• Keine Ergebnisse gefunden

Nitric oxide signaling as regulator of human neuronal progenitor cell migration

Previously, we demonstrated that NO/cGMP signaling facilitates the migration of cultured human neuronal precursor (NT2) cells (Tegenge and Bicker, 2009). Since the NT2 cell line was obtained from a human teratocarcinoma (Andrews, 1984) and we cannot rule out effects of genetic rearrangements in the cancer cells, it is problematic to relate these findings to normal human neural development. Multi-potent human neuronal progenitor cells can be obtained from cells of ectodermal lineage and are restricted in fate to develop into neurons, astrocytes and oligodendrocytes. Stem cells can also be isolated from both developing human brain and restricted areas of adult human brain. Studies over the past decade have focused mainly on the use of stem cells in transplantation therapy for various diseases models. However, stem cells derived neuronal progenitor cells have the potential to investigate the molecular and cellular basis of human brain development.

In this study, we used fetal human neural progenitor cells (hNPCs) cultured as neurospheres to investigate the role of NO/cGMP signaling in neuronal migration. hNPCs derive from 16 to 20-week old female or male fetal whole brain homogenates, which have the capacity to differentiate into neuronal and glial cells (Moors et al., 2009; Breier, 2009). Culturing proliferating human neurospheres on laminin coated adhesive substrates resulted in cells that migrate out of the spheres

which were accompanied by differentiation into both neuronal and glial cells. Intriguingly, cells that migrate out respond to exogenous stimulation of NO and synthesize increasing level of cGMP.

These results provide first experimental evidence that functional NO-sensitive sGC is expressed early during human brain development. The cGMP positive cells at the forefront of migration were co-stained for either nestin or GFAP but not for -tubulin. Thus, compared to NT2 cell culture that lack GFAP positive cells, the hNPCs may mimic aspects of radial neuroblast migration during human brain development.

Application of small bioactive enzyme inhibitors and activators in human neurosphere culture implicate that NO/cGMP/PKG signaling is key regulator of neuronal progenitor migration.

Compared to the NT2 cell culture, in hNPCs inverted U-shaped dose-response curve for the NO donor NOC-18 was obtained at relatively smaller dose range (1-100 µM). Our data demonstrate that at 10 µM NOC-18 appeared to facilitate neuronal progenitor cell migration while at relatively higher concentration (100 µM) inhibition of cell migration was observed. These result suggest that NO could play dual role on neuronal migration depending on the concentration. Such dual role of NO on cell migration and neurite outgrowth that depends on concentration has been reported previously (Elferink, and VanUffelen, 1996; Trimm and Rehder, 2004). Furthermore, we directly showed the involvement of sGC and PKG in NO induced facilitation of hNPCs migration. Here, co-application of NO donor with enzyme inhibitors of sGC or PKG resulted in blocked of NO induced facilitation of hNPCs migration suggesting that low concentration of NO facilitates neuronal progenitor migration via sGC and PKG signaling pathway.

In summary, this study provides the first evidence for the involvement of NO signaling in human neuronal development. Since neuronal migration is controlled by a complex combination of chemical signals, it would be interesting to comprehend how the NO signal regulates neuronal migration in combination with other known signals. Understanding the cellular and molecular mechanisms of neuronal migration may offer hopes to develop new therapeutic agents for human congential disorders associated with defective neuronal migration. Our findings have further implications in adult neurogenesis. In recent years research in NSC biology focus on restoration of damaged neural networks in the various neurodegenerative diseases by promoting endogenous neurogenesis or transplantation of NSC. To this end, manipulation of NO/cGMP signaling may facilitate migration and integration of endogenous or transplanted neuronal progenitor cells into the existing neuronal network which could promote functional recovery in various neurodegenerative diseases.

References

Agulló, L., and García, A. (1992). Different receptors mediate stimulation of nitric oxide-dependent cyclic GMP formation in neurons and astrocytes in culture. Biochem. Biophys. Res.

Commun 182, 1362-1368.

Andrews, P. W. (1984). Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev. Biol 103, 285-293.

Arnold, W. P., Mittal, C. K., Katsuki, S., and Murad, F. (1977). Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. U.S.A 74, 3203-3207.

Ayala, R., Shu, T., and Tsai, L. (2007). Trekking across the brain: the journey of neuronal migration. Cell 128, 29-43.

