• Keine Ergebnisse gefunden

2. CHAPTER: I

4.6 C ONCLUSION

LAAO, a major component of snake venom, is a potent cytotoxin acting primarily via the production of high amounts of H2O2, which kill the cells by necrosis. However, LAAO retains its cytotoxicity also in the presence of antioxidants. In this case the mode of cell demise switches to apoptosis. Apoptosis induction by LAAO involves at least two different mechanisms, the first one being an alteration of the composition of the growth medium, in particular of its serum components. Secondly, immunoblot experiments show that LAAO is retained by Jurkat cells where it undergoes specific proteolysis. This is suggestive of an interaction of the enzyme with the cell surface, a process which seems to require its glycan moieties. The study of the mechanisms of action of animal toxins is an important step toward their potential application as anticancer agents.

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft (DFG-grants Gh 2/12-1 to S. G. and MA 2385/2-2 to E. F.-M.)

We thank Eva-Maria Boneberg for help in performing FACS analysis and Alexander Bürkle for critical reading of the manuscript.

5 SUMMARY

It has been proposed that L-amino acid oxidases (LAAOs) from different snake venoms interact with the cell membrane receptors to induce many of their toxic effects [21], [49]. This interaction could be mediated by the terminal sialic acids of the N-linked glycan moieties. However no clear and direct evidence has been proposed so far. One of the glycan moieties of LAAO from Calloselasma rhodostoma (CRLAAO) is located near the vicinity of the substrate entry channel, which also serves for the release of the products including the cytotoxic H2O2.[17].

To verify the above-mentioned hypothesis, one should have to compare the modes of action by glycosylated and unglycosylted LAAOs. Attempts were made to obtain unglycosylated LAAO either by enzymatic (PNGase-F) treatment or by heterologous expression in E.coli. But no soluble active LAAO could be obtained in either case.

Moreover expression in Baculovirus and mammalian expression systems led to secretion of either very little and (or) inactive recombinant enzyme. Expression in Pichia pastoris was successful to some extent in that the active recombinant LAAO could be expressed and purified to near homogeneity. Further standardizations are required inorder to improve the expression yields for characterization of the recombinant enzyme. As an alternative method desialylated native LAAO was also prepared by treatment with neuraminidase and this enzyme was used in the cell culture studies. It was shown that sialic acids have a role in binding of LAAO to the cell surface and internalization, which might be a mechanism to potentiate the effects of H2O2 by enhancing its local concentration. Once being internalized LAAO might further exert toxic effects by generating hydrogen peroxide and metabolizing amino acids and/or other factors important for cell survival. The possible sialic acid receptors mediating the binding of this toxic LAAO are yet to be identified.

6 ZUSAMMENFASSUNG

Es wird angenommen, dass L-Aminosäure-Oxidasen (LAAOs) unterschiedlicher Schlangengifte mit Rezeptoren in Zellmembranen (bzw.

Zellmembranrezeptoren) interagieren, um viele ihrer toxischen Effekte hervorzurufen. Diese Interaktionen könnten durch N-verbrückte Glycanbestandteile terminaler Sialinsäuren vermittelt werden. Hierfür konnte jedoch noch kein klarer und direkter Beweis geliefert werden. Einer dieser Glycanbestandteile von LAAO aus Calloselasma rhodostoma (CRLAAO) liegt in Nachbarschaft des Substrat-Eingangskanals, welcher ebenso zur Freisetzung von Stoffwechselprodukten einschliesslich zellschädigendem H2O2 dient. Um diese Hypothese zu verifizieren müsste man die Wirkungsweise (“mode of action”) glycosylierter und unglycosylierter LAAOs vergleichen. Es wurden Versuche unternommen, unglycosylierte LAAO entweder durch enzymatische Behandlung (PNGase-F) oder heterologe Expression in E. coli zu erhalten. Jedoch konnte in keinem der beiden Fälle lösliche aktive LAAO erhalten werden. Darüber hinaus führte Expression in Baculoviren und Säugetierzellen entweder zur Sekretion von sehr wenig und/oder inaktivem rekombinantem Enzym. Expression in Pichia pastoris war insofern erfolgreich, als dass aktive rekombinante LAAO exprimiert und nahezu bis zu vollständiger Homogenität gereinigt werden konnte. Weitere Optimieungen sind notwendig, um die Expressions-Ausbeute zur Charakterisierung des rekombinanten Enzyms zu erhöhen. Als alternative Methode wurde de-sialysierte, native LAAO durch Behandlung mit Neuraminidase hergestellt und in Zellkultur-Studien verwendet. Es wurde gezeigt, dass Sialinsäuren bei der Bindung von LAAO an die Zelloberfläche und bei deren Internalisierung eine Rolle spielen. Letzteres könnte ein Mechanismus sein, um die Effekte von H2O2 durch lokale Konzentrationserhöhung zu verstärken. Ist LAAO erst einmal internalisiert, so könnte diese weitere toxische Effekte durch Herstellung von Wasserstoffperoxid und Metabolisierung von Aminosäuren und/oder anderer zum Überleben der Zellen wichtiger Faktoren ausüben. Mögliche, die Bindung dieser toxischen LAAO vermittelnde, Sialinsäure-Rezeptoren sind noch nicht identifiziert.

