• Keine Ergebnisse gefunden

Although the classical method of normalization of a single housekeeping gene is assumed to be invariable among different tissue samples, their individual expression may vary with respect to different experimental conditions, disease state, neoplasia, age of the animal and the tissue being analyzed, hence, influencing the correct interpretation of results. To circumvent such issues, high density endogenous control array pre-designed with primers and probes for 16 housekeeping genes was preferred over the normalization against a single gene. The modiolus contains the cell bodies of the SGC and auditory nerve (Stoever et al., 2001). The current study focused on the gene expression pattern of GDNF, GFRα-1, BDNF, TrkB, p75NTR, bcl2, bax, caspase-9 and -3 mRNA in the

modiolus using real-time PCR and localized these proteins to the SGC of the auditory nerve in the cochlea using immunohistochemistry. For the estimation of RNA quality in the modiolus, quality control from Agilent bioanalyzer was performed. A RNA integrity number (RIN) of more than 7 was found in all the tissue pools constituting normal hearing (NH), contralateral and deafened modiolus, indicating that the RNA extracted from these tissue pools were intact and not degraded. The highly specific Taqman gene expression assays (“m1”) used in the study spanning the exon junction may exclude gene products with similar homologs and off-target sequences, and are not affected by genomic DNA contamination. Lastly, the amplification efficiency regarding the potential contamination of modiolus from the surrounding mixed tissues has to be considered.

Nevertheless, our statistical significant gene expression results shows that the mere contaminants present in the modiolus may not influence the changes at the gene expression levels.

Determination of apoptosis and cell survival signaling following neomycin induced deafness in the rat cochlea

Summary

Aminoglycoside-induced sensorineural hearing loss (SNHL) is associated with loss of hair cells followed by secondary degeneration of spiral ganglion cell (SGC). By the common “neurotrophin hypothesis”, cell death associated with degeneration of neurons may reflect deprivation of neurotrophic factors. Contrary to this, recent studies have reported that gene expression profiling of neurotrophic factors, GDNF, BDNF, artemin, GFRα-1 and transforming growth factor beta 1 and 2 (TGF1/2) were significantly upregulated following 26 days of neomycin-induced deafness in the rat cochleae. The reasons for the contradictory findings may be as follows: (i) it is well known that some growth factors or their receptors both contribute to the cell survival and protection as well as cell death. However, it is still unclear in which way they shift the delicate balance of survival and cell death, (ii) The autocrine neurotrophic factor expression may be induced at a time point the degeneration process can only be slowed down, (iii) overexpression of the neurotrophic factors may not be able to ensure the SGC survival throughout a longer period following the neomycin induced degeneration., thus, additional external application of neurotrophic factors may be needed.

In consideration of the neurotrophin hypothesis and the previous findings in gene expression analysis following 26 days deafness, this study presents the results of SGC survival and gene expression profiling of GDNF, BDNF, their corresponding receptors GFR1, TrkB and p75NTR, pro- and anti-apoptotic molecules in the rat cochleae following 7, 14 and 28 days deafening. Hereby, we suppose, that the ongoing of the SGC degeneration despite the strong neurotrophic factor upregulation might be the result of deprivation induced induction of the neurotrophic factor expression.