Ball, E. E., and Truman, J. W. (1998). Developing grasshopper neurons show variable levels of guanylyl cyclase activity on arrival at their targets. J. Comp. Neurol 394, 1-13.

Baltrons, M. A., Pedraza, C., Sardón, T., Navarra, M., and García, A. (2003). Regulation of NO-dependent cyclic GMP formation by inflammatory agents in neural cells. Toxicol. Lett 139, 191-198.

Bicker, G. (2001). Nitric oxide: an unconventional messenger in the nervous system of an orthopteroid insect. Arch. Insect Biochem. Physiol 48, 100-110.

Bicker, G. (2005). STOP and GO with NO: nitric oxide as a regulator of cell motility in simple brains. Bioessays 27, 495-505.

Blaise, G. A., Gauvin, D., Gangal, M., and Authier, S. (2005). Nitric oxide, cell signaling and cell death. Toxicology 208, 177-192.

Boehning, D., and Snyder, S. H. (2003). Novel neural modulators. Annu. Rev. Neurosci 26, 105-131.

Bonanomi, D., Menegon, A., Miccio, A., Ferrari, G., Corradi, A., Kao, H., Benfenati, F., and Valtorta, F. (2005). Phosphorylation of synapsin I by cAMP-dependent protein kinase controls synaptic vesicle dynamics in developing neurons. J. Neurosci 25, 7299-7308.

Borán, M. S., and García, A. (2007). The cyclic GMP-protein kinase G pathway regulates cytoskeleton dynamics and motility in astrocytes. J. Neurochem 102, 216-230.

Boucherie, C., and Hermans, E. (2009). Adult stem cell therapies for neurological disorders:

benefits beyond neuronal replacement? J. Neurosci. Res 87, 1509-1521.

Bredt, D. S., Hwang, P. M., and Snyder, S. H. (1990). Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347, 768-770.

Bredt, D. S., and Snyder, S. H. (1989). Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc. Natl. Acad. Sci. U.S.A 86, 9030-9033.

Bredt, D. S., and Snyder, S. H. (1994). Transient nitric oxide synthase neurons in embryonic

Breier, J. M., Gassmann, K., Kayser, R., Stegeman, H., De Groot, D., Fritsche, E., and Shafer, T. J.

(2009). Neural progenitor cells as models for high-throughput screens of developmental neurotoxicity: State of the science. Neurotoxicol Teratol (In press).

Bulseco, D. A., Poluha, W., Schonhoff, C. M., Daou, M. C., Condon, P. J., and Ross, A. H. (2001).

Cell-cycle arrest in TrkA-expressing NIH3T3 cells involves nitric oxide synthase. J. Cell.

Biochem 81, 193-204.

Cárdenas, A., Moro, M. A., Hurtado, O., Leza, J. C., and Lizasoain, I. (2005). Dual role of nitric oxide in adult neurogenesis. Brain Res. Brain Res. Rev 50, 1-6.

Castro-Blanco, S., Encinas, J. M., Serrano, J., Alonso, D., Gómez, M. B., Sánchez, J., Ríos-Tejada, F., Fernández-Vizarra, P., Fernández, A. P., Martínez-Murillo, R., et al. (2003). Expression of nitrergic system and protein nitration in adult rat brains submitted to acute hypobaric hypoxia. Nitric Oxide 8, 182-201.

Chen, J., Tu, Y., Moon, C., Matarazzo, V., Palmer, A. M., and Ronnett, G. V. (2004). The localization of neuronal nitric oxide synthase may influence its role in neuronal precursor proliferation and synaptic maintenance. Dev. Biol 269, 165-182.

Cheng, A., Wang, S., Cai, J., Rao, M. S., and Mattson, M. P. (2003). Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain. Dev. Biol 258, 319-333.

Cho, D., Nakamura, T., Fang, J., Cieplak, P., Godzik, A., Gu, Z., and Lipton, S. A. (2009). S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324, 102-105.

Ciani, E., Calvanese, V., Crochemore, C., Bartesaghi, R., and Contestabile, A. (2006). Proliferation of cerebellar precursor cells is negatively regulated by nitric oxide in newborn rat. J. Cell.

Sci 119, 3161-3170.

