• Keine Ergebnisse gefunden

Metric almost contact 3-structures

Since allψileave the vector spaceV := span(ξ1, ξ2, ξ3) invariant and since they are orthonormal, they also leaveV invariant. ForX ⊥ξ1, ξ2, ξ3, ∂rwe have

J1(J2(X)) =ψ12(X)) =ψ3(X) =J3(X) =−ψ21(X)) =−J2(J1(X)).

Forξ1 we obtain

J1(J21)) =−J121)) =J13) =−ψ13) =ξ2=J2(ar∂r) =−J2(J11)) =ψ31) =J31) and similarly forξ2, ξ3 and r. For a connection as in Theorem (3.2), we have that all almost hermitian structures are parallel under ¯ and forX, Y ∈T M

[X, Y] = ¯¯gXY −∇¯¯gYX = ¯XY −∇¯YX−T¯(X, Y).

Thus the commutator relations are given by

1, ξ2] = a2[J1(∂r), J2(∂r)] = a2( ¯J1(∂r)J2(∂r)−∇¯J2(∂r)J1(∂r))−T(ξ¯ 1, ξ2)

= a2(J2( ¯J1(∂r)r)−J1( ¯J2(∂r)r))−T¯(ξ1, ξ2)

= a2(J2(J1(∂r))−J1(J2(∂r)))−T¯(ξ1, ξ2)

= 2a2J3(∂r)−T¯(ξ1, ξ2) = 2aξ3−T1, ξ2).

The other relations are to be calculated similarly.

If the almost contact structures are normal, then the almost hermitian structures are normal and with the formula for the torsion given in Remark 3.17 we have

¯

g( ¯∇X, Y, Z) = ¯g( ¯∇¯gXY, Z) +1

2(Ji◦dωi)(X, Y, Z) for anyi= 1,2,3. This impliesJ1◦dω1=J2◦dω2=J3◦dω3.

Remarks 3.25.

- In [FFUV11, Section 7], the authors obtain a similar result (but without a description of the characteristic connections). Furthermore, they investigate more closely the conditions for the HKT structure to bestrong(Ji◦dωi is closed).

- If we rescale the metric such thata= 1 and ifT = 0, we have 3 K¨ahlerian structures on ¯M and thus 3 Sasakian structures onM. Then the commutator relations in Theorem 3.24 ensure that the structures onM form a 3-Sasakian structure. This is Lemma 5 of [B¨a93]: A one to one correspondence between hyper-K¨ahler structures on ¯M and 3-Sasaki structures on M.

- We emphasize that it is not necessary that the three characteristic connections c,i, i = 1,2,3 coincide in order to apply Theorem 3.24, only the connections i with torsion Ti = Tc,i2aηi∧Fi have to be equal. If M is a 3-Sasakian manifold, Ti = 0 for i = 1,2,3 and thus1 =2 =3=g. In this case there exists a specialG2 structure onM which will be discussed in Example 4.18.

4 G

2

structures – Spin(7) structures on the cone

Let (M, g,Ψ, P) be aG2manifold (see Section 4 of Chapter I). For Spin(7) structures there is no one to one correspondence to spinors. Since we want to lift aG2structure to a Spin(7) structure on the cone, in this section it is more convenient to use the description of aG2 structures via the differential form Ψ rather then via a spinor. Correspondences of geometric structures on non-twisted cones using the differential forms are considered in many other cases, see [II05] to name but one.

We cite a classical, but for us crucial result by Fernandez and Gray:

Lemma 4.1 ([FG82, Lemma 2.7]).

Ψ(V, W, X, Y) =g(P(V, W), P(X, Y))−g(V, X)g(W, Y) +g(V, Y)g(W, X)

= Ψ(V, W, P(X, Y))−g(V, X)g(W, Y) +g(V, Y)g(W, X).

Remark 4.2. In [FG82] this formula is stated differently,

Ψ(V, W, X, Y) = −g(P(V, W), P(X, Y)) +g(V, X)g(W, Y)−g(V, Y)g(W, X).

= Ψ(V, W, P(X, Y)) +g(V, X)g(W, Y)−g(V, Y)g(W, X).

This is due to the standard 3-form Ψ used by Fern´andez and Gray, which corresponds to the orientation opposite to ours. This changes the sign of the Hodge operator.

Now we are able to prove

Lemma 4.3. For any metric connection∇ with skew torsion onM, the G2 formΨsatisfies (ZΨ)(V, W, X, Y) = (ZΨ)(V, W, P(X, Y)) + (ZΨ)(X, Y, P(V, W)).

If satisfies∇Ψ =a∗Ψfor somea >0, we have the simplified relation

(ZΨ)(V, W, X, Y) = a[Ψ(X, Y, V)g(Z, W)Ψ(X, Y, W)g(Z, V) +Ψ(V, W, X)g(Z, Y)Ψ(V, W, Y)g(Z, X)].

Proof. For any metric connection with skew torsion we have

(ZΨ)(V, W, X, Y) =ZΨ(V, W, X, Y)− ∗Ψ(ZV, W, X, Y)− ∗Ψ(V,ZW, X, Y)

− ∗Ψ(V, W,ZX, Y)− ∗Ψ(V, W, X,ZY).

Since is metric,g is parallel and with Lemma 4.1 we get

=ZΨ(V, W, P(X, Y))Ψ(ZV, W, P(X, Y))Ψ(V,ZW, P(X, Y))Ψ(V, W, P(ZX, Y))

Ψ(V, W, P(X,ZY))Ψ(V, W,ZP(X, Y)) + Ψ(V, W,ZP(X, Y)).

We have Ψ(V, W,(ZP)(X, Y)) =g(P(V, W),(ZP)(X, Y)) = (ZΨ)(X, Y, P(V, W)) and thus we get

(ZΨ)(V, W, X, Y) = (ZΨ)(V, W, P(X, Y)) + (ZΨ)(X, Y, P(V, W)).

The conditionΨ =a∗Ψ implies

(ZΨ)(V, W, X, Y) = −a∗Ψ(P(X, Y), Z, V, W)−a∗Ψ(P(V, W), Z, X, Y) and aplying once again Lemma 4.1 yields

(ZΨ)(V, W, X, Y) =

= −aΨ(P(X, Y), Z, P(V, W))−aΨ(P(V, W), Z, P(X, Y)) +ag(P(X, Y), V)g(Z, W)

−ag(P(X, Y), W)g(Z, V) +ag(P(V, W), X)g(Z, Y)−ag(P(V, W), Y)g(Z, X)

= a[Ψ(X, Y, V)g(Z, W)Ψ(X, Y, W)g(Z, V) + Ψ(V, W, X)g(Z, Y)Ψ(V, W, Y)g(Z, X)], which finishes the proof.