Souvik Kar

Hearing sensitivity was confirmed by frequency specific acoustic auditory brainstem responses (AABR) and SGC loss density was estimated morphometrically by cell counts to determine the extent of degeneration in the Rosenthal’s canal at different time periods following deafening. As shown by immunohistochemical staining the expression of GDNF, BDNF, GFRα-1, TrkB, p75NTR, bcl-2, bax, caspase-9 and caspase-3 was positive to SGC. Differential gene expression patterns of GDNF, GFRα-1, BDNF, p75NTR and caspase-3 were significantly upregulated following 28 days of deafening. We observed a slight upregulation of pro-apoptotic molecule bax at 14 day and caspase-9 at 28 days in the deafened modiolus, respectively. There were no statistical significant differences in the expression level in the contralateral modioli at days 7 and 14 post deafening. In contrast, a reciprocal expression of TrkB and p75NTR was noticed, in which p75NTR was upregulated and TrkB was downregulated in the deaf modiolus. These findings demonstrated that neomycin induced a high and low-frequency hearing loss in the deafened and contralateral ear, respectively. SGC cell counts confirmed a significant loss of neurons in a time dependent manner. As revealed by the data from gene expression analysis, substantial increase of GDNF and its receptor GFRα-1 following deafening indicated deprivation-induced upregulation in the SGC after hair cell loss. The degenerating SGC are maintained to survive for a longer time period by the Schwann cells, which remain a potential source of neurotrophic support. Deafened animals exhibiting higher expression levels of BDNF and p75NTR and reduced TrkB mRNA, indicated a reciprocal cross-talk following deafening. We speculated that p75NTR binds to BDNF and triggers apoptosis in neurons resulting in the degeneratuin process. This hypothesis may be supported by the upregulation of bax and caspase-3 in the deafened modiolus. We assume that an alternate cell-death pathway is induced in our neomycin-induced deafness model that may trigger such phenomenon. To summarize, the differential gene expression changes of GDNF and its receptor GFRα-1, BDNF, p75NTR and TrkB indicate a fine-tuned orchestration between cell survival and death in this neomycin-deafness model. Moreover, these changes in the expression levels following deafening are in consistence with the ‘neurotrophin hypothesis’ by which apoptosis of the SGC death is a result of deprivation of neurotrophic factors not only supplied by the Schwann cells. Understanding the response of Schwann cells to deafening might facilitate

SGC maintenance and regeneration studies. Future studies should aim to investigate extended time period of deafness and try to understand the similarities and differences between ototoxic mechanisms underlying SNHL, in order to develop more protective strategies to minimize their ototoxicity.

Untersuchung der Signalwege der Apoptose und des Zellüberlebens nach Ertaubung durch Applikation von Neomycin in die Rattencochlea

Zusammenfassung

Innenohrschwerhörigkeit ist mit dem Verlust der Haarzellen durch sekundäre Degeneration der Spiralganglion-Neuronen (SGN) nach einem Ototrauma verbunden.

Nach der „Neurotrophin-Hypothese“ erfolgt die Degeneration der Hörnerven nach Haarzellverlust durch Unterbrechung/Entzug der trophischen Aktivität neurotropher Faktoren (NTF) als Folge der von sensorischen Zellen induzierten Apoptose. Gemäß den Ergebnissen der Genexpressionsanalyse der bisher untersuchten Mitglieder der GDNF-Familie und TGF-Superfamilie, die als sog. „survival“-Faktoren vor den Folgen ototoxischen Traumas im Innerohr von Nagetieren charakterisiert sind, läßt sich die oben genannte Hypothese nicht aufrechterhalten: Die Transkriptionsrate von GDNF, artemin und BDNF wurde im Hörnerven erwachsener Ratten 26 Tage nach der Ertaubung durch Neomycin entgegen dem Postulat der „Neurotrophin-Hypothese“ erhöht. Folgende Gründe für die erhöhte Expression könnten eine Rolle spielen: (i) Es ist bekannt, dass einige Wachstumsfaktoren sowohl zur Zellprotektion beitragen als auch die Apoptose fördern können. Unklar ist, wann und bei welchen externen und/oder intrazellulären Stimuli sich die Funktionen umkehren. (ii) Die autokrine Expression der NTF wird zu einem späteren Zeitpunkt induziert und verlangsamt den Degenerationsprozeß. (iii) Das Überleben der SGN nach einem aminoglykosid-induzierten Degenerationsprozess für einen längeren Zeitraum ist nicht ausreichend, so dass zusätzlich NTF von außen appliziert werden muss.