Ciani, E., Severi, S., Contestabile, A., Bartesaghi, R., and Contestabile, A. (2004). Nitric oxide negatively regulates proliferation and promotes neuronal differentiation through N-Myc downregulation. J. Cell. Sci 117, 4727-4737.

Contestabile, A. (2008). Regulation of transcription factors by nitric oxide in neurons and in neural-derived tumor cells. Prog. Neurobiol 84, 317-328.

Corbin, J. G., Gaiano, N., Juliano, S. L., Poluch, S., Stancik, E., and Haydar, T. F. (2008).

Regulation of neural progenitor cell development in the nervous system. J. Neurochem 106, 2272-2287.

Crosbie, R. H., Straub, V., Yun, H. Y., Lee, J. C., Rafael, J. A., Chamberlain, J. S., Dawson, V. L., Dawson, T. M., and Campbell, K. P. (1998). mdx muscle pathology is independent of nNOS perturbation. Hum. Mol. Genet 7, 823-829.

Cui, X., Chen, J., Zacharek, A., Roberts, C., Yang, Y., and Chopp, M. (2009). Nitric oxide donor up-regulation of SDF1/CXCR4 and Ang1/Tie2 promotes neuroblast cell migration after stroke. J. Neurosci. Res 87, 86-95.

Curtis, M. A., Connor, B., and Faull, R. L. M. (2003). Neurogenesis in the diseased adult human

brain--new therapeutic strategies for neurodegenerative diseases. Cell Cycle 2, 428-430.

De Palma, C., Falcone, S., Panzeri, C., Radice, S., Bassi, M. T., and Clementi, E. (2008).

Endothelial nitric oxide synthase overexpression by neuronal cells in neurodegeneration: a link between inflammation and neuroprotection. J. Neurochem 106, 193-204.

Di Matteo, V., Pierucci, M., Benigno, A., Crescimanno, G., Esposito, E., and Di Giovanni, G.

(2009). Involvement of nitric oxide in nigrostriatal dopaminergic system degeneration: a neurochemical study . Ann. N. Y. Acad. Sci 1155, 309-315.

Donovan, P. J., and Gearhart, J. (2001). The end of the beginning for pluripotent stem cells. Nature 414, 92-97.

Enikolopov, G., Banerji, J., and Kuzin, B. (1999). Nitric oxide and Drosophila development. Cell Death Differ 6, 956-963.

Elferink, J.G., and VanUffelen, B.E. (1996). The role of cyclic nucleotides in neutrophil migration.

Gen Pharmaco 27: 387-393.

Ernst, A. F., Gallo, G., Letourneau, P. C., and McLoon, S. C. (2000). Stabilization of growing retinal axons by the combined signaling of nitric oxide and brain-derived neurotrophic factor. J. Neurosci 20, 1458-1469.

Estrada, C., and Murillo-Carretero, M. (2005). Nitric oxide and adult neurogenesis in health and disease. Neuroscientist 11, 294-307.

Evangelopoulos, M.E., Wüller, S., Weis, J., and Krüttgen A.(2010). A role of nitric oxide in neurite outgrowth of neuroblastoma cells triggered by mevastatin or serum reduction. Neurosci. Lett 468, 28-33.

Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M., and Tsai, L. (2007). Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178-182.

Fiumara, F., Giovedì, S., Menegon, A., Milanese, C., Merlo, D., Montarolo, P. G., Valtorta, F., Benfenati, F., and Ghirardi, M. (2004). Phosphorylation by cAMP-dependent protein kinase is essential for synapsin-induced enhancement of neurotransmitter release in invertebrate neurons. J. Cell. Sci 117, 5145-5154.

Fiumara, F., Milanese, C., Corradi, A., Giovedì, S., Leitinger, G., Menegon, A., Montarolo, P. G., Benfenati, F., and Ghirardi, M. (2007). Phosphorylation of synapsin domain A is required for post-tetanic potentiation. J. Cell. Sci 120, 3228-3237.

Förstermann, U., Gath, I., Schwarz, P., Closs, E. I., and Kleinert, H. (1995). Isoforms of nitric oxide synthase. Properties, cellular distribution and expressional control. Biochem. Pharmacol 50, 1321-1332.

Foster, J. A., and Phelps, P. E. (2000). Neurons expressing NADPH-diaphorase in the developing human spinal cord. J. Comp. Neurol 427, 417-427.