7 LITERATURE CITED

1. Coudert, M. (1975) Characterization and physiological function of a soluble L-amino acid oxidase in Corynebacterium, Archives of Microbiology. 102, 151-3.

2. Duerre, J. A. & Chakrabarty, S. (1975) l-amino acid oxidases of Proteus rettgeri, J Bacteriol. 121, 656-63.

3. Pistorius, E. K. & Voss, H. (1980) Some properties of a basic L-amino-acid oxidase from Anacystis nidulans, Biochimica et Biophysica Acta. 611, 227-40.

4. Niedermann, D. M. & Lerch, K. (1990) Molecular cloning of the L-amino-acid oxidase gene from Neurospora crassa, Journal of Biological Chemistry. 265, 17246-51.

5. Vallon, O., Bulte, L., Kuras, R., Olive, J. & Wollman, F. A. (1993) Extensive accumulation of an extracellular L-amino-acid oxidase during gametogenesis of Chlamydomonas reinhardtii, European Journal of Biochemistry. 215, 351-60.

6. Murakawa, M., Jung, S. K., Iijima, K. & Yonehara, S. (2001) Apoptosis-inducing protein, AIP, from parasite-infected fish induces apoptosis in mammalian cells by two different molecular mechanisms, Cell Death Differ. 8, 298-307.

7. Butzke, D., Hurwitz, R., Thiede, B., Goedert, S. & Rudel, T. (2005) Cloning and biochemical characterization of APIT, a new l-amino acid oxidase from Aplysia punctata, Toxicon. 46, 479-89.

8. Yang, H., Johnson, P. M., Ko, K. C., Kamio, M., Germann, M. W., Derby, C. D.

& Tai, P. C. (2005) Cloning, characterization and expression of escapin, a broadly antimicrobial FAD-containing L-amino acid oxidase from ink of the sea hare Aplysia californica, J Exp Biol. 208, 3609-22.

9. Obara, K., Otsuka-Fuchino, H., Sattayasai, N., Nonomura, Y., Tsuchiya, T. &

Tamiya, T. (1992) Molecular cloning of the antibacterial protein of the giant African snail, Achatina fulica Ferussac, Eur J Biochem. 209, 1-6.

10. Zeller, A. E. (1977) Snake venom action: are enzymes involved in it?, Experientia. 33, 143-50.

11. Wellner, D. & Meister, A. (1960) Crystalline L-amino acid oxidase of Crotalus adamanteus, J Biol Chem. 235, 2013-8.

12. Curti, B., Ronchi, S. & Pilone Simonetta, M. (1992) D- and L-amino acid oxidases in Chemistry and Biochemistry of Flavoenzymes Vol. III (Müller, F., ed) pp.

69-94, CRC Press, Boca Raton.

13. deKok, A. & Rawitch, A. B. (1969) Studies on L-amino acid oxidase. II.

Dissociation and characterization of its subunits, Biochemistry. 8, 1405-11.

14. Curti, B., Massey, V. & Zmudka, M. (1968) Inactivation of snake venom L-amino acid oxidase by freezing, Journal of Biological Chemistry. 243, 2306-14.

15. Coles, C. J., Edmondson, D. E. & Singer, T. P. (1977) Reversible inactivation of L-amino acid oxidase. Properties of the three conformational forms, Journal of Biological Chemistry. 252, 8035-9.

