculosis infection in grazing cattle in central Ethiopia.

The Veterinary Journal 188, 359-361

APPELBERG, R., A. G. CASTRO, J. PEDROSA, R. A. SILVA, I. M. ORME u. P.

MINÓPRIO (1994):

Role of gamma interferon and tumor necrosis factor alpha during T-cell-independent and-dependent phases of Mycobacterium avium infection.

Infect. Immun. 62, 3962-3971

ARANDAY-CORTES, E., N. C. BULL, B. VILLARREAL-RAMOS, J. GOUGH, D.

HICKS, Á. ORTIZ-PELÁEZ, H. M. VORDERMEIER u. F. J. SALGUERO (2013):

Upregulation of IL-17A, CXCL9 and CXCL10 in Early-Stage Granulomas Induced by Mycobacterium bovis in Cattle.

Transboundary and Emerging Diseases 60, 525-537

ARIS, F., C. NAIM, T. BESSISSOW, R. AMRE u. G. P. ARTHO (2011):

AIRP best cases in radiologic-pathologic correlation: Mycobacterium avium-intracellulare complex enteritis.

Radiographics 31, 825-830

ARRAZURIA, R., I. A. SEVILLA, E. MOLINA, V. PEREZ, J. M. GARRIDO, R. A.

JUSTE u. N. ELGUEZABAL (2015):

Detection of Mycobacterium avium subspecies in the gut associated lymphoid tissue of slaughtered rabbits.

BMC Vet. Res. 11, 130

BARRY, C. E., H. I. BOSHOFF, V. DARTOIS, T. DICK, S. EHRT, J. FLYNN, D.

SCHNAPPINGER, R. J. WILKINSON u. D. YOUNG (2009):

The spectrum of latent tuberculosis: rethinking the biology and intervention strategies.

Nature Reviews Microbiology 7, 845-855 BASARABA, R. J. (2008):

Experimental tuberculosis: the role of comparative pathology in the discovery of improved tuberculosis treatment strategies.

Tuberculosis (Edinb) 88 Suppl 1, S35-47

BEHAR, S. M., M. DIVANGAHI u. H. G. REMOLD (2010):

Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy?

Nature Reviews Microbiology 8, 668-674 BEHR, M. A. u. J. O. FALKINHAM III (2009):

Molecular epidemiology of nontuberculous mycobacteria.

Future Microbiol. 4, 1009-1020

BENINI, J., E. M. EHLERS u. S. EHLERS (1999):

Different types of pulmonary granuloma necrosis in immunocompetent vs. TNFRp55‐

gene‐deficient mice aerogenically infected with highly virulent Mycobacterium avium.

The Journal of pathology 189, 127-137

BERMUDEZ, L. E., M. PETROFSKY, P. KOLONOSKI u. L. S. YOUNG (1992):

An Animal Model of Mycobacterium avium Complex Disseminated Infection after Colonization of the Intestinal Tract.

J. Infect. Dis. 165, 75-79

BHATNAGAR, S., K. SHINAGAWA, F. J. CASTELLINO u. J. S. SCHOREY (2007):

Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo.

Blood 110, 3234-3244

BIET, F. u. M. L. BOSCHIROLI (2014):

Non-tuberculous mycobacterial infections of veterinary relevance.

Res. Vet. Sci. 97, Supplement, S69-S77

BIET, F., M. L. BOSCHIROLI, M. F. THOREL u. L. A. GUILLOTEAU (2005):

Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex (MAC).

Vet. Res. 36, 411-436

BLOMGRAN, R. u. J. D. ERNST (2011):

Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during

BMEL (2015):

Meldepflichtige Tierkrankheiten.

BRENNAN, P. J. (2003):

Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis.

Tuberculosis 83, 91-97

BRODE, S. K., C. L. DALEY u. T. K. MARRAS (2014):

The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review.

Int. J. Tuberc. Lung Dis. 18, 1370-1377

BRUIJNESTEIJN VAN COPPENRAET, L. E., P. E. DE HAAS, J. A. LINDEBOOM, E.

J. KUIJPER u. D. VAN SOOLINGEN (2008):

Lymphadenitis in children is caused by Mycobacterium avium hominissuis and not related to 'bird tuberculosis'.

Eur. J. Clin. Microbiol. Infect. Dis. 27, 293-299

CAPUANO, S. V., D. A. CROIX, S. PAWAR, A. ZINOVIK, A. MYERS, P. L. LIN, S.

BISSEL, C. FUHRMAN, E. KLEIN u. J. L. FLYNN (2003):

Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection.

Infect. Immun. 71, 5831-5844 CARDONA, P.-J. u. J. IVANYI (2011):

The secret trumps, impelling the pathogenicity of tubercle bacilli.