Friebe, A, and Koesling, D. (2009). The function of NO-sensitive guanylyl cyclase: what we can learn from genetic mouse models. Nitric Oxide 21, 149-156.

disturb differentiation of normal human neural progenitor cells: clue for involvement of thyroid hormone receptors. Environ. Health Perspect 113, 871-876.

Fritzen, S., Schmitt, A., Köth, K., Sommer, C., Lesch, K., and Reif, A. (2007). Neuronal nitric oxide synthase (NOS-I) knockout increases the survival rate of neural cells in the hippocampus independently of BDNF. Mol. Cell. Neurosci 35, 261-271.

Furchgott, R. F., and Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373-376.

Gage, F. H. (2000). Mammalian neural stem cells. Science 287, 1433-1438.

Garthwaite, J., Charles, S. L., and Chess-Williams, R. (1988). Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336, 385-388.

Garthwaite, J. (2008). Concepts of neural nitric oxide-mediated transmission. Eur. J. Neurosci 27, 2783-2802.

Ghigo, D., Priotto, C., Migliorino, D., Geromin, D., Franchino, C., Todde, R., Costamagna, C., Pescarmona, G., and Bosia, A. (1998). Retinoic acid-induced differentiation in a human neuroblastoma cell line is associated with an increase in nitric oxide synthesis. J. Cell.

Physiol 174, 99-106.

Gibbs, S. M., and Truman, J. W. (1998). Nitric oxide and cyclic GMP regulate retinal patterning in the optic lobe of Drosophila. Neuron 20, 83-93.

Gibbs, S. M. (2003). Regulation of neuronal proliferation and differentiation by nitric oxide. Mol.

Neurobiol 27, 107-120.

Goldberg, D. J., and Burmeister, D. W. (1989). Looking into growth cones. Trends Neurosci 12, 503-506.

Grzybicki, D., Gebhart, G. F., and Murphy, S. (1996). Expression of nitric oxide synthase type II in the spinal cord under conditions producing thermal hyperalgesia. J. Chem. Neuroanat 10, 221-229.

Gudi, T., Chen, J. C., Casteel, D. E., Seasholtz, T. M., Boss, G. R., and Pilz, R. B. (2002). cGMP-dependent protein kinase inhibits serum-response element-cGMP-dependent transcription by inhibiting rho activation and functions. J. Biol. Chem 277, 37382-37393.

Guillemain, I., Alonso, G., Patey, G., Privat, A., and Chaudieu, I. (2000). Human NT2 neurons express a large variety of neurotransmission phenotypes in vitro. J. Comp. Neurol 422, 380-395.

Gutièrrez-Mecinas, M., Crespo, C., Blasco-Ibáñez, J. M., Nácher, J., Varea, E., and Martínez-Guijarro, F. J. (2007). Migrating neuroblasts of the rostral migratory stream are putative targets for the action of nitric oxide. Eur. J. Neurosci 26, 392-402.

Haase, A., and Bicker, G. (2003a). Nitric oxide and cyclic nucleotides are regulators of neuronal migration in an insect embryo. Development 130, 3977-3987.

Haase, A., and Bicker, G. (2003b). Nitric oxide and cyclic nucleotides are regulators of neuronal

migration in an insect embryo. Development 130, 3977-3987.

Haghikia, A., Mergia, E., Friebe, A., Eysel, U. T., Koesling, D., and Mittmann, T. (2007). Long-term potentiation in the visual cortex requires both nitric oxide receptor guanylyl cyclases. J.

Neurosci 27, 818-823.

Hall, C.N., and Garthwaite J. (2009). What is the real physiological NO concentration in vivo?

Nitric oxide 21, 92-103.

Hartley, R. S., Margulis, M., Fishman, P. S., Lee, V. M., and Tang, C. M. (1999). Functional synapses are formed between human NTera2 (NT2N, hNT) neurons grown on astrocytes. J.

Comp. Neurol 407, 1-10.

Hatten, M. E. (1999). Central nervous system neuronal migration. Annu. Rev. Neurosci 22, 511-539.

He, J., Wang, T., Wang, P., Han, P., Yin, Q., and Chen, C. (2007). A novel mechanism underlying the susceptibility of neuronal cells to nitric oxide: the occurrence and regulation of protein S-nitrosylation is the checkpoint. J. Neurochem 102, 1863-1874.