16. Macheroux, P., Seth, O., Bollschweiler, C., Schwarz, M., Kurfurst, M., Au, L. C.

& Ghisla, S. (2001) L-amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Comparative sequence analysis and characterization of active and inactive forms of the enzyme, Eur J Biochem. 268, 1679-86.

17. Geyer, A., Fitzpatrick, T. B., Pawelek, P. D., Kitzing, K., Vrielink, A., Ghisla, S.

& Macheroux, P. (2001) Structure and characterization of the glycan moiety of L-amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma, Eur J Biochem. 268, 4044-53.

18. Pawelek, P. D., Cheah, J., Coulombe, R., Macheroux, P., Ghisla, S. & Vrielink, A. (2000) The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site, Embo J. 19, 4204-15.

19. Suhr, S. M. & Kim, D. S. (1996) Identification of the snake venom substance that induces apoptosis, Biochemical & Biophysical Research Communications. 224, 134-9.

20. Otsuka-Fuchino, H., Watanabe, Y., Hirakawa, C., Takeda, J., Tamiya, T., Matsumoto, J. J. & Tsuchiya, T. (1993) Morphological aspects of Achacin-treated bacteria, Comp Biochem Physiol C. 104, 37-42.

21. Torii, S., Naito, M. & Tsuruo, T. (1997) Apoxin I, a novel apoptosis-inducing factor with L-amino acid oxidase activity purified from Western diamondback rattlesnake venom, Journal of Biological Chemistry. 272, 9539-42.

22. Cromartie, T. H. & Walsh, C. T. (1975) Rat kidney L-alpha-hydroxy acid oxidase: isolation of enzyme with one flavine coenzyme per two subunits, Biochemistry. 14, 2588-96.

23. Chu, C. C. & Paul, W. E. (1997) Fig1, an interleukin 4-induced mouse B cell gene isolated by cDNA representational difference analysis, Proc Natl Acad Sci U S A. 94, 2507-12.

24. Copie-Bergman, C., Boulland, M. L., Dehoulle, C., Moller, P., Farcet, J. P., Dyer, M. J., Haioun, C., Romeo, P. H., Gaulard, P. & Leroy, K. (2002) Interleukin 4-induced gene 1 (FIG1)is activated in primary mediastinal large B cell lymphoma, Blood.

25. Souza, D. H., Eugenio, L. M., Fletcher, J. E., Jiang, M. S., Garratt, R. C., Oliva, G. & Selistre-de-Araujo, H. S. (1999) Isolation and structural characterization of a cytotoxic L-amino acid oxidase from Agkistrodon contortrix laticinctus snake venom: preliminary crystallographic data, Archives of Biochemistry & Biophysics.

368, 285-90.

26. Abe, Y., Shimoyama, Y., Munakata, H., Ito, J., Nagata, N. & Ohtsuki, K. (1998) Characterization of an apoptosis-inducing factor in Habu snake venom as a glycyrrhizin (GL)-binding protein potently inhibited by GL in vitro, Biological &

Pharmaceutical Bulletin. 21, 924-7.

27. Torii, S., Yamane, K., Mashima, T., Haga, N., Yamamoto, K., Fox, J. W., Naito, M. & Tsuruo, T. (2000) Molecular cloning and functional analysis of apoxin I, a snake venom- derived apoptosis-inducing factor with L-amino acid oxidase activity, Biochemistry. 39, 3197-205.

28. Ali, S. A., Stoeva, S., Abbasi, A., Alam, J. M., Kayed, R., Faigle, M., Neumeister, B. & Voelter, W. (2000) Isolation, structural, and functional characterization of an apoptosis-inducing L-amino acid oxidase from leaf-nosed viper (Eristocophis macmahoni) snake venom, Arch Biochem Biophys. 384, 216-26.

29. Takatsuka, H., Sakurai, Y., Yoshioka, A., Kokubo, T., Usami, Y., Suzuki, M., Matsui, T., Titani, K., Yagi, H., Matsumoto, M. & Fujimura, Y. (2001) Molecular characterization of L-amino acid oxidase from Agkistrodon halys blomhoffii with special reference to platelet aggregation, Biochim Biophys Acta. 1544, 267-77.

30. Du, X. Y. & Clemetson, K. J. (2002) Snake venom L-amino acid oxidases, Toxicon. 40, 659-65.

31. Liu, J. W., Chai, M. Q., Du, X. Y., Song, J. G. & Zhou, Y. C. (2002) [Purification and characterization of L-amino acid oxidase from Agkistrodon halys pallas venom], Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 34, 305-10.