Enferm. Infecc. Microbiol. Clin. 29, 14-19 CARDONA, P. J. (2015):

The key role of exudative lesions and their encapsulation: lessons learned from the pathology of human pulmonary tuberculosis.

Frontiers in microbiology 6, 612

CASSIDY, J., D. BRYSON, M. G. CANCELA, F. FORSTER, J. POLLOCK u. S.

NEILL (2001):

Lymphocyte subtypes in experimentally induced early-stage bovine tuberculous lesions.

J. Comp. Pathol. 124, 46-51

CHAN, J., S. MEHTA, S. BHARRHAN, Y. CHEN, J. M. ACHKAR, A. CASADEVALL u. J. FLYNN (2014):

The role of B cells and humoral immunity in Mycobacterium tuberculosis infection.

Semin. Immunol. 26, 588-600

CHOSEWOOD, L. u. D. WILSON (2011):

Biosafety in Microbiological and Biomedical Laboratories (US Department of Health and Human Services, Washington, DC).

Availableat http://www. cdc. gov/biosafety/publications/bmbl5/BMBL. pdf. Accessed 08.08.2015

CLARKE, C. J. (1997):

The pathology and pathogenesis of paratuberculosis in ruminants and other species.

J. Comp. Pathol. 116, 217-261

CRAWSHAW, T., R. DANIEL, R. CLIFTON-HADLEY, J. CLARK, H. EVANS, S.

ROLFE u. R. DE LA RUA-DOMENECH (2008):

TB in goats caused by Mycobacterium bovis.

Vet. Rec. 163, 127

DAMSKER, B. u. E. J. BOTTONE (1985):

Mycobacterium avium-Mycobacterium intracellulare from the intestinal tracts of patients with the acquired immunodeficiency syndrome: concepts regarding acquisition and pathogenesis.

The Journal of infectious diseases 179-181 DAVIS, J. M. u. L. RAMAKRISHNAN (2009):

The Role of the Granuloma in Expansion and Dissemination of Early Tuberculous Infection.

Cell 136, 37-49

DE VAL, B. P., S. LÓPEZ-SORIA, M. NOFRARÍAS, M. MARTÍN, H. M.

VORDERMEIER, B. VILLARREAL-RAMOS, N. ROMERA, M. ESCOBAR, D.

SOLANES u. P.-J. CARDONA (2011):

Experimental model of tuberculosis in the domestic goat after endobronchial infection with Mycobacterium caprae.

Clinical and Vaccine Immunology 18, 1872-1881

DE VAL PEREZ, B., S. LOPEZ-SORIA, M. NOFRARIAS, M. MARTIN, H. M.

VORDERMEIER, B. VILLARREAL-RAMOS, N. ROMERA, M. ESCOBAR, D.

SOLANES, P. J. CARDONA u. M. DOMINGO (2011):

Experimental model of tuberculosis in the domestic goat after endobronchial infection with Mycobacterium caprae.

Clin. Vaccine Immunol. 18, 1872-1881

DEBI, U., V. RAVISANKAR, K. K. PRASAD, S. K. SINHA u. A. K. SHARMA (2014):

Abdominal tuberculosis of the gastrointestinal tract: revisited.

World J. Gastroenterol. 20, 14831-14840

DESPIERRES, L., S. COHEN-BACRIE, H. RICHET u. M. DRANCOURT (2012):

Diversity of Mycobacterium avium subsp. hominissuis mycobacteria causing lymphadenitis, France.

European Journal of Clinical Microbiology & Infectious Diseases 31, 1373-1379 DHAMA, K., M. MAHENDRAN, R. TIWARI, S. DAYAL SINGH, D. KUMAR, S. SINGH u. P. M. SAWANT (2011):

Tuberculosis in birds: Insights into the Mycobacterium avium infections.

Veterinary medicine international 2011,

DIVANGAHI, M., D. DESJARDINS, C. NUNES-ALVES, H. G. REMOLD u. S. M.

BEHAR (2010):

Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis.

Nat. Immunol. 11, 751-758

DOBBERSTEIN, J. u. H. WILMES (1937):

Zur Pathogenese und Histogenese der experimentellen Fütterungstuberkulose des Kalbes nebst Beiträgen zu ihrer Altersbestimmung.

Arch. wiss. prakt. Tierhlk. 71, p. 427

DOMINGO, M., O. GIL, E. SERRANO, E. GUIRADO, M. NOFRARIAS, M. GRASSA, N. CACERES, B. PEREZ, C. VILAPLANA u. P. J. CARDONA (2009):

Effectiveness and safety of a treatment regimen based on isoniazid plus vaccination with Mycobacterium tuberculosis cells' fragments: field-study with naturally

Mycobacterium caprae-infected goats.