We define a 4-form on the cone ¯M via

Φ(∂r, X, Y, Z) := a3r3Ψ(X, Y, Z), Φ(X, Y, Z, W) := a4r4Ψ(X, Y, Z, W)

forX, Y, Z, W ∈T M. Since ryΦ locally is aG2-structure onr, Φ is a Spin(7)-structure on M¯. As in Section 3, given a characteristic connection onM with respect to Ψ, we construct a connectionwith skew symmetric torsionT onM such that its lift ¯to ¯M with torsion ¯T is the characteristic connection on ¯M with respect to Φ. Since we have T = ¯T|T M andryT¯ = 0, we have ¯T =T = 0 in case of a parallel Spin(7) structure with respect to the Levi-Civita connection on ¯M, and thusis the Levi-Civita connection onM and thusT measures the difference of the G2 structure to the nearly parallel case (see Remark 4.8).

Definition 4.4. Let (M, g,Ψ) be aG2 manifold with characteristic connectionc. We define a metric connectionwith skew symmetric torsionT via

T :=Tc2a 3 Ψ.

As in the metric almost contact case (see the comments in Definition 3.1),T cannot be computed abstractly, but it is found through an educated guess and justified a posteriori from its properties.

Theorem 4.5. The connection∇satisfies

Ψ =a∗Ψ,

andΦis parallel with respect to∇¯, the appendant connection onM¯. Proof. We have for the Riemannian connectiongonM

XΨ(Y, Z, W) = XΨ(Y, Z, W)Ψ(gXY, Z, W)Ψ(Y,gXZ, W)Ψ(Y, Z,gXW)

1

2Ψ(T(X, Y), Z, W)1

2Ψ(Y, T(X, Z), W)1

2Ψ(Y, Z, T(X, W))

= (cXΨ)(Y, Z, W) +1

2Ψ((Tc−T)(X, Y), Z, W) +1

2Ψ(Y,(Tc−T)(X, Z), W) +1

2Ψ(Y, Z,(Tc−T)(X, W)) and becausecΨ = 0 we have

XΨ(Y, Z, W) =

= 1

2[(Tc−T)(X, Y, P(Z, W)) + (Tc−T)(X, Z, P(W, Y)) + (Tc−T)(X, W, P(Y, Z))]

= a

3[Ψ(X, Y, P(Z, W)) + Ψ(X, Z, P(W, Y)) + Ψ(X, W, P(Y, Z))].

With Lemma 4.1 we obtain a∗Ψ(X, Y, Z, W) = a

3[Ψ(X, Y, Z, W) +Ψ(X, Z, W, Y) +Ψ(X, W, Y, Z)]

= a

3[Ψ(X, Y, P(Z, W)) + Ψ(X, Z, P(W, Y)) + Ψ(X, W, P(Y, Z))

−g(X, Z)g(Y, W) +g(X, W)g(Y, Z)−g(X, W)g(Z, Y) +g(X, Y)g(Z, W)

−g(X, Y)g(W, Z) +g(X, Z)g(W, Y)]

= XΨ(Y, Z, W),

which proves the first statement. To show ¯Φ = 0 on ¯M we look at several cases. Let always beV, W, X, Y, Z∈T M.

Case 1: Ifris one of the arguments, we compute ( ¯WΦ)(∂r, X, Y, Z) =W a3r3Ψ(X, Y, Z)1

rΦ(W, X, Y, Z)−r3a3Ψ(WX, Y, Z)

−r3a3Ψ(X,WY, Z)−r3a3Ψ(X, Y,WZ)

= a3r3(WΨ)(X, Y, Z)1

rΦ(W, X, Y, Z) = a4r3Ψ(W, X, Y, Z)1

rΦ(W, X, Y, Z) = 0.

Case 2: If the direction of the derivative is equal tor, we obtain ( ¯rΦ)(X, Y, Z, W) =r(a4r4Ψ(X, Y, Z, W))41

rΦ(X, Y, Z, W)

= 4r3a4Ψ(X, Y, Z, W)41

rΦ(X, Y, Z, W) = 0.

Case 3: If the direction of the derivative and one argument are equal torwe compute ( ¯rΦ)(∂r, X, Y, Z) = r(a3r3Ψ(X, Y, Z))3a3r31

rΨ(X, Y, Z) = 0.

Case 4: OnT M we have:

( ¯VΦ)(W, X, Y, Z) =

= a4r4V Ψ(W, X, Y, Z)Φ( ¯VW, X, Y, Z)−Φ(W,¯VX, Y, Z)−Φ(W, X,¯VY, Z)

Φ(W, X, Y,¯VZ)

= a4r4V Ψ(W, X, Y, Z)Φ(VW 1

r¯g(V, W)∂r, X, Y, Z)−Φ(W,VX−1

rg(V, X)∂¯ r, Y, Z)

Φ(W, X,VY 1

r¯g(V, Y)∂r, Z)−Φ(W, X, Y,VZ−1

r¯g(V, Z)∂r)

= a4r4(V Ψ)(W, X, Y, Z) +r4a5[g(V, W)Ψ(X, Y, Z)−g(V, X)Ψ(W, Y, Z) +g(V, Y)Ψ(W, X, Z)−g(V, Z)Ψ(W, X, Y)],

which is equal to zero due to Lemma 4.3.

Conversely, given a Spin(7) structure ( ¯M ,g,¯ Φ,P ,¯ p) on ¯¯ M (see Section 5 of Chapter I for the definitions), ryΦ is aG2 structure with respect to the metrica2g onM =M × {1} ⊂M¯ and thus

Ψ := 1 a3r

defines a G2 structure onM with respect to the metricg. To prove the following theorem, we need

Lemma 4.6. If is the Hodge operator onM with respect tog and∗a2g is the Hodge operator onM with respect to the metrica2g, we have for any3-formω

a2gω=a∗ω.

Proof. Let ei for i = 1..7 be an orthonormal basis with dual basisei onM with respect to g.