Basierend auf der Neurotrophin-Hypothese und den Ergebnissen der Genexpressionstudie in ertaubten Ratten nach 26 Tagen untersucht die vorliegende Studie die Expression von NTF im Rahmen der Induktion apoptotischer Signale in den Modioli der Ratten-Cochleae 7, 14 und 28 Tage nach der Neomycin induzierten Ertaubung auf mRNA- und

Souvik Kar

Proteinebene. Der Hörstatus der Versuchstiere wurde elektrophysiologisch mittels

„acoustically evoked auditory brainstem response“ (AABR) vor und 7, 14 und 28 Tage nach der Ertaubung bestimmt. Die differentielle Genexpression von GDNF und BDNF, deren korrespondierenden Rezeptoren GFRα-1, p75NTR und Trk-B, Bcl-2 (antiapoptotisches Signalmolekül), Bax, Caspasen 3 und 9 (apoptitische Signalmoleküle) wurden mittels real time-PCR untersucht. Zur Bestimmung der Ausdehnung der SGN-Degeneration zu den oben angegebenen Zeitpunkten nach der Neomycin-Injektion wurde die Dichte der SGN histologisch durch Auszählen noch intakter Soma der SGN in den Rosenthal-Kanälen ermittelt. Die subzelluläre Lokalisation von neurotrophen und apoptotischen Markern auf Proteinebene wurde immunhistochemisch bestimmt.

Immunhistochemisch wurde die Expression von GDNF, BDNF, GFRα-1, TrkB, p75NTR, bcl-2, bax, caspase-9 and caspase-3 im Spiralganglion nachgewiesen.

Die Analyse der Transkriptionsaktivität im Modiolus 28 Tage nach der Ertaubung zeigte eine signifikante Hochregulierung von GDNF und dessen Rezeptor GFRα-1, BDNF und dessen Rezeptor p75NTR sowie Caspase-3 im Vergleich zu den normal hörenden (NH) Tieren. Im Gegensatz dazu wurde die Genexpression des BDNF-spezifischen Rezeptors TrkB im Vergleich zur NH-Gruppe am Tag 28 signifikant herunterreguliert. Der mRNA-Level des proapoptotischen Signalmoleküls Bax war nur am Tag 14 der Ertaubung signifikant erhöht, während an Tag 28 die Transkriptionsaktivität wiederum herunterreguliert wurde. Im Vergleich zur NH-Gruppe wurde ebenfalls nur 28 Tage nach der Ertaubung eine signifikante Erhöhung der Caspase-3-Genexpression nachgewiesen.

Dagegen wurden keine signifikanten Änderungen der Caspase-9-Genexpression an allen Untersuchungstagen gefunden. Für die Bcl2-Genexpression wurde eine leichte, aber nichtsignifikante, Herunterregulierung 7, 14 und 28 Tage nach der Ertaubung ermittelt.

Keine statistisch signifikanten Änderungen im Expressionslevels wurden in den kontralateralen Ohren der Versuchstiere gefunden, die für 7 und 14 Tage ertaubt waren.

Unsere Daten in der Bestimmung der SGN-Dichte bestätigten einen signifikanten Verlust der SGN mit zunehmender Zeitdauer der Ertaubung. Darüber hinaus sprechen die Aktivierung von Bax, Caspase-9 und -3 sowie die verringerte Genexpressionsaktivität des antiapoptotischen Bcl-2 für eine caspaseinduzierte mitochondriale Apoptose in ertaubten Ratten. Im Zusammenhang mit dem Anstieg der Genexpression von BDNF und

p75NTR sowie der Herunterregulierung der TrkB-Genexpression ist ein reziproker „cross-talk“ im Degenerationsprozeß der SGN zu vermuten: Durch Bindung von BDNF an p75NTR wurde möglicherweise die Apoptose in den Neuronen getriggert. Die Hochregulierung von bax und caspase-3-mRNA unterstützt diese Annahme.