He, Y., Yu, W., and Baas, P. W. (2002). Microtubule reconfiguration during axonal retraction induced by nitric oxide. J. Neurosci 22, 5982-5991.

Hess, D. T., Patterson, S. I., Smith, D. S., and Skene, J. H. (1993). Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide. Nature 366, 562-565.

Hindley, S., Juurlink, B. H., Gysbers, J. W., Middlemiss, P. J., Herman, M. A., and Rathbone, M. P.

(1997). Nitric oxide donors enhance neurotrophin-induced neurite outgrowth through a cGMP-dependent mechanism. J. Neurosci. Res 47, 427-439.

Houldsworth, J., Heath, S. C., Bosl, G. J., Studer, L., and Chaganti, R. S. K. (2002). Expression profiling of lineage differentiation in pluripotential human embryonal carcinoma cells. Cell Growth Differ 13, 257-264.

Ignarro, L. J., Byrns, R. E., Buga, G. M., and Wood, K. S. (1987). Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ. Res 61, 866-879.

Jin, K., Minami, M., Xie, L., Sun, Y., Mao, X. O., Wang, Y., Simon, R. P., and Greenberg, D. A.

(2004a). Ischemia-induced neurogenesis is preserved but reduced in the aged rodent brain.

Aging Cell 3, 373-377.

Jin, K., Minami, M., Xie, L., Sun, Y., Mao, X. O., Wang, Y., Simon, R. P., and Greenberg, D. A.

(2004b). Ischemia-induced neurogenesis is preserved but reduced in the aged rodent brain.

Aging Cell 3, 373-377.

Kater, S. B., and Rehder, V. (1995). The sensory-motor role of growth cone filopodia. Curr. Opin.

Neurobiol 5, 68-74.

Katsuki, S., Arnold, W., Mittal, C., and Murad, F. (1977). Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res 3,

23-35.

Knipp, S., and Bicker, G. (2009a). Regulation of enteric neuron migration by the gaseous messenger molecules CO and NO. Development 136, 85-93.

Knipp, S., and Bicker, G. (2009b). Regulation of enteric neuron migration by the gaseous messenger molecules CO and NO. Development 136, 85-93.

Knowles, R. G., and Moncada, S. (1994). Nitric oxide synthases in mammals. Biochem. J 298 ( Pt 2), 249-258.

Koriyama, Y., Yasuda, R., Homma, K., Mawatari, K., Nagashima, M., Sugitani, K., Matsukawa, T., and Kato, S. (2009). Nitric oxide-cGMP signaling regulates axonal elongation during optic nerve regeneration in the goldfish in vitro and in vivo. J. Neurochem 110, 890-901.

Kurosaki, R., Muramatsu, Y., Michimata, M., Matsubara, M., Kato, H., Imai, Y., Itoyama, Y., and Araki, T. (2002). Role of nitric oxide synthase against MPTP neurotoxicity in mice. Neurol.

Res 24, 655-662.

Kuzin, B., Roberts, I., Peunova, N., and Enikolopov, G. (1996). Nitric oxide regulates cell proliferation during Drosophila development. Cell 87, 639-649.

Lindsay, S. L., Ramsey, S., Aitchison, M., Renné, T., and Evans, T. J. (2007). Modulation of lamellipodial structure and dynamics by NO-dependent phosphorylation of VASP Ser239. J.

Cell. Sci 120, 3011-3021.

Luo, C. X., Zhu, X. J., Zhang, A. X., Wang, W., Yang, X. M., Liu, S. H., Han, X., Sun, J., Zhang, S. G., Lu, Y., et al. (2005). Blockade of L-type voltage-gated Ca channel inhibits ischemia-induced neurogenesis by down-regulating iNOS expression in adult mouse. J. Neurochem 94, 1077-1086.

Luo, C. X., Zhu, X. J., Zhou, Q. G., Wang, B., Wang, W., Cai, H. H., Sun, Y. J., Hu, M., Jiang, J., Hua, Y., et al. (2007). Reduced neuronal nitric oxide synthase is involved in ischemia-induced hippocampal neurogenesis by up-regulating inducible nitric oxide synthase expression. J. Neurochem 103, 1872-1882.

