• Keine Ergebnisse gefunden

Identification of lysine-acetylated mitochondrial proteins and their acetylation sites

4. Notes

missed cleavages at a protein and peptide false discovery rate of 1%. Carbamidomethylation of cysteine residues were set as fixed, oxidation of methionine, N-terminal acetylation and lysine acetylation as variable modifications.

together in a volume proportion of 1:1. The mixture is then added immediately on top of the membrane making sure that it is covered completely.

10. The amount of mitochondrial protein will mainly be dictated by the quality and number of isolations. We consider 0.5 mg total protein as the absolute minimum. Ideally, 0.8 mg or more should be used to obtain a high number of identified acetylation sites. In general the number of identified sites correlates with the amount of peptides used in the enrichment step [15].

11. We recommend using 4 ml centrifugation devices (for example Amicon Ultra-4, Millipore) for digesting samples in the range of 0.3 to 3 mg total protein. For larger amounts the protocol can also be scaled up to devices such as Amicon Ultra-15 (Millipore).

12. To reach more complete digestion, it is possible to additionally digest the sample with LysC. For example LysC is added at an enzyme to protein ratio of 1:100 and the sample is incubated for 2 h at room temperature, before adding trypsin and incubating overnight as specified.

13. If the peptides do not dissolve well, the sample can also be placed in an ultrasonic bath for 5 min. Higher amounts of 20% acetonitrile can also help to redissolve the pellet, however bear in mind that the antibody tolerates only low amounts of acetonitrile.

14. Formic acid remaining after desalting and evaporation on the vacuum concentrator can lower the pH substantially. After adding the TBS buffer check whether the pH is in the desired range and, if necessary, correct by adding small amounts of 1 M Tris-HCl pH 7.6.

15. We recommend desalting this aliquot directly on C18 StageTips [17] and keeping the sample until measurement at -20°C.

16. 50 µl slurry corresponds to 100 µg antibody. A ratio of 100 µg antibody per 1 mg of peptides, results in a reasonable compromise between the number of sites identified and the costs for the antibody. The antibody is quite sensitive to temperature changes and cannot be re-used in our experience.

17. Take care not to lose beads while washing. Gel-loading tips are useful for taking off the remaining buffer close to the beads.

1.  Borchers C, Parker CE, Deterding LJ et al. (1999) Preliminary comparison of precursor scans  and liquid chromatography‐tandem mass spectrometry on hybrid quadrupole time‐of‐

flight mass spectrometer. Journal of chromatography. A 854:119‐130 

2.  Choudhary C, Kumar C, Gnad F et al. (2009) Lysine acetylation targets protein complexes  and co‐regulates major cellular functions. Science 325:834‐840 

3.  Close P, Creppe C, Gillard et al. (2010) The emerging role of lysine acetylation of non‐

nuclear proteins. Cellular and molecular life sciences : CMLS 67:1255‐1264 

4.  Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized  p.p.b.‐range  mass  accuracies  and  proteome‐wide  protein  quantification.  Nature  biotechnology 26:1367‐1372 

5.  Deribe YL, Pawson T, Dikic (2010) Post‐translational modifications in signal integration. 

Nature structural & molecular biology 17:666‐672 

6.  Dormeyer W, Ott M, Schnolzer M (2005) Probing lysine acetylation in proteins: strategies,  limitations,  and  pitfalls  of  in  vitro  acetyltransferase  assays.  Molecular  cellular  proteomics : MCP 4:1226‐1239 

7.  Finkemeier I, Laxa M, Miguet et al. (2011) Proteins of diverse function and subcellular  location are lysine acetylated in Arabidopsis. Plant physiology 155:1779‐1790 

8.  Gershey EL, Vidali G, Allfrey VG (1968) Chemical studies of histone acetylation. The  occurrence of epsilon‐N‐acetyllysine in the f2a1 histone. The Journal of biological chemistry  243:5018‐5022 

9.  Guan KL, Yu W, Lin et al. (2010) Generation of acetyllysine antibodies and affinity  enrichment of acetylated peptides. Nature protocols 5:1583‐1595 

