• Keine Ergebnisse gefunden

employing distributive modeling approaches

4 Groundwater residence time distributions in heterogeneous karst aquifers

4.2 Methods and approach

4.2.2 Model scenarios and parameterization

Since  this  study  focuses  on  groundwater  residence  times  within  the  aquifer,  i.e.  the  saturated  zone,   the  influences  of  the  overburden  and  unsaturated  zone  are  neglected  in  the  model  setup  and  the   aquifer   is   simulated   as   confined.   The   effect   this   simplification   might   have   for   an   actual   field   site   application   is   discussed   in   Chapter   4.4.   Two   basic   model   configurations   are   used   for   studying   the   residence   time   distributions   (Figure   4.1).   Both   configurations   are   three-­‐dimensional   with   a   lateral   extent   of   5×5  km2   and   an   aquifer   thickness   of   100  m.   An   observation   well   is   inserted   south   of   the   conduit  system  at  a  depth  of  50  m  to  simulate  sampling  in  the  field  (Figure  4.1).  The  conduit  volume   is   identical   for   both   configurations,   but   in   configuration   1   it   is   distributed   on   a   3  km   long   single   conduit,   while   for   configuration   2   a   dendritic   conduit   system   with   a   total   length   of   16   km   is   employed.   The   conduit   diameter   for   configuration   1   is   kept   constant   along   the   conduit   length.   In   configuration   2   a   widening   of   the   karst   conduits   towards   the   spring   is   assumed.   With   a   constant   diameter   conduit   velocities   would   increase   drastically   at   the   intersections,   which   is   not   only   unrealistic  since  higher  flow  velocities  enhance  karst  dissolution  processes  (e.g.  Clemens,  1998),  but   also  numerically  difficult  to  solve  in  the  transport  simulation.  For  the  increase  in  radius,  the  empirical   approach  of  Oehlmann  et  al.  (2015)  was  employed  (Eq.  4.6).  

𝑟!,!=𝑚  𝑠+𝑏                           (4.6a)   𝑟!,! =𝑚  𝑠+2   𝑟!,!!!!+𝑟!,!!!!+𝑟!,!!!!                 (4.6b)   where  rc  [L]  is  the  conduit  radius,  s  [L]  is  the  conduit  length  and  m  [-­‐]  is  the  slope  of  linear  radius   increase  along  the  conduit  length.  For  the  smallest  conduit  branches  an  initial  radius  b  [L]  is  defined   (Eq.   4.6a).   At   the   conduit   intersections,   the   cross-­‐sectional   areas   of   the   intersecting   conduits   are   added   as   initial   cross-­‐section   for   the   downgradient   conduit   (Eq.   4.6b).   The   factor   2   was   derived   empirically   to   ensure   that   flow   velocities   are   as   uniform   as   possible   during   the   simulations.   The   intersections   of   three   conduit   branches   at   the   same   points   lead   to   a   significant   increase   in   flow   velocities,  if  the  factor  of  1  (Oehlmann  et  al.,  2015)  is  used.  

For   selection   of   parameter   values   and   ranges   for   sensitivity   analysis,   the   area   of   the   Gallusquelle   spring  in  south-­‐western  Germany  was  used.  The  Gallusquelle  is  a  medium  sized  karst  spring  with  an   average  annual  discharge  of  0.5  m3  d-­‐1.  The  aquifer  is  characterized  as  a  mixed  system,  where  both,   conduit  flow  and  diffuse  matrix  flow  occur  and  are  of  significant  importance  (Sauter,  1992).  Extensive   field  investigations  and  model  studies  provide  a  good  database  for  model  parameters  (e.g.  Sauter,   1992;   Oehlmann   et   al.,   2015).   Average   groundwater   transit   times   in   the   saturated   zone   were   determined  by  Geyer  (2008)  with  the  85Kr  method  to  range  between  3  and  4  years.  Table  4.1  shows   the   chosen   parameters   for   the   reference   simulations   and   the   variation   ranges.   The   relative  

parameter  sensitivity  was  calculated  by  using  the  Root  Square  Error  (RSE)  of  the  average  age  and  life   expectancy  values  with  respect  to  the  reference  scenario.  For  a  relative  difference  below  0.5  years   the  parameter  was  considered  as  insensitive  with  respect  to  the  objective  function,  i.e.  age  or  life   expectancy.   For   the   spring   discharge   the   same   value   was   set   as   by   Oehlmann   et   al.   (2015)   and   a   difference  of  10  L  s-­‐1  was  counted  as  significant.  