Lüth, H. J., Holzer, M., Gärtner, U., Staufenbiel, M., and Arendt, T. (2001). Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer's disease, in APP23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology. Brain Res 913, 57-67.

Madhusoodanan, K. S., and Murad, F. (2007). NO-cGMP signaling and regenerative medicine involving stem cells. Neurochem. Res 32, 681-694.

Marín, O., and Rubenstein, J. L. R. (2003). Cell migration in the forebrain. Annu. Rev. Neurosci 26, 441-483.

Matteoli, M., Coco, S., Schenk, U., and Verderio, C. (2004). Vesicle turnover in developing neurons: how to build a presynaptic terminal. Trends Cell Biol 14, 133-140.

Matthews, R. T., Beal, M. F., Fallon, J., Fedorchak, K., Huang, P. L., Fishman, M. C., and Hyman, B. T. (1997). MPP+ induced substantia nigra degeneration is attenuated in nNOS knockout mice. Neurobiol. Dis 4, 114-121.

McAllister, A. K. (2007). Dynamic aspects of CNS synapse formation. Annu. Rev. Neurosci 30, 425-450.

Menegon, A., Bonanomi, D., Albertinazzi, C., Lotti, F., Ferrari, G., Kao, H., Benfenati, F., Baldelli, P., and Valtorta, F. (2006). Protein kinase A-mediated synapsin I phosphorylation is a central modulator of Ca2+-dependent synaptic activity. J. Neurosci 26, 11670-11681.

Métin, C., Vallee, R. B., Rakic, P., and Bhide, P. G. (2008). Modes and mishaps of neuronal migration in the mammalian brain. J. Neurosci 28, 11746-11752.

Micheva, K. D., Buchanan, J., Holz, R. W., and Smith, S. J. (2003). Retrograde regulation of synaptic vesicle endocytosis and recycling. Nat. Neurosci 6, 925-932.

Moors, M., Cline, J. E., Abel, J., and Fritsche, E. (2007). ERK-dependent and -independent pathways trigger human neural progenitor cell migration. Toxicol. Appl. Pharmacol 221, 57-67.

Moors, M., Rockel, T. D., Abel, J., Cline, J. E., Gassmann, K., Schreiber, T., Schuwald, J., Weinmann, N., and Fritsche, E. (2009). Human neurospheres as three-dimensional cellular systems for developmental neurotoxicity testing. Environ. Health Perspect 117, 1131-1138.

Moreno-López, B., Noval, J. A., González-Bonet, L. G., and Estrada, C. (2000). Morphological bases for a role of nitric oxide in adult neurogenesis. Brain Res 869, 244-250.

Moreno-López, B., Romero-Grimaldi, C., Noval, J. A., Murillo-Carretero, M., Matarredona, E. R., and Estrada, C. (2004). Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and olfactory bulb. J. Neurosci 24, 85-95.

Murad, F. (1986). Cyclic guanosine monophosphate as a mediator of vasodilation. J. Clin. Invest 78, 1-5.

Murillo-Carretero, M., Ruano, M. J., Matarredona, E. R., Villalobo, A., and Estrada, C. (2002).

Antiproliferative effect of nitric oxide on epidermal growth factor-responsive human neuroblastoma cells. J. Neurochem 83, 119-131.

Müller, U. (1997). The nitric oxide systems in insects. Prog. Neurobiol. 51, 363-381.

Nikonenko, I., Jourdain, P., Muller, D. (2003). Presynaptic remodeling contributes to activity-dependent synaptogenesis. J. Neurosci. 23, 8498-8505.

Nikonenko, I., Boda, B., Steen, S., Knott, G., Welker, E., and Muller, D. (2008). PSD-95 promotes synaptogenesis and multiinnervated spine formation through nitric oxide signaling. J. Cell Biol 183, 1115-1127.

Nott, A., and Riccio, A. (2009). Nitric oxide-mediated epigenetic mechanisms in developing neurons. Cell Cycle 8, 725-730.

Nott, A., Watson, P. M., Robinson, J. D., Crepaldi, L., and Riccio, A. (2008). S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455, 411-415.