Möglicherweise stellen hauptsächlich Schwannzellen die Quelle für die erhöhten Level der GDNF- und GFR-1-mRNA dar und die autokrine Expression der NTF als „survival Faktoren“ in den SGN spielt selbst keine Rolle mehr. Nach dieser Schlußfolgerung kann das Postulat der Neurotrophin-Hypothese als erfüllt betrachtet werden. Welche Rolle Schwannzellen im Degenerationsprozeß und dem Erhalt der SGN spielt, wird weiterhin Gegenstand der Innenohrforschung sein.

References

1. Airaksinen, M.S. & Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3, 383-394 (2002).

2. Aksenov, M.Y., et al. The expression of key oxidative stress-handling genes in different brain regions in Alzheimer's disease. J Mol Neurosci 11, 151-164 (1998).

3. Alam, S.A., et al. Cisplatin-induced apoptotic cell death in Mongolian gerbil cochlea. Hear Res 141, 28-38 (2000).

4. Alam, S.A., et al. The expression of apoptosis-related proteins in the aged cochlea of Mongolian gerbils. Laryngoscope 111, 528-534 (2001).

5. Alam, S.A., Robinson, B.K., Huang, J. & Green, S.H. Prosurvival and proapoptotic intracellular signaling in rat spiral ganglion neurons in vivo after the loss of hair cells. J Comp Neurol 503, 832-852 (2007).

6. Aloyz, R.S., et al. p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophin receptors. J Cell Biol 143, 1691-1703 (1998).

7. Anderson, K.D., et al. Differential distribution of exogenous BDNF, NGF, and NT-3 in the brain corresponds to the relative abundance and distribution of high-affinity and low-affinity neurotrophin receptors. J Comp Neurol 357, 296-317 (1995).

8. Apfel, S.C., Lipton, R.B., Arezzo, J.C. & Kessler, J.A. Nerve growth factor prevents toxic neuropathy in mice. Ann Neurol 29, 87-90 (1991).

9. Aran, J.M. & Darrouzet, J. Observation of click-evoked compound VIII nerve responses before, during, and over seven months after kanamycin treatment in the guinea pig. Acta Otolaryngol 79, 24-32 (1975).

12. Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2, 420-430 (2002).

13. Ashmore, J. Cochlear outer hair cell motility. Physiol Rev 88, 173-210 (2008).

14. Bae, W.Y., Kim, L.S., Hur, D.Y., Jeong, S.W. & Kim, J.R. Secondary apoptosis of spiral ganglion cells induced by aminoglycoside: Fas-Fas ligand signaling pathway.

Laryngoscope 118, 1659-1668 (2008).

15. Baloh, R.H., et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 21, 1291-1302 (1998).

16. Bamji, S.X., et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol 140, 911-923 (1998).

17. Barbacid, M. The Trk family of neurotrophin receptors. J Neurobiol 25, 1386-1403 (1994).

18. Barde, Y.A. What, if anything, is a neurotrophic factor? Trends Neurosci 11, 343-346 (1988).

19. Barde, Y.A., Edgar, D. & Thoenen, H. Purification of a new neurotrophic factor from mammalian brain. EMBO J 1, 549-553 (1982).

20. Barrett, G.L. & Bartlett, P.F. The p75 nerve growth factor receptor mediates survival or death depending on the stage of sensory neuron development. Proc Natl Acad Sci U S A 91, 6501-6505 (1994).

21. Becvarovski, Z. Absorption of intratympanic topical antibiotics. Ear Nose Throat J 83, 18-19 (2004).

22. Benedetti, M., Levi, A. & Chao, M.V. Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc Natl Acad Sci U S A 90, 7859-7863 (1993).