Then 1aeiwith dualaeiis a orthonormal basis with respect toa2g. We definee{i,j,k}:=ei∧ej∧ek ande{i,j,k,j}:=ei∧ej∧ek∧el as well as (se){i,j,k}:=sei∧sej∧sek fors∈Rand (se){i,j,k,j} respectively. Then we have

a2ge{i,j,k}= 1

a3 a2g(ae){i,j,k}= 1

a3(ae){1,..,7}\{i,j,k}= 1

a3a4e{1,..,7}\{i,j,k}=a∗e{i,j,k}, which proves the lemma.

Theorem 4.7. Given aSpin(7) structure onM¯ with characteristic connection ¯ being the lift of a connection∇ onM, we have for the G2 structureΨinduced by Φ

Ψ =a∗Ψ

and the characteristic connection on (M, g,Ψ)is given by Tc=T+2a3Ψ.

Proof. We have forW, X, Y, Z ∈T M (WΨ)(X, Y, Z) = 1

a3[WΦ(∂r, X, Y, Z)

Φ(∂r,∇WX, Y, Z)−Φ(∂r, X,∇WY, Z)Φ(∂r, X, Y,∇WZ)]

= 1

a3[( ¯WΦ)(∂r, X, Y, Z) + Φ( ¯Wr, X, Y, Z)] = 1

a3Φ(W, X, Y, Z).

With Lemma 8 of [B¨a93] and the definition of Ψ we conclude Φ|T M =a2g(∂ryΦ) =a2g(a3Ψ) = a4Ψ, wherea2g is the Hodge operator on M ⊂M¯ with respect to the metrica2g. The last equality follows from Lemma 4.6. Thus we get

Ψ =a∗Ψ.

For the connectionc with torsionTc=T+2a3Ψ we calculate as in the proof of Theorem 4.5 (cXΨ)(Y, Z, W) = (XΨ)(Y, Z, W) +1

2[(T−Tc)(X, Y, P(Z, W)) + (T−Tc)(X, Z, P(W, Y)) + (T−Tc)(X, W, P(Y, Z))]

=a∗Ψ(X, Y, Z, W)−a

3[Ψ(X, Y, P(Z, W)) + Ψ(X, Z, P(W, Y)) + Ψ(X, W, P(Y, Z))]

which is equal to zero due to Lemma 4.1. Since the characteristic connection of aG2 manifold is unique, this proves the theorem.

Remark 4.8. In the case of an nearly parallelG2 structure we haveTc= 2a3Ψ, i. e. T = 0 and thus=g lifts to the Levi-Civita connection on ¯M and the corresponding Spin(7) structure on the cone is integrable. This means, that, as in the metric almost contact case,T =Tc2a3Ψ measures the ’distance’ of theG2 structure from a nearly parallelG2 structure.

4.1 The classification of G

2

structures and the corresponding classifi-cation of Spin(7) structures on the cone

We will now discuss the classification of Fern´andez [Fe86] of Spin(7) structures on ¯M given in Section 5 of Chapter I, and compute the correspondence to the classification ofG2 structures [FG82]. Again we are only interested in structures carrying a characteristic connection (G2 structures of classW1⊕ W3⊕ W4). We writeXM for the projection onT M of a vector fieldX inTM¯. We summarize some useful identities:

Lemma 4.9.

1. P can be expressed through Ψon T M:P(Y, Z) = ∑

lΨ(el, Y, Z)el. 2. For any metric connection∇˜ with skew torsion onM, we have:

( ˜XΨ)(Y, Z, V) = g(( ˜∇XP)(Y, Z), V), ( ˜XP)(Y, Z) = ∑

l

g(el,( ˜XP)(Y, Z))el=∑

l

( ˜XΨ)(el, Y, Z)el.

3. For ∇, this can be simplified to (XP)(Y, Z) = a

lΨ(X, el, Y, Z)el. 4. P,Ψ, andP¯ are related by(X, Y, Z∈T M)

P¯(∂r, X, Y)⊥∂r, ¯g( ¯P(X, Y, Z), ∂r) = Φ(X, Y, Z, ∂r) =−a3r3Ψ(X, Y, Z), P¯(∂r, X, Y) =arP(X, Y), P(Y, Z, V¯ )M =ar2(YP)(Z, V).

5. The derivative ofΦon M¯ can be expressed in terms of ΨonM (X, Y, Z, V, W ∈T M):

( ¯gX¯Φ)(∂r, Z, V, W) =a3r3[(g− ∇)XΨ](Z, V, W), ( ¯gX¯Φ)(Y, Z, V, W) =a4r4[(g− ∇)XΨ](Y, Z, V, W).

Proof. Statements (1)-(3) are easily checked. To prove statement (4) forX, Y, Z∈T M, we have

¯

g( ¯P(∂r, X, Y), Z) = Φ(∂r, X, Y, Z) =a3r3Ψ(X, Y, Z) =ar¯g(P(X, Y), Z), thus ¯P(∂r, X, Y) =arP(X, Y). Furthermore,

¯

g(X,P¯(Y, Z, V)) = Φ(Y, Z, V, X) = a3r4(YΨ)(Z, V, X) = a3r4g(X,(YP)(Z, V))

= ar2¯g(X,(YP)(Z, V)),

and thus ¯P(Y, Y, V)M = ar2(YP)(Z, V). For (5) and vector fields X, Y, Z, V, W T M, we calculate

2( ¯¯gXΦ)(∂r, Z, V, W) =

= 2( ¯XΦ)(∂r, Z, V, W) + Φ(∂r,T(X, Z), V, W¯ ) + Φ(∂r, Z,T¯(X, V), W) + Φ(∂r, Z, V,T(X, W¯ ))

= a3r3[Ψ(T(X, Z), V, W) + Ψ(Z, T(X, V), W) + Ψ(Z, V, T(X, W))]

= 2a3r3[Ψ((X− ∇gX)Z, V, W) + Ψ(Z,(X− ∇gX)V, W) + Ψ(Z, V,(X− ∇gX)W)]

= 2a3r3[(∇ − ∇g)XΨ](Z, V, W), and similarly

( ¯gX¯Φ)(Y, Z, V, W) =

= 1

2[Φ( ¯T(X, Y), Z, V, W) + Φ(Y,T¯(X, Z), V, W) + Φ(Y, Z,T¯(X, V), W) + Φ(Y, Z, V,T¯(X, W))]

= a4r4

2 [Ψ(T(X, Y), Z, V, W) +Ψ(Y, T(X, Z), V, W) +Ψ(Y, Z, T(X, V), W) +Ψ(Y, Z, V, T(X, W))]

= −a4r4[(∇ − ∇g)XΨ](Y, Z, V, W) =a4r4[(g− ∇)XΨ](Y, Z, V, W), which finishes the proof.