Scand. J. Immunol. 69, 500-507

DOMINGO, M., E. VIDAL u. A. MARCO (2014):

Pathology of bovine tuberculosis.

Res. Vet. Sci. 97, Supplement, S20-S29 DORHOI, A. u. S. H. E. KAUFMANN (2014):

Tumor necrosis factor alpha in mycobacterial infection.

Semin. Immunol. 26, 203-209

DRIVER, E. R., G. J. RYAN, D. R. HOFF, S. M. IRWIN, R. J. BASARABA, I.

KRAMNIK u. A. J. LENAERTS (2012):

Evaluation of a mouse model of necrotic granuloma formation using C3HeB/FeJ mice for testing of drugs against Mycobacterium tuberculosis.

Antimicrob. Agents Chemother. 56, 3181-3195

ECKSTEIN, T. M., J. T. BELISLE u. J. M. INAMINE (2003):

Proposed pathway for the biosynthesis of serovar-specific glycopeptidolipids in Mycobacterium avium serovar 2.

Microbiology 149, 2797-2807

EHLERS, S. u. U. E. SCHAIBLE (2012):

The granuloma in tuberculosis: dynamics of a host-pathogen collusion.

Front Immunol 3, 411

ELZE, J., E. LIEBLER-TENORIO, M. ZILLER u. H. KOHLER (2013):

Comparison of prevalence estimation of Mycobacterium avium subsp.

paratuberculosis infection by sampling slaughtered cattle with macroscopic lesions vs. systematic sampling.

Epidemiol. Infect. 141, 1536-1544

ENG, J. W.-L., C. B. REED, K. M. KOKOLUS, R. PITONIAK, A. UTLEY, M. J.

BUCSEK, W. W. MA, E. A. REPASKY u. B. L. HYLANDER (2015):

Housing temperature-induced stress drives therapeutic resistance in murine tumour models through β2-adrenergic receptor activation.

Nature communications 6,

ENGLUND, S., A. BALLAGI-PORDANY, G. BOLSKE u. K. E. JOHANSSON (1999):

Single PCR and nested PCR with a mimic molecule for detection of Mycobacterium avium subsp. paratuberculosis.

Diagn. Microbiol. Infect. Dis. 33, 163-171 FALKINHAM, J. O., 3RD (2009):

Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment.

J. Appl. Microbiol. 107, 356-367 FALKINHAM, J. O., 3RD (2013):

Reducing human exposure to Mycobacterium avium.

Ann Am Thorac Soc 10, 378-382

FATTORINI, L., M. MATTEI, R. PLACIDO, B. LI, E. IONA, U. AGRIMI, V. COLIZZI u.

G. OREFICI (1999):

Mycobacterium avium infection in BALB/c and SCID mice.

J. Med. Microbiol. 48, 577-583

FLORIDO, M., A. M. COOPER u. R. APPELBERG (2002):

Immunological basis of the development of necrotic lesions following Mycobacterium avium infection.

Immunology 106, 590-601

FLYNN, J. L., J. CHAN u. P. L. LIN (2011):

Macrophages and control of granulomatous inflammation in tuberculosis.

Mucosal Immunol 4, 271-278

FRITSCH, I., G. LUYVEN, H. KÖHLER, W. LUTZ u. P. MÖBIUS (2012):

Suspicion of Mycobacterium avium subsp. paratuberculosis transmission between

GARCÍA-JIMÉNEZ, W. L., J. M. BENÍTEZ-MEDINA, R. MARTÍNEZ, J. CARRANZA, R. CERRATO, A. GARCÍA-SÁNCHEZ, D. RISCO, J. C. MORENO, M. SEQUEDA, L.

GÓMEZ, P. FERNÁNDEZ-LLARIO u. J. HERMOSO-DE-MENDOZA (2015):

Non-tuberculous Mycobacteria in Wild Boar (Sus scrofa) from Southern Spain:

Epidemiological, Clinical and Diagnostic Concerns.

Transboundary and Emerging Diseases 62, 72-80

GIL, O., I. DÍAZ, C. VILAPLANA, G. TAPIA, J. DÍAZ, M. FORT, N. CÁCERES, S.

PINTO, J. CAYLÀ u. L. CORNER (2010):

Granuloma encapsulation is a key factor for containing tuberculosis infection in minipigs.

PLoS ONE 5, e10030

GLAWISCHNIG, W., T. STEINECK u. J. SPERGSER (2006):

Infections caused by Mycobacterium avium subspecies avium, hominissuis, and paratuberculosis in free-ranging red deer (Cervus elaphus hippelaphus) in Austria, 2001-2004.