23. Bergman, E., Kullberg, S., Ming, Y. & Ulfhake, B. Upregulation of GFRalpha-1 and c-ret in primary sensory neurons and spinal motoneurons of aged rats. J Neurosci Res 57, 153-165 (1999).

24. Bibel, M., Hoppe, E. & Barde, Y.A. Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J 18, 616-622 (1999).

25. Bichler, E., Spoendlin, H. & Rauchegger, H. Degeneration of cochlear neurons after amikacin intoxication in the rat. Arch Otorhinolaryngol 237, 201-208 (1983).

26. Bodmer, D., Brors, D., Bodmer, M., Pak, K. & Ryan, A.F. Fas ligand expression in the organ of Corti. Audiol Neurootol 8, 243-249 (2003).

27. Bothwell, M. Functional interactions of neurotrophins and neurotrophin receptors.

Annu Rev Neurosci 18, 223-253 (1995).

28. Brewer, N.S. Antimicrobial agents--Part II. The aminoglycosides: streptomycin, kanamycin, gentamicin, tobramycin, amikacin, neomycin. Mayo Clin Proc 52, 675-679 (1977).

29. Briggs, R.J. & Luxford, W.M. Correction of conductive hearing loss in children.

Otolaryngol Clin North Am 27, 607-620 (1994).

30. Brown, S.A. & Riviere, J.E. Comparative pharmacokinetics of aminoglycoside antibiotics. J Vet Pharmacol Ther 14, 1-35 (1991).

31. Brownell, W.E. Outer hair cell electromotility and otoacoustic emissions. Ear Hear 11, 82-92 (1990).

32. Budihardjo, I., Oliver, H., Lutter, M., Luo, X. & Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15, 269-290 (1999).

33. Bustin, S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29, 23-39 (2002).

34. Byl, F.M., Jr. Sudden hearing loss: eight years' experience and suggested prognostic table. Laryngoscope 94, 647-661 (1984).

35. Caporali, A. & Emanueli, C. Cardiovascular actions of neurotrophins. Physiol Rev 89, 279-308 (2009).

36. Cardinaal, R.M., de Groot, J.C., Huizing, E.H., Veldman, J.E. & Smoorenburg, G.F. Cisplatin-induced ototoxicity: morphological evidence of spontaneous outer hair cell recovery in albino guinea pigs? Hear Res 144, 147-156 (2000).

37. Carr, D.T., Brown, H.A., Hodgson, C.H. & Heilman, F.R. Neurotoxic reactions to dihydrostreptomycin. J Am Med Assoc 143, 1223-1225 (1950).

38. Carter, A.P., et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340-348 (2000).

39. Chao, M.V. The p75 neurotrophin receptor. J Neurobiol 25, 1373-1385 (1994).

40. Chelyshev Iu, A., Cherepnev, G.V. & Saitkulov, K.I. [Apoptosis in the nervous system]. Ontogenez 32, 118-129 (2001).

41. Cheng, A.G., Cunningham, L.L. & Rubel, E.W. Hair cell death in the avian basilar papilla: characterization of the in vitro model and caspase activation. J Assoc Res Otolaryngol 4, 91-105 (2003).

42. Cheng, E.H., et al. Conversion of Bcl-2 to a Bax-like death effector by caspases.

Science 278, 1966-1968 (1997).

43. Choi-Lundberg, D.L., et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275, 838-841 (1997).

44. Clerici, W.J., Hensley, K., DiMartino, D.L. & Butterfield, D.A. Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants. Hear Res 98, 116-124 (1996).

45. Coleman, B., et al. Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transplant 15, 369-380 (2006).

46. Comella, J.X., Sanz-Rodriguez, C., Aldea, M. & Esquerda, J.E. Skeletal muscle-derived trophic factors prevent motoneurons from entering an active cell death program in vitro. J Neurosci 14, 2674-2686 (1994).

47. Conlon, B.J., Aran, J.M., Erre, J.P. & Smith, D.W. Attenuation of aminoglycoside-induced cochlear damage with the metabolic antioxidant alpha-lipoic acid. Hear Res 128, 40-44 (1999).