Remark 4.10. Since the characteristic connection of the Spin(7) structure on ¯M is unique (see Section 5 of Chapter I), we can conclude for any such structure satisfying ¯¯gΦ = 0 that=g and thusgΨ = a∗Ψ and the G2 structure is of class W1. Conversely, given a connection with skew symmetric torsion andΨ =a∗Ψ we constructcviaTc:=T−2a3Ψ, which satisfies

cΨ = 0 and thus is unique. Hence a metric connection with skew symmetric torsion and the propertyΨ =Ψ is unique.

For any tensorR onM we introduce the notationRxX to denoteR(−, X).

We extend the metricgto arbitraryk-tensorsR, S via an orthonormal framee1, . . . , en

g(R, S) :=

n i1,..,ik=1

R(ei1, .., eik)S(ei1, .., eik).

Lemma 4.11. ASpin(7) structure onM¯ is of classU1 if and only if onM

g(∇gΨ,Ψ) =ag(∗Ψ,Ψ), and

for every X ∈T M we haveg(∗Ψ,[(∇ − ∇g)Ψ]xX) = 3g(Ψ,[(∇ − ∇g)Ψ]xX).

The structure on M¯ is of class U2 if and only if the following conditions are satisfied for X, Y, Z, X1, .., X4∈T M and a local orthonormal frame e1, .., e7 of T M:

δΦ|T M = 0 onT M, which is equivalent to0 =

7 i=1

[(g− ∇)eiΨ](ei, X, Y, Z)

0 =

4 i=1

l<j<8

(1)iδΨ(el, ej)Ψ(el, ej, Xi)Ψ(X1, ..,Xˆi, .., X4)

28[(g− ∇)W Ψ](X1, X2, X3, X4)

=

4 i=1

l<j<8

(1)i+1δΨ(el, ej)Ψ(el, ej, Xi)Ψ(W, X1, ..,Xˆi, .., X4).

Proof. We consider a local ¯g-orthonormal frame ¯e1 = ar1e1, ..,e¯7 = ar1e7, e8 = r of TM¯ such thate1, .., e7is a local orthonormal frame ofT M. With Lemma 4.2 of [Fe86] a Spin(7) structure is defined to be of classU1 if and only if

0 = 6δΦ(¯p(X)) =

8 i,k,j=1

( ¯ge¯¯iΦ)(¯ej,¯ek,P¯(¯ei,e¯j,¯ek), X).

ForX ∈T M we have

0 = 6δΦ(¯p(X)) =

8 i,k,j=1

( ¯¯g¯eiΦ)(¯ej,e¯k,P¯(¯ei,e¯j,e¯k), X)

=

7 i,k,j=1

( ¯ge¯¯iΦ)(¯ej,¯ek,P(¯¯ ei,¯ej,¯ek), X) + 2

7 i,j=1

( ¯¯g¯eiΦ)(¯ej, ∂r,P¯(¯ei,¯ej, ∂r), X)

= 1

a6r6

7 i,k,j=1

( ¯¯geiΦ)(ej, ek, ar2(eiP)(ej, ek) + ¯g( ¯P(ei, ej, ek), ∂r)∂r, X)

+2 1 a4r4

7 i,j=1

( ¯¯geiΦ)(ej, ∂r, arP(ei, ej), X)

= 1

a5r4

7 i,k,j=1

a4r4[(g− ∇)eiΨ](ej, ek,(eiP)(ej, ek), X)

1 a3r3

7 i,k,j=1

Ψ(ei, ej, ek)( ¯¯geiΦ)(ej, ek, ∂r, X)−2a3r3 a3r3

7 i,j=1

([g− ∇]eiΨ)(ej, P(ei, ej), X)

=

7 i,k,j,l=1

[(g− ∇)eiΨ](ej, ek,∗Ψ(ei, el, ej, ek)el, X)

3

7 i,k,j=1

Ψ(ei, ej, ek)([g− ∇]eiΨ)(ej, ek, X)

= g(∗Ψ,(g− ∇)ΨxX)−3g(Ψ,(g− ∇)ΨxX).

In caseX =r, we deduce from Lemma 4.9:

0 =

7 i,j,k=1

( ¯ge¯iΦ)(ej, ek,P¯(ei, ej, ek), ∂r) = ar2

7 i,j,k=1

( ¯¯geiΦ)(ej, ek,(eiP)(ej, ek), ∂r)

=a4r5

7 i,j,k,l=1

[(g− ∇)eiΨ](ej, ek, el)g((eiP)(ej, ek), el)

=−a4r5[

7 i,j,k,l=1

(geiΨ)(ej, ek, el)(eiΨ)(ej, ek, el)

7 i,j,k,l=1

(eiΨ)(ej, ek, el)(eiΨ)(ej, ek, el)]

=−a4r5[g(gΨ,Ψ)−g(∇Ψ,Ψ)] =−a5r5[g(gΨ,Ψ)−ag(∗Ψ,Ψ)],

and thus we haveg(∇gΨ,Ψ) =ag(∗Ψ,Ψ). A Spin(7) structure is of classU2 if it satisfies

28( ¯¯gWΦ)(X1, X2, X3, X4) =

4 i=1

(1)i+1[δΦ(¯p(Xi))Φ(W, X1, ..,Xˆi, .., X4) + 7¯g(W, Xi)δΦ(X1, ..,Xˆi, .., X4)].

(II.9)

SupposeW =X1=randX2, X3, X4∈T M. For a 3-formξonT M we have

¯

g(¯p(∂r), ξ) = ¯g(∂r,P¯(ξ)) =Φ(∂r, ξ) =−a3r3Ψ(ξ) = ¯g(−a3r3Ψ, ξ)

and thus ¯p(∂r) =−a3r3Ψ. SinceryT¯ = 0 we have ¯¯grΦ = 0 and the defining relation of the classU2 reduces to

0 =δΦ(p(∂r))Φ(∂r, X2, X3, X4)+7δΦ(X2, X3, X4) =δΦ(−a6r6Ψ(X2, X3, X4)Ψ+7X2∧X3∧X4).

