• Keine Ergebnisse gefunden

Nutrient Analysis Equipment and Techniques

Im Dokument WHP Cruise Summary Information (Seite 35-43)

Nutrient analyses (phosphate, silicate, nitrate and nitrite) were performed on an ODF-modified 4-channel Technicon AutoAnalyzer II, generally within a few hours after sample collection. Occasionally samples were refrigerated up to a maximum of 6 hours at 4°C. All samples were brought to room temperature prior to analysis.

The methods used are described by Gordon et al. [Gord92], Hager et al. [Hage72], Atlas et al. [Atla71]. The analog outputs from each of the four channels were digitized and logged automatically by computer (PC) at 2 second intervals.

Silicate was analyzed using the technique of Armstrong et al. [Arms67]. An acidic solution of ammonium molybdate was added to a seawater sample to produce silicomolybdic acid which was then reduced to silicomolybdous acid (a blue compound) following the addition of stannous chloride. Tartaric acid was also added to impede PO4color development. The sample was passed through a 15mm flowcell and the absorbance measured at 820nm. ODF’s methodology is known to be non-linear at high silicate concentrations (>120µM); a correction for this non-linearity is applied through ODF’s software.

A modification of the Armstrong et al. [Arms67] procedure was used for the analysis of nitrate and nitrite. For the nitrate analysis, the seawater sample was passed through a cadmium reduction column where nitrate was quantitatively reduced to nitrite. Sulfanilamide was introduced to the sample stream followed by N-(1-naphthyl)ethylenediamine dihydrochloride which coupled to form a red azo dye. The stream was then passed through a 15mm flowcell and the absorbance measured at 540nm. The same technique was employed for nitrite analysis, except the cadmium column was not present, and a 50mm flowcell was used for measurement.

Phosphate was analyzed using a modification of the Bernhardt and Wilhelms [Bern67] technique. An acidic solution of ammonium molybdate was added to the sample to produce phosphomolybdic acid, then reduced to phosphomolybdous acid (a blue compound) following the addition of dihydrazine sulfate. The reaction product was

heated to∼55°C to enhance color development, then passed through a 50mm flowcell and the absorbance measured at 820m.

Sampling and Data Processing

Nutrient samples were drawn into 40 ml polypropylene, screw-capped centrifuge tubes. The tubes were cleaned with 10% HCl and rinsed with sample twice before filling. Standardizations were performed at the beginning and end of each group of analyses (typically one cast, usually 36 samples) with an intermediate concentration mixed nutrient standard prepared prior to each run from a secondary standard in a low-nutrient seawater matrix. The secondary standards were prepared aboard ship by dilution from dry, pre-weighed primary standards. Sets of 5-6 different standard concentrations were analyzed periodically to determine the deviation from linearity as a function of concentration for each nutrient.

After each group of samples was analyzed, the raw data file was processed to produce another file of response factors, baseline values, and absorbances. Computer-produced absorbance readings were checked for accuracy against values taken from a strip chart recording. The data were then added to the cruise database. 5425 nutrient samples were analyzed. No major problems were encountered with the measurements, other than a continuing difficulty in holding the lab temperature constant. The pump tubing was changed three times. An aliquot from a large volume of stored deep seawater was run with each set of samples as a substandard. The efficiency of the cadmium column used for nitrate reduction was monitored throughout the cruise and ranged from 99.8-100.0%.

Nutrients, reported in micromoles per kilogram, were converted from micromoles per liter by dividing by sample density calculated at 1 atm pressure (0 db), in-situ salinity, and an assumed laboratory temperature of 25°C.

Standards

Na2SiF6, the silicate primary standard, was obtained from Fluka Chemical Company and Fisher Scientific and was reported by the suppliers to be >98% pure. Primary standards for nitrate (KNO3), nitrite (NaNO2), and phosphate (KH2PO4) were obtained from Johnson Matthey Chemical Co. and the supplier reported purities of 99.999%, 97%, and 99.999%, respectively.

Arms67.

Armstrong, F. A. J., Stearns, C. R., and Strickland, J. D. H., “The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer and associated equipment,” Deep-Sea Research, 14, pp. 381-389 (1967).

Atla71.

Atlas, E. L., Hager, S. W., Gordon, L. I., and Park, P. K., “A Practical Manual for Use of the Technicon AutoAnalyzer® in Seawater Nutrient Analyses Revised,” Technical Report 215, Reference 71-22, p. 49, Oregon State University, Department of Oceanography (1971).

Bern67.

Bernhardt, H. and Wilhelms, A., “The continuous determination of low lev el iron, soluble phosphate and total phosphate with the AutoAnalyzer,” Technicon Symposia, I, pp. 385-389 (1967).

Brow78.

Brown, N. L. and Morrison, G. K., “WHOI/Brown conductivity, temperature and depth microprofiler,”

Technical Report No. 78-23, Woods Hole Oceanographic Institution (1978).