J. Wildl. Dis. 42, 724-731

GONZALEZ-JUARRERO, M., A. BOSCO-LAUTH, B. PODELL, C. SOFFLER, E.

BROOKS, A. IZZO, J. SANCHEZ-CAMPILLO u. R. BOWEN (2013):

Experimental aerosol Mycobacterium bovis model of infection in goats.

Tuberculosis 93, 558-564

GRIFFITH, D. E., T. AKSAMIT, B. A. BROWN-ELLIOTT, A. CATANZARO, C.

DALEY, F. GORDIN, S. M. HOLLAND, R. HORSBURGH, G. HUITT, M. F.

IADEMARCO, M. ISEMAN, K. OLIVIER, S. RUOSS, C. F. VON REYN, R. J.

WALLACE u. K. WINTHROP (2007):

An Official ATS/IDSA Statement: Diagnosis, Treatment, and Prevention of Nontuberculous Mycobacterial Diseases.

Am. J. Respir. Crit. Care Med. 175, 367-416

GUERRERO, C., C. BERNASCONI, D. BURKI, T. BODMER u. A. TELENTI (1995):

A novel insertion element from Mycobacterium avium, IS1245, is a specific target for analysis of strain relatedness.

J. Clin. Microbiol. 33, 304-307

GUIRADO, E. u. L. S. SCHLESINGER (2013):

Modeling the Mycobacterium tuberculosis Granuloma – the Critical Battlefield in Host Immunity and Disease.

Frontiers in Immunology 4, 98

HAIST, V., F. SEEHUSEN, I. MOSER, H. HOTZEL, U. DESCHL, W.

BAUMGARTNER u. P. WOHLSEIN (2008):

Mycobacterium avium subsp. hominissuis infection in 2 pet dogs, Germany.

Emerg. Infect. Dis. 14, 988-990

HAUG, M., J. A. AWUH, M. STEIGEDAL, J. FRENGEN KOJEN, A. MARSTAD, I. S.

NORDRUM, Ø. HALAAS u. T. H. FLO (2013):

Dynamics of immune effector mechanisms during infection with Mycobacterium avium in C57BL/6 mice.

Immunology 140, 232-243

HIBIYA, K., M. FURUGEN, F. HIGA, M. TATEYAMA u. J. FUJITA (2011):

Pigs as an experimental model for systemic Mycobacterium avium infectious disease.

Comp. Immunol. Microbiol. Infect. Dis. 34, 455-464

HIBIYA, K., Y. KASUMI, I. SUGAWARA u. J. FUJITA (2008):

Histopathological classification of systemic Mycobacterium avium complex infections in slaughtered domestic pigs.

Comp. Immunol. Microbiol. Infect. Dis. 31, 347-366

HIBIYA, K., K. UTSUNOMIYA, T. YOSHIDA, S. TOMA, F. HIGA, M. TATEYAMA u. J.

FUJITA (2010):

Pathogenesis of systemic Mycobacterium avium infection in pigs through histological analysis of hepatic lesions.

Can. J. Vet. Res. 74, 252-257

HINES II, M. E., J. R. STABEL, R. W. SWEENEY, F. GRIFFIN, A. M. TALAAT, D.

BAKKER, G. BENEDICTUS, W. C. DAVIS, G. W. DE LISLE, I. A. GARDNER, R. A.

JUSTE, V. KAPUR, A. KOETS, J. MCNAIR, G. PRUITT u. R. H. WHITLOCK (2007):

Experimental challenge models for Johne's disease: A review and proposed international guidelines.

Vet. Microbiol. 122, 197-222

HOEFSLOOT, W., J. VAN INGEN, C. ANDREJAK, K. ÄNGEBY, R. BAURIAUD, P.

BEMER, N. BEYLIS, M. J. BOEREE, J. CACHO u. V. CHIHOTA (2013):

The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study.

Eur. Respir. J. 42, 1604-1613

HOFF, S. T., A. M. SALMAN, M. RUHWALD, P. RAVN, I. BROCK, N. ELSHEIKH, P.

ANDERSEN u. E. M. AGGER (2015):

Human B cells produce chemokine CXCL10 in the presence of Mycobacterium tuberculosis specific T cells.

Tuberculosis 95, 40-47

HONDA, J. R., V. KNIGHT u. E. D. CHAN (2015):

Pathogenesis and risk factors for nontuberculous mycobacterial lung disease.

Clin. Chest Med. 36, 1-11

IGNATOV, D., E. KONDRATIEVA, T. AZHIKINA u. A. APT (2012):

JOEST, E., J. DOBBERSTEIN, G. PALLASKE u. H. STÜNZI (1967):

Handbuch der speziellen pathologischen Anatomie der Haustiere.

Handbuch der speziellen pathologischen Anatomie der Haustiere.