32. Zhang, H., Teng, M., Niu, L., Wang, Y., Liu, Q., Huang, Q., Hao, Q., Dong, Y.

& Liu, P. (2004) Purification, partial characterization, crystallization and structural determination of AHP-LAAO, a novel L-amino-acid oxidase with cell apoptosis-inducing activity from Agkistrodon halys pallas venom, Acta Crystallogr D Biol Crystallogr. 60, 974-977.

33. Zhao, Q. T., Xie, K., Zhang, J. & Miao, J. Y. (2004) [Progress of studies on VEC apoptosis-inducing proteins in snake venom and its mechanism--review.], Zhongguo Shi Yan Xue Ye Xue Za Zhi. 12, 708-12.

34. Zhang, H., Teng, M., Niu, L., Wang, Y., Wang, Y., Liu, Q., Huang, Q., Hao, Q., Dong, Y. & Liu, P. (2004) Purification, partial characterization, crystallization and structural determination of AHP-LAAO, a novel L-amino-acid oxidase with cell

apoptosis-inducing activity from Agkistrodon halys pallas venom, Acta Crystallogr D Biol Crystallogr. 60, 974-7.

35. Araki, S., Ishida, T., Yamamoto, T., Kaji, K. & Hayashi, H. (1993) Induction of apoptosis by hemorrhagic snake venom in vascular endothelial cells, Biochem Biophys Res Commun. 190, 148-53.

36. Suhr, S. M. & Kim, D. S. (1999) Comparison of the apoptotic pathways induced by L-amino acid oxidase and hydrogen peroxide, Journal of Biochemistry. 125, 305-9.

37. Pessatti, M., Fontana, J. D., Furtado, M. F., Guimaraes, M. F., Zanette, L. R., Costa, W. T. & Baron, M. (1995) Screening of Bothrops snake venoms for L-amino acid oxidase activity [published erratum appears in Appl Biochem Biotechnol 1995 Dec;55(3):276], Applied Biochemistry & Biotechnology. 51-52, 197-210.

38. Stiles, B. G., Sexton, F. W. & Weinstein, S. A. (1991) Antibacterial effects of different snake venoms: purification and characterization of antibacterial proteins from Pseudechis australis (Australian king brown or mulga snake) venom, Toxicon.

29, 1129-41.

39. Stabeli, R. G., Marcussi, S., Carlos, G. B., Pietro, R. C., Selistre-De-Araujo, H.

S., Giglio, J. R., Oliveira, E. B. & Soares, A. M. (2004) Platelet aggregation and antibacterial effects of an l-amino acid oxidase purified from Bothrops alternatus snake venom, Bioorg Med Chem. 12, 2881-6.

40. Sakurai, Y., Shima, M., Matsumoto, T., Takatsuka, H., Nishiya, K., Kasuda, S., Fujimura, Y. & Yoshioka, A. (2003) Anticoagulant activity of M-LAO, L-amino acid oxidase purified from Agkistrodon halys blomhoffii, through selective inhibition of factor IX, Biochim Biophys Acta. 1649, 51-7.

41. Tan, N. H., Lim, K. K. & Jaafar, M. I. (1993) An investigation into the antigenic cross-reactivity of Ophiophagus hannah (king cobra) venom neurotoxin, phospholipase A2, hemorrhagin and L-amino acid oxidase using enzyme-linked immunosorbent assay, Toxicon. 31, 865-72.

42. Otsuka-Fuchino, H., Watanabe, Y., Hirakawa, C., Tamiya, T., Matsumoto, J. J.

& Tsuchiya, T. (1992) Bactericidal action of a glycoprotein from the body surface mucus of giant African snail, Comp Biochem Physiol C. 101, 607-13.

43. Geueke, B. & Hummel, W. (2003) Heterologous expression of Rhodococcus opacus L-amino acid oxidase in Streptomyces lividans, Protein Expr Purif. 28, 303-9.

44. Nishizawa, T., Aldrich, C. C. & Sherman, D. H. (2005) Molecular analysis of the rebeccamycin L-amino acid oxidase from Lechevalieria aerocolonigenes ATCC 39243, J Bacteriol. 187, 2084-92.