Nott, A., Veenvliet, J., Goda, Y., Riccio, A.(2009). S-Nitrosylation of the chromatin–remodelling protein histone deacetylase 2 regulates cortical development. Program NO. 219.14. 2009 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience meeting,

Ogilvie, P., Schilling, K., Billingsley, M. L., and Schmidt, H. H. (1995). Induction and variants of neuronal nitric oxide synthase type I during synaptogenesis. FASEB J 9, 799-806.

Packer, M. A., Stasiv, Y., Benraiss, A., Chmielnicki, E., Grinberg, A., Westphal, H., Goldman, S.

A., and Enikolopov, G. (2003). Nitric oxide negatively regulates mammalian adult neurogenesis. Proc. Natl. Acad. Sci. U.S.A 100, 9566-9571.

Palmer, R. M., Ferrige, A. G., and Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524-526.

Paquet-Durand, F., and Bicker, G. (2007). Human model neurons in studies of brain cell damage and neural repair. Curr. Mol. Med 7, 541-554.

Paquet-Durand, F., Tan, S., and Bicker, G. (2003). Turning teratocarcinoma cells into neurons:

rapid differentiation of NT-2 cells in floating spheres. Brain Res. Dev. Brain Res 142, 161-167.

Park, C., Sohn, Y., Shin, K. S., Kim, J., Ahn, H., and Huh, Y. (2003). The chronic inhibition of nitric oxide synthase enhances cell proliferation in the adult rat hippocampus. Neurosci. Lett 339, 9-12.

Petrov, A. M., Giniatullin, A. R., Sitdikova, G. F., and Zefirov, A. L. (2008). The role of cGMP-dependent signaling pathway in synaptic vesicle cycle at the frog motor nerve terminals. J.

Neurosci 28, 13216-13222.

Peunova, N., and Enikolopov, G. (1995). Nitric oxide triggers a switch to growth arrest during differentiation of neuronal cells. Nature 375, 68-73.

Peunova, N., Scheinker, V., Cline, H., and Enikolopov, G. (2001). Nitric oxide is an essential negative regulator of cell proliferation in Xenopus brain. J. Neurosci 21, 8809-8818.

Peunova, N., Scheinker, V., Ravi, K., and Enikolopov, G. (2007). Nitric oxide coordinates cell proliferation and cell movements during early development of Xenopus. Cell Cycle 6, 3132-3144.

Phung, Y. T., Bekker, J. M., Hallmark, O. G., and Black, S. M. (1999). Both neuronal NO synthase and nitric oxide are required for PC12 cell differentiation: a cGMP independent pathway.

Brain Res. Mol. Brain Res 64, 165-178.

Pleasure, S. J., Page, C., and Lee, V. M. (1992). Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J. Neurosci 12, 1802-1815.

Podrygajlo, G., Tegenge, M. A., Gierse, A., Paquet-Durand, F., Tan, S., Bicker, G., and Stern, M.

(2009). Cellular phenotypes of human model neurons (NT2) after differentiation in aggregate culture. Cell Tissue Res 336, 439-452.

Podrygajlo, G, Song, Y, Schlesinger, F, Krampfl, K, Bicker G.(2010). Synaptic currents and transmitter responses in human NT2 neurons differentiated in aggregate culture. Neurosci. Lett (In press).

Przedborski, S., Jackson-Lewis, V., Yokoyama, R., Shibata, T., Dawson, V. L., and Dawson, T. M.

(MPTP)-induced dopaminergic neurotoxicity. Proc. Natl. Acad. Sci. U.S.A 93, 4565-4571.

Przyborski, S. A., Christie, V. B., Hayman, M. W., Stewart, R., and Horrocks, G. M. (2004).

Human embryonal carcinoma stem cells: models of embryonic development in humans.

Stem Cells Dev 13, 400-408.

Przyborski, S. A., Morton, I. E., Wood, A., and Andrews, P. W. (2000). Developmental regulation of neurogenesis in the pluripotent human embryonal carcinoma cell line NTERA-2. Eur. J.

Neurosci 12, 3521-3528.

Przyborski, S. A., Smith, S., and Wood, A. (2003). Transcriptional profiling of neuronal differentiation by human embryonal carcinoma stem cells in vitro. Stem Cells 21, 459-471.

Przyborski, S. A., Smith, S., and Wood, A. (2003). Transcriptional profiling of neuronal differentiation by human embryonal carcinoma stem cells in vitro. Stem Cells 21, 459-471.