For   the   porous   system,   all   boundaries   are   zero-­‐flux   Neumann   boundaries.   In   and   out   flux   for   the   system  is  only  provided  by  exchange  with  the  fissured  system.  The  fissured  system  is  bounded  by  no-­‐

flux  boundaries  everywhere  except  for  the  top.  The  whole  upper  boundary  is  defined  as  a  Neumann   boundary  with  the  value  of  groundwater  recharge  as  defined  in  Table  4.1.  For  the  transport  equation   of   groundwater   age   (Eq.   4.3),   top   of   the   domain   is   a   zero-­‐flux   Neumann   condition   as   well.   By   definition,  groundwater  age  cannot  enter  the  aquifer  from  the  outside  but  is  only  produced  inside  of   it.   For   the   life   expectancy   the   sign   of   the   recharge   is   reversed   and   multiplied   with   the   expectancy   value  to  remove  the  water  that  reached  the  inlet  boundary.  The  upper  eastern  edge  of  the  domain  is   set  as  a  Dirichlet  boundary  condition  for  groundwater  flow  and  a  Neumann  condition  for  transport   representing  a  river  (Figure  4.1).  The  conduit  system  has  the  same  kind  of  boundary  condition  for  the   karst   spring.   Recharge   to   the   conduit   is   provided   by   exchange   with   the   fissured   system   and   by   a   source  term  representing  the  direct  recharge  component,  i.e.  recharge  reaching  the  conduit  system   directly  through  vertical  shafts,  if  present.  For  both,  river  and  spring,  Neumann  conditions  are  zero   flux   for   the   life   expectancy   and   equal   to   the   groundwater   discharge   multiplied   by   the   age   for   groundwater  age,  analogous  to  the  recharge  boundary.  

   

 

 

Table   4.1.   Parameters   for   the   numerical   simulation   and   variation   range   for   the   parameter   analysis.   The   corresponding  equations  are  given  in  Chapter  4.2.  The  z-­‐axis  points  upwards.  

Parameter  description   Parameter  

name   Reference  

setup  1   Reference  

setup  2   Variation  range   Porous  system  

porosity     θp  (%)   1   1   1  –  10  

porous–fissured  exchange  coefficient   β  (s-­‐1)   3.3×10-­‐12   3.3×10-­‐12   1×10-­‐14  –  1×10-­‐8   Fissured  system  

total  recharge     r  (mm  d-­‐1)   1.5   1.5   0.5  –  50  

porosity     θf  (%)   1   1   1  –  10  

hydraulic  conductivity     Kf  (m  s-­‐1)   5×10-­‐5   5×10-­‐5   1×10-­‐6  –  1×10-­‐3  

dispersivity   εf  (m)   50   50   5  -­‐  100  

aquifer  thickness     maf  (m)   100   100   10  –  100  

Conduit  system  

vertical  position   zc  (m)   100   100   0  –  100  

direct  recharge     rd  (%)   0   0   0  –  95  

conduit-­‐matrix  exchange  coefficient   α  (m2  s-­‐1)   6.1×10-­‐4   6.1×10-­‐4     1×10-­‐8  –  1×10-­‐3  

cross-­‐section   A  (m2)   12   2.24a   0.6  -­‐  35  

roughness   n  (s  m-­‐1/3)   3   3   0.01  -­‐  20  

dispersivity   εc  (m)   7   7   2  -­‐  50  

initial  radius   b  (m)   1.95   0.1   0.001  –  2  

radius  increase   m  (-­‐)   0   1×10-­‐4   0  –  1×10-­‐3  

aaverage  value    

The   reference   simulations   and   parameter   analysis   were   performed   for   steady-­‐state   conditions.  

Steady-­‐state  conditions  are  useful  for  protection  zone  delineation  and  required  as  initial  values  for   transient  modelling.  In  order  to  assess  the  influence  of  discrete  groundwater  recharge  events  on  the   residence   time   distribution,   an   additional   simulation   was   performed   introducing   a   hypothetical   recharge   event   with   the   duration   of   one   week.   Contrary   to   the   steady-­‐state   reference   simulation   (Table  4.1)  a  direct  recharge  component  of  10%  was  assumed  for  the  transient  simulation  to  include   the  influence  of  the  duality  of  aquifer  recharge.  Furthermore,  the  dispersivity  of  the  conduit  system   was  set  to  50  m.  It  was  found  to  be  insensitive  during  the  parameter  analysis  (Chapter  4.3.2)  and  a  

higher   dispersion   coefficient   leads   to   a   higher   numerical   stability   of   the   fast   transport   in   the   karst   conduit  system.