45. Jung, S. K., Mai, A., Iwamoto, M., Arizono, N., Fujimoto, D., Sakamaki, K. &

Yonehara, S. (2000) Purification and cloning of an apoptosis-inducing protein derived from fish infected with Anisakis simplex, a causative nematode of human anisakiasis, J Immunol. 165, 1491-7.

46. Mason, J. M., Naidu, M. D., Barcia, M., Porti, D., Chavan, S. S. & Chu, C. C.

(2004) IL-4-Induced Gene-1 Is a Leukocyte L-Amino Acid Oxidase with an Unusual Acidic pH Preference and Lysosomal Localization, J Immunol. 173, 4561-7.

47. Booth, C. & Koch, G. L. (1989) Perturbation of cellular calcium induces secretion of luminal ER proteins, Cell. 59, 729-37.

48. Zeller, A. & Maritz, A. (1944) Helv. Chim. Acta. 27, 1888-1903.

49. Skarnes, R. C. (1970) L-amino-acid oxidase, a bactericidal system, Nature. 225, 1072-3.

50. Ehara, T., Kitajima, S., Kanzawa, N., Tamiya, T. & Tsuchiya, T. (2002) Antimicrobial action of achacin is mediated by L-amino acid oxidase activity, FEBS Lett. 531, 509-12.

51. Ogawa, M., Nakamura, S., Atsuchi, T., Tamiya, T., Tsuchiya, T. & Nakai, S.

(1999) Macromolecular antimicrobial glycoprotein, achacin, expressed in a methylotrophic yeast Pichia pastoris, FEBS Lett. 448, 41-4.

52. Cande, C., Cohen, I., Daugas, E., Ravagnan, L., Larochette, N., Zamzami, N. &

Kroemer, G. (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria, Biochimie. 84, 215-22.

53. Iijima, R., Kisugi, J. & Yamazaki, M. (2003) L-Amino acid oxidase activity of an antineoplastic factor of a marine mollusk and its relationship to cytotoxicity, Dev Comp Immunol. 27, 505-12.

54. Sun, L. K., Yoshii, Y., Hyodo, A., Tsurushima, H., Saito, A., Harakuni, T., Li, Y. P., Kariya, K., Nozaki, M. & Morine, N. (2003) Apoptotic effect in the glioma cells induced by specific protein extracted from Okinawa Habu (Trimeresurus flavoviridis) venom in relation to oxidative stress, Toxicol In Vitro. 17, 169-77.

55. Kanzawa, N., Shintani, S., Ohta, K., Kitajima, S., Ehara, T., Kobayashi, H., Kizaki, H. & Tsuchiya, T. (2004) Achacin induces cell death in HeLa cells through two different mechanisms, Arch Biochem Biophys. 422, 103-9.

56. Nathan, I., Dvilansky, A., Yirmiyahu, T., Aharon, M. & Livne, A. (1982) Impairment of platelet aggregation by Echis colorata venom mediated by L-amino acid oxidase or H2O2, Thrombosis & Haemostasis. 48, 277-82.

57. Sakurai, Y., Takatsuka, H., Yoshioka, A., Matsui, T., Suzuki, M., Titani, K. &

Fujimura, Y. (2001) Inhibition of human platelet aggregation by L-amino acid oxidase purified from Naja naja kaouthia venom, Toxicon. 39, 1827-33.

58. Zhang, Y. J., Wang, J. H., Lee, W. H., Wang, Q., Liu, H., Zheng, Y. T. &

Zhang, Y. (2003) Molecular characterization of Trimeresurus stejnegeri venom L-amino acid oxidase with potential anti-HIV activity, Biochem Biophys Res Commun.

309, 598-604.

59. Sakuraba, H., Takamatsu, Y., Satomura, T., Kawakami, R. & Ohshima, T.

(2001) Purification, characterization, and application of a novel dye-linked L- proline dehydrogenase from a hyperthermophilic archaeon, Thermococcus profundus, Appl Environ Microbiol. 67, 1470-5.

60. Sambrook J, F. E. M. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbour Press, Cold Spring Harbour, New York, USA.

61. Ande, S. R. (2006) Mechanisms of cell death induction by L-amino acid oxidase, a major component of ophidian venom, Apoptosis (accepted).

62. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature. 227, 680-5.

63. Cereghino, J. L. & Cregg, J. M. (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris, FEMS Microbiol Rev. 24, 45-66.

64. Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A. & Nicotera, P. (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function, Neuron. 15, 961-73.

65. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. & Lipton, S. A. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures, Proc Natl Acad Sci U S A. 92, 7162-6.

66. Dypbukt, J. M., Ankarcrona, M., Burkitt, M., Sjoholm, A., Strom, K., Orrenius, S. & Nicotera, P. (1994) Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells. The role of intracellular polyamines, J Biol Chem. 269, 30553-60.

67. Nicotera, P., Leist, M. & Ferrando-May, E. (1998) Intracellular ATP, a switch in the decision between apoptosis and necrosis, Toxicol Lett. 102-103, 139-42.

68. Leist, M., Single, B., Castoldi, A. F., Kuhnle, S. & Nicotera, P. (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis, J Exp Med. 185, 1481-6.

69. Eguchi, Y., Shimizu, S. & Tsujimoto, Y. (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis, Cancer Res. 57, 1835-40.

70. Zamaraeva, M. V., Sabirov, R. Z., Maeno, E., Ando-Akatsuka, Y., Bessonova, S. V. & Okada, Y. (2005) Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase, Cell Death Differ.

71. Borner, C. (2003) The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions, Mol Immunol. 39, 615-47.

72. Annis, M. G., Yethon, J. A., Leber, B. & Andrews, D. W. (2004) There is more to life and death than mitochondria: Bcl-2 proteins at the endoplasmic reticulum, Biochim Biophys Acta. 1644, 115-23.

73. Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L. & Korsmeyer, S.

J. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis, Cell. 75, 241-51.

74. Kane, D. J., Ord, T., Anton, R. & Bredesen, D. E. (1995) Expression of bcl-2 inhibits necrotic neural cell death, J Neurosci Res. 40, 269-75.

75. Ellerby, L. M., Ellerby, H. M., Park, S. M., Holleran, A. L., Murphy, A. N., Fiskum, G., Kane, D. J., Testa, M. P., Kayalar, C. & Bredesen, D. E. (1996) Shift of the cellular oxidation-reduction potential in neural cells expressing Bcl-2, J Neurochem. 67, 1259-67.

76. Mirkovic, N., Voehringer, D. W., Story, M. D., McConkey, D. J., McDonnell, T.

J. & Meyn, R. E. (1997) Resistance to radiation-induced apoptosis in Bcl-2-expressing cells is reversed by depleting cellular thiols, Oncogene. 15, 1461-70.

77. Amstad, P. A., Liu, H., Ichimiya, M., Berezesky, I. K., Trump, B. F., Buhimschi, I. A. & Gutierrez, P. L. (2001) BCL-2 is involved in preventing oxidant-induced cell death and in decreasing oxygen radical production, Redox Rep. 6, 351-62.

78. Ahn, M. Y., Ryu, K. S., Lee, Y. W. & Kim, Y. S. (2000) Cytotoxicity and L-amino acid oxidase activity of crude insect drugs, Arch Pharm Res. 23, 477-81.

79. von Gunten S, Y. S., Seitz M, Jakob SM, Schaffner T, Seger R, Takala J, Villiger PM, Simon HU. (2005) Siglec-9 transduces apoptotic and non-apoptotic death signals into neutrophils depending on the pro-inflammatory cytokine environment., Blood.

80. Bross, P., Engst, S., Strauss, A. W., Kelly, D. P., Rasched, I. & Ghisla, S. (1990) Characterization of wild-type and an active site mutant of human medium chain acyl-CoA dehydrogenase after expression in Escherichia coli, J Biol Chem. 265, 7116-9.

81. Aminoff, D. (1961) Methods for the quantitative estimation of N-acetylneuraminic acid and their application to hydrolysates of sialomucoids, Biochem J. 81, 384-92.

82. Nisizawa, K. & Pigman, W. (1959) The composition and properties of the mucin clot from cattle submaxillary glands, Arch Oral Biol. 1, 161-70.

83. Orlov, S. N., Pchejetski, D., Taurin, S., Thorin-Trescases, N., Maximov, G. V., Pshezhetsky, A. V., Rubin, A. B. & Hamet, P. (2004) Apoptosis in serum-deprived vascular smooth muscle cells: evidence for cell volume-independent mechanism, Apoptosis. 9, 55-66.

84. Leicht, M., Marx, G., Karbach, D., Gekle, M., Kohler, T. & Zimmer, H. G.

(2003) Mechanism of cell death of rat cardiac fibroblasts induced by serum depletion, Mol Cell Biochem. 251, 119-26.