Carp65.

Carpenter, J. H., “The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method,”

Limnology and Oceanography, 10, pp. 141-143 (1965).

Cart80.

Carter, D. J. T., “Computerised Version of Echo-sounding Correction Tables (Third Edition),” Marine Information and Advisory Service, Institute of Oceanographic Sciences, Wormley, Godalming, Surrey. GU8 5UB. U.K. (1980).

Culb91.

Culberson, C. H., Knapp, G., Stalcup, M., Williams, R. T., and Zemlyak, F., “A comparison of methods for the determination of dissolved oxygen in seawater,” Report WHPO 91-2, WOCE Hydrographic Programme Office (Aug 1991).

Gord92.

Gordon, L. I., Jennings, J. C., Jr., Ross, A. A., and Krest, J. M., “A suggested Protocol for Continuous Flow Automated Analysis of Seawater Nutrients in the WOCE Hydrographic Program and the Joint Global Ocean Fluxes Study,” Grp. Tech Rpt 92-1, OSU College of Oceanography Descr. Chem Oc. (1992).

Hage72.

Hager, S. W., Atlas, E. L., Gordon, L. D., Mantyla, A. W., and Park, P. K., “A comparison at sea of manual and autoanalyzer analyses of phosphate, nitrate, and silicate,” Limnology and Oceanography, 17, pp. 931-937 (1972).

Joyc94.

Joyce, T., ed. and Corry, C., ed., “Requirements for WOCE Hydrographic Programme Data Reporting,”

Report WHPO 90-1, WOCE Report No. 67/91, pp. 52-55, WOCE Hydrographic Programme Office, Woods Hole, MA, USA (May 1994, Rev. 2). UNPUBLISHED MANUSCRIPT.

Mant87.

Mantyla, A. W., “Standard Seawater Comparisons Updated,” Journal of Physical Oceanography, 17.4, p. 547 (1987).

Mant97.

Mantyla, A. W. (1997). Private communication.

Mill82.

Millard, R. C., Jr., “CTD calibration and data processing techniques at WHOI using the practical salinity scale,” Proc. Int. STD Conference and Workshop, p. 19, Mar. Tech. Soc., La Jolla, Ca. (1982).

Owen85.

Owens, W. B. and Millard, R. C., Jr., “A new algorithm for CTD oxygen calibration,” Journ. of Am.

Meteorological Soc., 15, p. 621 (1985).

UNES81.

UNESCO, “Background papers and supporting data on the Practical Salinity Scale, 1978,” UNESCO Technical Papers in Marine Science, No. 37, p. 144 (1981).

PRT ITS-90 Temperature Coefficients Conductivity Coefficients Sta/ Response corT = t2∗T2+ t1∗T + t0 corC = c2∗C2+ c1∗C + c0

Cast Time (secs) t2 t1 t0 c2 c1 c0

279/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89844e-03 0.00914 280/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89816e-03 0.00914 281/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89788e-03 0.00914 282/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89761e-03 0.00914 283/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89733e-03 0.00914 284/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89705e-03 0.00914 285/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89678e-03 0.00914 286/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89650e-03 0.00914 287/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89622e-03 0.00914 288/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89594e-03 0.00914 289/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89567e-03 0.01040 290/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89539e-03 0.01041 291/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89511e-03 0.01041 292/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89483e-03 0.01042 293/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89456e-03 0.01043 294/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89428e-03 0.01044 295/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89400e-03 0.01045 296/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89372e-03 0.01046 297/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89345e-03 0.01046 298/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89317e-03 0.01047 299/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89289e-03 0.01048 300/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89262e-03 0.01049 301/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89234e-03 0.01050 302/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89206e-03 0.00951 303/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89178e-03 0.01051 304/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89151e-03 0.01052 305/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89123e-03 0.01053 306/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89095e-03 0.01054 307/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89067e-03 0.01055 308/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89040e-03 0.01056 309/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.89012e-03 0.01057 310/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88984e-03 0.01057 311/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88956e-03 0.01058 312/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88929e-03 0.01059 313/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88901e-03 0.01060 314/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88873e-03 0.01061 315/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88846e-03 0.01062 316/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88818e-03 0.01062 317/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88790e-03 0.01063 318/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88762e-03 0.01064

PRT ITS-90 Temperature Coefficients Conductivity Coefficients Sta/ Response corT = t2∗T2+ t1∗T + t0 corC = c2∗C2+ c1∗C + c0