10.  Hartl M, Finkemeier (2012) Plant mitochondrial retrograde signaling: post‐translational  modifications enter the stage. Frontiers in plant science 3:253 

11.  Heinemeyer J, Lewejohann D, Braun HP (2007) Blue‐native gel electrophoresis for the  characterization of protein complexes in plants. Methods in molecular biology 355:343‐352  12.  Kim JY, Kim KW, Kwon HJ et al. (2002) Probing lysine acetylation with modification‐

specific  marker  ion  using  high‐performance  liquid  chromatography/electrospray‐mass  spectrometry with collision‐induced dissociation. Analytical chemistry 74:5443‐5449 

13.  Klodmann J, Senkler M, Rode et al. (2011) Defining the protein complex proteome of  plant mitochondria. Plant physiology 157:587‐598 

14.  Koenig AC, Hartl M, Pham PA et al. (2014) The Arabidopsis class II sirtuin is lysine  deacetylase and interacts with mitochondrial energy metabolism. Plant Physiol 

15.  Mertins P, Qiao JW, Patel J et al. (2013) Integrated proteomic analysis of post‐translational  modifications by serial enrichment. Nature methods 10:634‐637 

16.  Norvell A, Mcmahon SB (2010) Rise of the Rival. Science 327:964‐965 

17.  Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro‐purification, enrichment, pre‐

fractionation and storage of peptides for proteomics using StageTips. Nature protocols  2:1896‐1906 

18.  Weinert BT, Wagner SA, Horn et al. (2011) Proteome‐wide mapping of the Drosophila  acetylome demonstrates high degree of conservation of lysine acetylation. Science  signaling 4:ra48 

19.  Wisniewski JR, Zougman A, Nagaraj N et al. (2009) Universal sample preparation method  for proteome analysis. Nature methods 6:359‐362 

20.  Wu X, Oh MH, Schwarz EM et al. (2011) Lysine acetylation is widespread protein  modification for diverse proteins in Arabidopsis. Plant Physiol 155:1769‐1778 

21.  Xing S, Poirier Y (2012) The protein acetylome and the regulation of metabolism. Trends in  plant science 17:423‐430 

22.  König AC, Hartl M, Boersema et al. (2014) The mitochondrial lysine acetylome of  Arabidopsis. Mitochondrion, in press

Table1: Preparation of resolving gel and spacer gel for second dimension. Amount of  solutions is calculated for two 16.5% Tricine SDS PAGEs. 

Resolving Gel (30 ml) Spacer Gel (10 ml)

Acrylamide 40% (w/v) 12.4 ml 2.5 ml

Tricine gel buffer 10 ml 3.4 ml

Glycerol 87% (v/v) 4 ml -

Distilled water 3.6 ml 4.1 ml

APS 10% (w/v) 100 µl 34 µl

TEMED 10 µl 3.4 µl

Table2: Preparation of sample gel for second dimension. Amount of solutions is calculated for two sample gels.

Sample Gel (10 ml) Acrylamide 40% (w/v) 2.5 ml

Gel buffer BN (6X) 3.4 ml Glycerol 100% (v/v) 1 ml

SDS 10% (w/v) 100 µl

Distilled water 2.9 ml

APS 10% (w/v) 83 µl

TEMED 8.3 µl

50

25

14 8 30

A B

Figure 1: Detection of lysine acetylation in mitochondrial protein complexes of Arabidopsis analyzed by 2D BN/SDS-PAGE and Western blot.

(A) PonceauS stain of 2D BN/SDS-PAGE of mitochondrial protein complexes. The identity of OXPHOS complexes is indicated above the gels. I+III2, supercomplex composed of complex I and dimeric complex III; I, complex I; V, complex V (ATP synthase); III2, dimeric complex III. The molecular mass scale (in kDa) is indicated on the left.

(B) Lysine-acetylated proteins from Arabidopsis mitochondria detected by Western blot analysis using the anti-acetyllysine antibody.