Since a6r6Ψ(X2, X3, X47X2 ∧X3 ∧X4 spans Λ3(T M) we have δΦ = 0 on T M. For X, Y, Z∈T M we have

0 =δΦ(X, Y, Z) =−

8 i=1

( ¯¯g¯eiΦ)(¯ei, X, Y, Z) = 1 a2r2

7 i=1

( ¯ge¯iΦ)(ei, X, Y, Z)

=−a2r2

7 i=1

[(g− ∇)eiΨ](ei, X, Y, Z).

ForX ∈T M we have

δΦ(¯p(X)) =δΦ(

8 i<j<k=1

¯

g(¯p(X),¯ei∧e¯j∧e¯kei¯ej¯ek)

=δΦ( ∑

i<j<8

¯

g(¯p(X),e¯i∧e¯j∧e¯8ei∧e¯j∧e¯8)

= ∑

i<j<8

¯

g(¯p(X),¯ei∧e¯j∧e¯8)δΦ(¯ei,¯ej, ∂r)

=

7 k=1

i<j<8

( ¯¯g¯ekΦ)(¯ek,¯ei,e¯j, ∂rg(X,P(¯¯ ei,¯ej, ∂r))

=

7 k=1

i<j<8

a3r3(g¯ekΨ)(¯ek,¯ei,e¯j)Φ(¯ei,¯ej, ∂r, X)

=a6r6

7 k=1

i<j<8

(ge¯kΨ)(¯ek,e¯i,e¯j)Ψ(¯ei,e¯j, X)

=

i<j<8

δΨ(ei, ej)Ψ(ei, ej, X).

SupposeW =r andX1, .., X4∈T M. Then equation (II.9) gives us

0 =

4 i=1

(1)i+1δΦ(¯p(Xi))a3r3Ψ(X1, ..,Xˆi, .., X4)

= a3r3

4 i=1

l<j<8

(1)iδΨ(el, ej)Ψ(el, ej, Xi)Ψ(X1, ..,Xˆi, .., X4).

ForW, Xi∈T M, equation (II.9) reduces to

28( ¯gW¯ Φ)(X1, X2, X3, X4) = 28a4r4[(g− ∇)WΨ](X1, X2, X3, X4), which is equal to

4 i=1

(1)i+1[δΦ(¯p(Xi))Φ(W, X1, ..,Xˆi, .., X4) + 7¯g(W, Xi)δΦ(X1, ..,Xˆi, .., X4)]

=a4r4

4 i=1

l<j<8

(1)i+1δΨ(el, ej)Ψ(el, ej, Xi)Ψ(W, X1, ..,Xˆi, .., X4).

This proves the statement.

Remark 4.12. One can use Lemma 4.3 and Lemma 4.9 to simplify these equations in rather lengthly calculations. The property

0 =

7 i=1

[(g− ∇)eiΨ](ei, X, Y, Z) can for example be simplified to

0 =g((ΨxY)xZ, δΨxX) +g(ΨxX,(gΨxY)xZ)−g(ΨxX,(ΨxY)xZ).

Another simplification (see Lemma 4.17) will be used in Example 4.18.

Theorem 4.13. If theSpin(7) structure on the coneM¯ is of classU1, then:

The G2 structureΨonM cannot be of classW3⊕ W4.

The G2 structure is of classW1 if and only if theSpin(7) structure is integrable.

If the structure onM¯ is of class U2, then the structure onM is never of classW1⊕ W3. Proof. Since the relationg(∇gΨ,Ψ) = 0 defines the classW2⊕ W3⊕ W4, we conclude the first result directly from Lemma 4.11. Now, assume the G2 structure Ψ is of classW1, i. e. nearly parallelG2 (see [FG82]):

gΨ = 1

168g(∇gΨ,Ψ)Ψ.

Taking the scalar product withΨ on both sides leads to g(∇gΨ,Ψ) = 1

168g(∇gΨ,Ψ)g(Ψ,Ψ).

With the Spin(7) structure being of class U1 and the calculation above we get g(∗Ψ,Ψ) =

1

168g(∗Ψ,Ψ)g(Ψ,Ψ) and thus g(∗Ψ,Ψ) = 168. Therefore,

gΨ = 1

168g(∇gΨ,Ψ)Ψ =a 1

168g(∗Ψ,Ψ)Ψ =a∗Ψ.

Thus gΨ =Ψ =a∗Ψ and with Remark 4.10 we get =g and ¯g¯= ¯. Since ¯Φ = 0 the Spin(7) structure on ¯M is integrable.

Consider a structure on ¯M of classU2. With Lemma 4.11 we get δΦ = 0 onT M. To see that this structure is integrable it is sufficient to showryδΦ = 0, see [Fe86]. We have forX, Y ∈T M

(∂ryδΦ)(X, Y) =

8 i=1

( ¯ge¯¯iΦ)(¯ei, ∂r, X, Y) =ar

7 i=1

((g− ∇)eiΨ)(ei, X, Y)

=ar

7 i=1

[(geiΨ)(ei, X, Y) + Φ(ei, ei, X, Y)] =−arδΨ(X, Y).

This is equal to zero if the structure onMis cocalibrated (of classχ1⊕χ3, defined byδΨ = 0).

4.2 Corresponding spinors on G

2

manifolds and their cones

Since we haveT−Tc=2a3Ψ, the difference ¯T−Tc is the lift ofa2r2T−a2r2Tc=2a3a2r2Ψ.

Furthermore, a31r3ryΦ is the lift of Ψ to ¯M, hence we have T¯−Tc=2

3rryΦ.

Now Lemma 2.4 implies:

Theorem 4.14. For a G2 manifold with characteristic connection∇c and for α= 12a or α=

12a, there is

1. a one to one correspondence between Killing spinors with torsion

sXϕ=αXϕ

on M, and parallel spinors of the connection∇¯s+4s3rronM¯ with cone constanta

¯sXϕ+2s

3r(Xy(∂ryΦ))ϕ= 0.

2. a one to one correspondence between ¯s-parallel spinors on M¯ with cone constant a and spinors onM satisfying

sXϕ=αXϕ+2as

3 (XyΨ)ϕ.

In particular fors= 14 we get the correspondence

spinors on M spinors onM¯

cXϕ=αXϕ ¯Xϕ=6r1(Xy(∂ryΦ))ϕ

cXϕ=αXϕ+a6(XyΨ) ϕ ¯Xϕ= 0

Remark 4.15. As for metric almost contact structures (see Remark 3.17), one can use the characterisation ¯T =−δΦ−76Φ) withθ=17(δΦΦ) (see [Iv04]) and the description of Tc given in Theorem 4.8 of [FI02] to rewrite these equations in terms of the geometric data of the Spin(7) structure.