85. Curti, B., Ronchi, S., Branzoli, U., Ferri, G. & Williams, C. H., Jr. (1973) Improved purification, amino acid analysis and molecular weight of homogenous D-amino acid oxidase from pig kidney, Biochimica et Biophysica Acta. 327, 266-73.

86. Pollegioni, L., Molla, G., Campaner, S., Martegani, E. & Pilone, M. S. (1997) Cloning, sequencing and expression in E. coli of a D-amino acid oxidase cDNA from Rhodotorula gracilis active on cephalosporin C, Journal of Biotechnology. 58, 115-23.

87. Voehringer, D. W. & Meyn, R. E. (2000) Redox aspects of Bcl-2 function, Antioxid Redox Signal. 2, 537-50.

88. Schinzel, A., Kaufmann, T. & Borner, C. (2004) Bcl-2 family members:

integrators of survival and death signals in physiology and pathology [corrected], Biochim Biophys Acta. 1644, 95-105.

89. Dominguez, R., Serra, B., Reviejo, A. J. & Pingarron, J. M. (2001) Chiral analysis of amino acids using electrochemical composite bienzyme biosensors, Anal Biochem. 298, 275-82.

90. Choi, W. S., Lee, E. H., Chung, C. W., Jung, Y. K., Jin, B. K., Kim, S. U., Oh, T. H., Saido, T. C. & Oh, Y. J. (2001) Cleavage of Bax is mediated by

caspase-dependent or -incaspase-dependent calpain activation in dopaminergic neuronal cells:

protective role of Bcl-2, J Neurochem. 77, 1531-41.

91. Davies, K. J. (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress, IUBMB Life. 48, 41-7.

92. Ge, X., Fu, Y. M., Li, Y. Q. & Meadows, G. G. (2002) Activation of caspases and cleavage of Bid are required for tyrosine and phenylalanine deficiency-induced apoptosis of human A375 melanoma cells, Arch Biochem Biophys. 403, 50-8.

93. Kommoju, P. (2005) Mechanisms of cell death induction by L-amino acid oxidase, a main component of ophidian venom, 15th International Symposium on Flavins and Flavoproteins-2005.

94. Dorland, R. B., Middlebrook, J. L. & Leppla, S. H. (1979) Receptor-mediated internalization and degradation of diphtheria toxin by monkey kidney cells, J Biol Chem. 254, 11337-42.

95. Middlebrook, J. L., Dorland, R. B. & Leppla, S. H. (1979) Effects of lectins on the interaction of diphtheria toxin with mammalian cells, Exp Cell Res. 121, 95-101.

96. Morris, R. E., Gerstein, A. S., Bonventre, P. F. & Saelinger, C. B. (1985) Receptor-mediated entry of diphtheria toxin into monkey kidney (Vero) cells:

electron microscopic evaluation, Infect Immun. 50, 721-7.

97. Keen, J. H., Maxfield, F. R., Hardegree, M. C. & Habig, W. H. (1982) Receptor-mediated endocytosis of diphtheria toxin by cells in culture, Proc Natl Acad Sci U S A. 79, 2912-6.

98. Varki, A. (1997) Sialic acids as ligands in recognition phenomena, Faseb J. 11, 248-55.

99. Blixt, O., Collins, B. E., van den Nieuwenhof, I. M., Crocker, P. R. & Paulson, J.

C. (2003) Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein, J Biol Chem. 278, 31007-19.

100. Crocker, P. R. & Varki, A. (2001) Siglecs, sialic acids and innate immunity, Trends Immunol. 22, 337-42.

101. Crocker, P. R. & Zhang, J. (2002) New I-type lectins of the CD 33-related siglec subgroup identified through genomics, Biochem Soc Symp, 83-94.

102. Varki, A. (1992) Selectins and other mammalian sialic acid-binding lectins, Curr Opin Cell Biol. 4, 257-66.

103. Kelm, S. & Schauer, R. (1997) Sialic acids in molecular and cellular interactions, Int Rev Cytol. 175, 137-240.

104. Zhang, H., Yang, Q., Sun, M., Teng, M. & Niu, L. (2004) Hydrogen peroxide produced by two amino acid oxidases mediates antibacterial actions, J Microbiol. 42, 336-9.