Cast Time (secs) t2 t1 t0 c2 c1 c0

319/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88735e-03 0.01065 320/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88707e-03 0.01066 321/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88679e-03 0.01067 322/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88651e-03 0.01067 323/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88624e-03 0.01068 324/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88596e-03 0.01069 325/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88568e-03 0.01070 326/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88540e-03 0.01071 327/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88513e-03 0.01072 328/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88485e-03 0.01072 329/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88457e-03 0.01073 330/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88429e-03 0.01074 331/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88402e-03 0.01075 332/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88374e-03 0.01076 333/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88346e-03 0.01077 334/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88319e-03 0.01077 335/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88291e-03 0.01078 336/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88263e-03 0.01079 337/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88235e-03 0.01080 338/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88208e-03 0.01081 339/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88180e-03 0.01082 340/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88152e-03 0.01083 341/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88124e-03 0.01083 342/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88097e-03 0.01084 343/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88069e-03 0.01085 344/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88041e-03 0.00986 345/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.88013e-03 0.01087 346/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87986e-03 0.01088 347/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87958e-03 0.01088 348/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87930e-03 0.01089 349/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87903e-03 0.01090 350/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87875e-03 0.01091 351/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87847e-03 0.01092 352/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87819e-03 0.01093 353/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87792e-03 0.01093 354/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87764e-03 0.01094 355/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87736e-03 0.01095 356/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87708e-03 0.01096 357/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87681e-03 0.01097 358/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87653e-03 0.01098 359/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87625e-03 0.01098 360/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87597e-03 0.01099 361/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87570e-03 0.01100 362/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87542e-03 0.01101

Sta/ Response corT = t2∗T2+ t1∗T + t0 corC = c2∗C2+ c1∗C + c0

Cast Time (secs) t2 t1 t0 c2 c1 c0

363/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87514e-03 0.01102 364/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87486e-03 0.01103 365/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87459e-03 0.01104 366/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87431e-03 0.01104 367/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87403e-03 0.01105 368/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87376e-03 0.01106 369/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87348e-03 0.01107 370/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87320e-03 0.01108 371/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87292e-03 0.01109 372/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87265e-03 0.01109 373/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87237e-03 0.01110 374/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87209e-03 0.01111 375/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87181e-03 0.01112 376/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87154e-03 0.01113 377/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87126e-03 0.01114 378/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87098e-03 0.01114 379/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87070e-03 0.01115 380/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87043e-03 0.01116 381/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.87015e-03 0.01117 382/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86987e-03 0.01118 383/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86960e-03 0.01119 384/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86932e-03 0.01119 385/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86904e-03 0.01120 386/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86876e-03 0.01121 387/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86849e-03 0.01122 388/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86821e-03 0.01123 389/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86793e-03 0.01124 390/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86765e-03 0.01124 391/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86738e-03 0.01125 392/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86710e-03 0.01126 393/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86682e-03 0.01127 394/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86654e-03 0.01128 395/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86627e-03 0.01129 396/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86599e-03 0.01130 397/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86571e-03 0.01130 398/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86544e-03 0.01131 399/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86516e-03 0.01132 400/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86488e-03 0.01133 401/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86460e-03 0.01184 402/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86433e-03 0.01085 403/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86405e-03 0.01085 404/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86377e-03 0.01086 405/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86349e-03 0.01087 406/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86322e-03 0.01088

PRT ITS-90 Temperature Coefficients Conductivity Coefficients Sta/ Response corT = t2∗T2+ t1∗T + t0 corC = c2∗C2+ c1∗C + c0

Cast Time (secs) t2 t1 t0 c2 c1 c0

407/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86294e-03 0.01089 408/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86266e-03 0.01090 409/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86238e-03 0.01090 410/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86211e-03 0.01091 411/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86183e-03 0.01092 412/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86155e-03 0.01093 413/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86127e-03 0.01094 414/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86100e-03 0.01095 415/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86072e-03 0.01095 416/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86044e-03 0.01096 417/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.86017e-03 0.01097 418/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85989e-03 0.01098 419/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85961e-03 0.01099 420/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85933e-03 0.01150 420/02 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85933e-03 0.01150 421/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85906e-03 0.01151 422/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85878e-03 0.01151 423/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85850e-03 0.01152 424/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85822e-03 0.01153 425/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85795e-03 0.01154 426/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85767e-03 0.01105 427/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85739e-03 0.01156 428/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85711e-03 0.01156 429/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85684e-03 0.01157 430/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85656e-03 0.01058 431/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85628e-03 0.01059 432/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85601e-03 0.01259 433/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85573e-03 0.01259 434/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85545e-03 0.01259 435/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85517e-03 0.01259 436/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85490e-03 0.01359 437/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85462e-03 0.01259 438/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85434e-03 0.01259 439/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85406e-03 0.01259 440/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85379e-03 0.01259 441/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85351e-03 0.01259 442/01 .34 1.9889e-05 -6.2817e-04 -1.4986 1.14690e-05 -1.85323e-03 0.01259

Temperature Pressure O2Gradient Fast(τTf) Slow(τTs) (τp) (τog)

1.0 400.0 24.0 16.0

Im Dokument WHP Cruise Summary Information (Seite 35-43)