Remark 4.16. In Section 3 of Chapter I we see, that a G2 structure also is given by a spinor ϕ, which is c-parallel. On the other hand, for any Spin(7) manifold there is a spinor that is parallel with respect to the characteristic connection (Theorem 1.1 of [Iv04]). The G2 spinor induces the Spin(7) spinor in the following way:

From Lemma 4.2 we know that (XyΨ)·ϕ=3X·ϕand thus

cXϕ= 0 = 3X·ϕ+ (XyΨ)·ϕ,

which is the identity for a spinor onM inducing a ¯-parallel spinor on ¯M in Theorem 4.14. Be cautious thatc may have more parallel spinor fields than just ϕ; for these, we cannot define a suitable ‘lifted’ spinor on the cone, unless one finds a similar trick to write the spinor field equation in a form covered by Theorem 4.14.

This remark indicates, that one might use the description of a Spin(7) and aG2 structure via spinors to calculate the correspondences given in Theorem 4.13 as it was done in Section 1 for SU(3) andG2 manifolds. Note that the stabilizer of a spinor in dimension 8 is not always the group Spin(7), so one does not get correspondences as in Lemmas 3.1 and 4.1 of Chapter I.

4.3 Examples

To simplify the calculations in the example we reformulate the second condition for aG2structure onM to imply a Spin(7) structure of classU1on ¯M of Lemma 4.11. So we only have to calculate Ψ,Ψ andgΨ to check the conditions.

Lemma 4.17. The second condition of Lemma 4.11

g(∗Ψ,[(∇ − ∇g)Ψ]xX) = 3g(Ψ,[(∇ − ∇g)Ψ]xX) is equivalent to

0 =

7 i,k,j,l,m=1

[

Ψ(ei, ej, ek, el)(geiΨ)(ej, ek, em)Ψ(em, el, X)

+Ψ(ei, ej, ek, el)(geiΨ)(el, X, em)Ψ(em, ej, ek)− ∗Ψ(ei, ej, ek, el)Ψ(ei, ej, ek, em)Ψ(em, el, X)

− ∗Ψ(ei, el, ej, ek)Ψ(ei, el, X, em)Ψ(em, ej, ek) ]

+ 3

7 i,k,j=1

[

Ψ(ei, ej, ek)(geiΨ)(ej, ek, X) +aΨ(ei, ej, ek)Ψ(ei, ej, ek, X) ]

.

Proof. We continue the calculation of the proof of Lemma 4.11 and with Lemma 4.3 we get 0 =1

a

7 i,k,j,l=1

(geiΨ)(ej, ek, a∗Ψ(ei, el, ej, ek)el, X)

1 a

7 i,k,j,l=1

(eiΨ)(ej, ek, a∗Ψ(ei, el, ej, ek)el, X)

3

7 i,k,j=1

Ψ(ei, ej, ek)(geiΨ)(ej, ek, X) + 3a

7 i,k,j=1

Ψ(ei, ej, ek)Ψ(ei, ej, ek, X)

=

7 i,k,j,l=1

Ψ(ei, el, ej, ek)(geiΨ)(ej, ek, el, X)

7 i,k,j,l=1

Ψ(ei, el, ej, ek)(eiΨ)(ej, ek, el, X)

3

7 i,k,j=1

Ψ(ei, ej, ek)(geiΨ)(ej, ek, X) + 3a

7 i,k,j=1

Ψ(ei, ej, ek)Ψ(ei, ej, ek, X)

=

7 i,k,j,l=1

Ψ(ei, el, ej, ek)(geiΨ)(ej, ek, P(el, X))

7 i,k,j,l=1

Ψ(ei, el, ej, ek)(geiΨ)(el, X, P(ej, ek))

+

7 i,k,j,l=1

Ψ(ei, el, ej, ek)(eiΨ)(ej, ek, P(el, X))

+

7 i,k,j,l=1

Ψ(ei, el, ej, ek)(eiΨ)(el, X, P(ej, ek))

3

7 i,k,j=1

Ψ(ei, ej, ek)(geiΨ)(ej, ek, X) + 3a

7 i,k,j=1

Ψ(ei, ej, ek)Ψ(ei, ej, ek, X) which is equal to the condition stated in the lemma.

Example 4.18. Let (M, ξ1, ξ2, ξ3, η1, η2, η3) be a 7 dimensional 3-Sasaki manifold with corre-sponding 2-formsFi, i= 1,2,3. Letηi fori= 1, ..,7 be the dual of a local basis{e1=ξ1, e2 = ξ2, e3=ξ3, e4, .., e7}, such that

F1=−η23−η45−η67, F2=η13−η46+η57, F3=−η13−η47−η56.

Here for ηi ∧..∧ηj we write ηi,..,j. In [AF10] it is explained that there is no characteristic connection as such, but one can construct a cocalibratedG2 structure

Ψ =η1∧F1+η2∧F2+η3∧F3+ 4η1∧η2∧η3=η123−η145−η167−η246+η257−η347−η356

with characteristic connectionc and torsion Tc =η1∧dη1+η2∧dη2+η3∧dη3 that is very well adapted to the 3-Sasakian structure. It is therefore called thecanonical G2 structure of the

underlying 3-Sasakian structure. Remark 4.16 ensures then the existence of a ¯-parallel spinor field on ¯M.

We calculate the class of the Spin(7) structure on ¯M of the canonicalG2structure using Lemma 4.11.

Theorem 4.19. TheSpin(7)structure on the cone constructed from the canonicalG2 structure of a3-Sasakian manifold is of classU1 if and only if the cone constant is a=1514.

Proof. Due to the formulation of the second condition of Lemma 4.11 given in Lemma 4.17, we just need to calculateΨ andgΨ. ObviouslyΨ is given by

Ψ =η4567−η2367−η2345−η1357+η1346−η1256−η1247. To getgΨ we observe

gejΨ = (gejη1)∧F1+ (gejη2)∧F2+ (gejη3)∧F3 +η1(gejF1) +η2(gejF2) +η3(gejF3)

+ 4(gejη1)∧η2∧η3+ 4η1(gejη2)∧η3+ 4η1∧η2(gejη3)

and since (ηi, Fi) are Sasakian structures we have (gejFi)(Y, Z) =g(ej, Z)ηi(Y)−g(ej, Yi(Z).

ThusgejFi =ηj∧ηi fori= 1,2,3 andj= 1, ..,7 implyingηi(gejFi) = 0. Since (gXηi)Y =g(Y,∇gXξi) =g(Y,−ΨiX) =Fi(X, Y)

we havegXηi=XyFi and get

gejΨ =(ejyF1)∧F1+ (ejyF2)∧F2+ (ejyF3)∧F3

+ 4(ejyF1)∧η2∧η3+ 4η1(ejyF2)∧η3+ 4η1∧η2(ejyF3).

This gives us

ge1Ψ = −η346+η357+η247+η256, ge2Ψ = η345+η367−η147−η156,

ge3Ψ = −η245−η267+η146−η157, ge4Ψ = 3 (−η235+η567+η136−η127),

ge5Ψ = 3 (η234−η467−η137−η126), ge6Ψ = 3 (−η237+η457−η134+η125),

ge7Ψ = 3 (η236−η456+η135+η124).

Using an appropriate computer algebra system we easily calculate g(∇gΨ,Ψ) = 180, g(∗Ψ,Ψ) = 168,

thus the first condition of Lemma 4.11 is satisfied ifa = 1514. Using the formulation given in Lemma 4.17 of the second condition one easily checks that the this condition is satisfied for any a.

We expect that for all other values of the cone constanta, the structure is of generic classU1⊕U2, but the system of equations that one obtains is extremely involved.

[Ag06] I. Agricola, The Srn´ı lectures of non-integrable geometries with torsion, Arch. Math.

42 (5), 5-84 (2006).

[ABBK13] I. Agricola, J. Becker-Bender, H. Kim,Twistorial eigenvalue estimates for generalized Dirac operators with torsion, Adv. Math. 243, 296-329 (2013).

[AF04] I. Agricola, T. Friedrich,On the holonomy of connections with skew-symmetric torsion, Math. Ann. 328, 711-748 (2004).

[AF06] I. Agricola, T. Friedrich, Geometric structures of vectorial type, J. Geom. Phys. 56, 2403-2414 (2006).

[AF08] I. Agricola, T. Friedrich, Eigenvalue estimates for Dirac operators with parallel char-acteristic torsion, Diff. Geom. Appl. 26, 613-624 (2008).

[AF10] I. Agricola, T. Friedrich, 3-Sasakian manifolds in dimension seven, their spinors and G2-structures, J. Geom. Phys. 60, 326–332 (2010).

[AFH13] I. Agricola, T. Friedrich, J.H¨oll, Sp(3) structures on 14-dimensional manifolds, J.

Geom. Phys. 69, 12-30 (2013).

[AH13] I. Agricola, J. H¨oll, Cones of G manifolds and Killing spinors with skew torsion, to appear Ann. Mat. Pura Appl., DOI 10.1007/s10231-013-0393-z.

[AFS05] B. Alexandrov, T. Friedrich, N. Schoemann, Almost Hermitian 6-manifolds revisited, J. Geom. Phys. 53, 1-30 (2005).

[AGI98] V. Apostolov, G. Grantcharov and S. Ivanov, Hermitian structures on twistor spaces, Ann. Glob. Anal. Geom. 16, 291-308 (1998).

[AS62] M. Atiyah, I. Singer,Harmonic spinors and elliptic operators, Arbeitstagung Lecture, Talk of M. Atiyah (1962).

[B¨a93] C. B¨ar, Real Killing spinors and holonomy, Comm. Math. Phys. 154 (3), 509-521 (1993).

[BGM05] C. B¨ar, P. Gauduchon, A. Moroianu, Generalized Cylinders in Semi-Riemannian and Spin Geometry, Math. Z. 249, 545-580 (2005).

[BFGK91] H. Baum, T. Friedrich, R. Grunewaldt, I. Kath,Twistors and Killing Spinors on Rie-mannian Manifolds, Teubner-Texte zur Mathematik, Band 124 (1991).

[Be12] J. Becker-Bender,Dirac-Operatoren und Killing-Spinoren mit Torsion, Ph.D. Thesis, University of Marburg (2012).

[Be55] M. Berger,Sur les groupes d’holonomie des vari´et´es `a connexion affine et des vari´et´es riemanniennes, Bull. Soc. Math France 83, 279-330 (1955).

73

[Bi89] J. M. Bismut,A local index theorem for non-K¨ahlerian manifolds, Math. Ann. 284, 681-699 (1989).

[Bl02] D. E. Blair,Riemannian Geometry of Contact and Symplectic Manifolds, Birkh¨auser (2002).

[Br87] R. L. Bryant,Metrics with exceptional holonomy, Ann Math. 126, 525-576 (1987).

[C06] F. Mart´ın Cabrera, SU(3)-structures on hypersurfaces of manifolds withG2-structure, Monatsh. Math. 148, 29-50 (2006).

[Ca09] B. Cappelletti, 3-structures with torsion, Differ. Geom. Appl., 27, 496-506 (2009).

[CCD03] G.L. Cardoso, G. Curio, G. Dall’Agata, D. L¨ust, D, P. Manousselis, G. Zoupanos, Non-K¨ahler string backgrounds and their five torsion classes, Nucl. Phys. B 652, 5-34 (2003).

[Ca25] E. Cartan,´ Sur les vari´et´es `a connexion affine et la th´eorie de la relativit´e g´en´eralis´ee (deuxi`eme partie), Ann. Ec. Norm. Sup. 42 (1925), 17-88, part two. English transl. of both parts by A. Magnon and A. Ashtekar, On manifolds with an affine connection and the theory of general relativity. Napoli: Bibliopolis (1986).

[CG90] D. Chinea, C. Gonzalez, A Classification of Almost Contact Metric Manifolds, Ann.

Mat. Pura Appl., IV. Ser. 156, 15-36 (1990).

[CM92] D. Chinea, J. C. Marrero, Classification of almost contact metric structures, Rev.

Roum. Math. Pures Appl. 37, 199-211 (1992).

[CS02] S.G. Chiossi, S.M. Salamon, The intrinsic torsion of SU(3) and G2 structures, Pro-ceedings of the international conference held in honour of the 60th birthday of A. M.

Naveira, Valencia, Spain, July 8-14, 2001. Singapore: World Scientific. 115-133 (2002).

[CI07] R. Cleyton, S. Ivanov,On the geometry of closedG2-structures, Commun. Math. Phys.

270, 53-67 (2007).

[CS06] D. Conti, S.M. Salamon, Reduced holonomy, hypersurfaces and extensions, Int. J.

Geom. Methods Mod. Phys. 3, 899-912 (2006).

[CS07] D. Conti, S.M. Salamon,Generalized Killing spinors in dimension5, Trans. Am. Math.

Soc. 359 (2007).

[Di28a] P. A. M. Dirac, The Quantum Theory of the Electron I., Proceedings Royal Soc.

London (A) 117, 610-624 (1928).

[Di28b] P. A. M. Dirac, The Quantum Theory of the Electron II., Proceedings Royal Soc.

London (A) 118, 351-361 (1928).

[Fe86] M. Fern´andez, A Classification of Riemannian Manifolds with Structure Group Spin(7), Ann. Mat. Pura Appl., IV. Ser. 143, 101-122 (1986).

[FFUV11] M. Fern´andez, A. Fino, L. Ugarte, R. Villacampa,Strong K¨ahler with torsion struc-tures from almost cantact manifolds, Pac. J. Math. 249, 49-75 (2011).

[FG82] M. Fern´andez, A. Gray, Riemannian manifolds with structure group G2, Ann. Mat.

Pura Appl., IV. Ser. 132, 19–45 (1982).

[FIVU08] M. Fern´andez, S. Ivanov, V.Mu˜noz, L.Ugarte, Nearly hypo structures and compact nearly K¨ahler 6-manifolds with conical singularities, J. Lond. Math. Soc., II. Ser. 78, 580–604 (2008).

[Fr80] T. Friedrich,Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkr¨ummung, Math. Nachr. 97, 117-146 (1980).

[Fr98] T. Friedrich,On the spinor representation of surfaces in Euclidean 3-space, J. Geom.

Phys. 28, 143-157 (1998).

[Fr00] T. Friedrich, Dirac Operators in Riemannian Geometry, Graduate Studies in Mathe-matics V. 25, AMS (2000).

[Fr07] Th. Friedrich,G2-manifolds with parallel characteristic torsion, Differ. Geom. Appl.25, 632-648 (2007).

[FG85] T. Friedrich, R. Grunewald, On the first eigenvalue of the Dirac operator on 6-dimensional manifolds, Ann. Glob. Anal. Geom. 3, 265-273 (1985).

[FK89] Th. Friedrich, I. Kath,Einstein manifolds of dimension five with small first eigenvalue of the Dirac operator, J. Diff. Geom. 29, 263-279 (1989).

[FK90] Th. Friedrich, I. Kath, 7-dimensional compact Riemannian manifolds with Killing spinors, Commun. Math. Phys. 133, 543-561 (1990).

[FK00] T.Friedrich, E.C.Kim,The Einstein-Dirac equation on Riemannian spin manifolds, J.

Geom. Phys. 33, 128-172 (2000).

[FK01] T.Friedrich, E.C.Kim, Some remarks on the Hijazi inequality and generalizations of the Killing equation for spinors, J. Geom. Phys. 37, 1-14 (2001).

[FI02] T. Friedrich, S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6, 303–335 (2002).

[FI03] T. Friedrich, S. Ivanov, Almost contact manifolds, connections with torsion, and par-allel spinors, J. Reine Angew. Math. 559, 217-236 (2003).

[GH80] A. Gray, L.M. Hervella,The Sixteen Classes of Almost Hermition Manifolds and Their Linear Invariants, Ann. Mat. Pura Appl., IV. Ser. 123, 35–58 (1980).

[Gr90] R. Grunewald,Six-dimensional Riemannian manifolds with a real Killing spinor, Ann.

Glob. Anal. Geom. 8, 43-59 (1990).

[Hi86] O. Hijazi,Caract´erisation de la sph`ere par les premi`eres valeurs propres de l’op´erateur de Dirac en dimension 3, 4, 7 et 8, C. R. Acad. Sci., Paris, S´er. I 303, 417-419 (1986).

[HTY12] T. Houri, H. Takeuchi, Y. Yasui,A Deformation of Sasakian Structure in the Presence of Torsion and Supergravity Solutions, Class. Quantum Grav. 30 (2013).

[Iv04] S. Ivanov, Connections with torsion, parallel spinors and geometry of Spin(7) mani-folds, Math. Res. Lett. 11, 171-186 (2004).

[II05] P. Ivanov, S. Ivanov, SU(3)-instantons and G2, Spin(7)-heterotic string solutions, Commun. Math. Phys. 259, No. 1, 79-102 (2005).

[KV85] O. Kovalski, L. Vanhecke,Classification of five dimensional naturally reductive spaces, Math. Proc. Cambridge Philos. Soc. 97, 445-463 (1985).

[O’N83] B. O’Neill,Semi-Riemannian Geometry, Academic Press (1983).

[Ok62] M. Okumura,Some remarks on space with a certain contact structure, Tˆohoku Math.

J. 14, 135-145 (1962).

[Ou85] J. A. Oubi˜na,New classes of almost contact metric structures, Publ. Math. 32, 187-193 (1985).

[Pu09] C. Puhle, Spin(7)-manifolds with parallel torsion form, Commun. Math. Phys. 291, 303-320 (2009).

[Pu12] C. Puhle, Almost contact metric 5-manifolds and connections with torsion, Differ.

Geom. Appl. 30, 85-106 (2012).

[Sa89] S.M. Salamon,Riemannian Geometry and holonomy groups, Pitman Res. Notices in Math. Series 201, Harlow: Longman Sci. and Technical (1989).

[Sc06] N. Schoemann, Almost hermitian structures with parallel torsion, Dissertation Humbolt-Universit¨at Berlin (2006).

[Si62] J. Simons,On the transitivity of holonomy systems, Ann. of Math. 76 (1962), 213-234.

[St09] S. Stock,Lifting SU(3)-structures to nearly parallelG2 structures, J. Geom. Phys. 59, 1-7 (2009).

[Ta68] S. Tanno, The topology of contact Riemannian manifolds, Illinois Journ. Math. 12, 700-717 (1968).

[Th52] R. Thom,Espaces fibr´e en sph`eres et carr´es de Steenrod, Ann. Sci. ´Ec. Norm. Sup´er., III. S´er. 69, 109-182 (1952).

[Wa89] M. Y. Wang,Parallel Spinors and Parallel Forms, Ann. Global Anal. Geom. 7, 59-68 (1989).