48. Conlon, B.J. & Smith, D.W. Supplemental iron exacerbates aminoglycoside ototoxicity in vivo. Hear Res 115, 1-5 (1998).

49. Cragnolini, A.B. & Friedman, W.J. The function of p75NTR in glia. Trends Neurosci 31, 99-104 (2008).

50. Cunningham, C.D., 3rd, Friedman, R.A., Brackmann, D.E., Hitselberger, W.E. &

Lin, H.W. Neurotologic skull base surgery in pediatric patients. Otol Neurotol 26, 231-236 (2005).

51. Cunningham, L.L., Cheng, A.G. & Rubel, E.W. Caspase activation in hair cells of the mouse utricle exposed to neomycin. J Neurosci 22, 8532-8540 (2002).

52. Cunningham, L.L., Matsui, J.I., Warchol, M.E. & Rubel, E.W. Overexpression of Bcl-2 prevents neomycin-induced hair cell death and caspase-9 activation in the adult mouse utricle in vitro. J Neurobiol 60, 89-100 (2004).

53. Davey, F. & Davies, A.M. TrkB signalling inhibits p75-mediated apoptosis induced by nerve growth factor in embryonic proprioceptive neurons. Curr Biol 8, 915-918 (1998).

54. Davies, A.M. The Bcl-2 family of proteins, and the regulation of neuronal survival. Trends Neurosci 18, 355-358 (1995).

55. Davies, A.M. The neurotrophic hypothesis: where does it stand? Philos Trans R Soc Lond B Biol Sci 351, 389-394 (1996).

56. Davies, A.M., Lee, K.F. & Jaenisch, R. p75-deficient trigeminal sensory neurons have an altered response to NGF but not to other neurotrophins. Neuron 11, 565-574 (1993).

57. Davies, J. & Davis, B.D. Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J Biol Chem 243, 3312-3316 (1968).

58. Davis, B.D. Mechanism of bactericidal action of aminoglycosides. Microbiol Rev 51, 341-350 (1987).

59. Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239-252 (2000).

60. de Kok, J.B., et al. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest 85, 154-159 (2005).

61. Dechant, G. & Barde, Y.A. Signalling through the neurotrophin receptor p75NTR. Curr Opin Neurobiol 7, 413-418 (1997).

62. Dechant, G. & Barde, Y.A. The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci 5, 1131-1136 (2002).

63. Denault, J.B. & Salvesen, G.S. Caspases: keys in the ignition of cell death. Chem Rev 102, 4489-4500 (2002).

64. Deol, M.S. & Gluecksohn-Waelsch, S. The role of inner hair cells in hearing.

Nature 278, 250-252 (1979).

65. Deshmukh, M. & Johnson, E.M., Jr. Programmed cell death in neurons: focus on the pathway of nerve growth factor deprivation-induced death of sympathetic neurons.

Mol Pharmacol 51, 897-906 (1997).

66. Ding, D., Stracher, A. & Salvi, R.J. Leupeptin protects cochlear and vestibular hair cells from gentamicin ototoxicity. Hear Res 164, 115-126 (2002).

67. Dodson, H.C. Loss and survival of spiral ganglion neurons in the guinea pig after intracochlear perfusion with aminoglycosides. J Neurocytol 26, 541-556 (1997).

68. Dodson, H.C. & Mohuiddin, A. Response of spiral ganglion neurones to cochlear hair cell destruction in the guinea pig. J Neurocytol 29, 525-537 (2000).

69. Dowling, P., et al. Up-regulated p75NTR neurotrophin receptor on glial cells in MS plaques. Neurology 53, 1676-1682 (1999).

70. Dugan, L.L., Creedon, D.J., Johnson, E.M., Jr. & Holtzman, D.M. Rapid suppression of free radical formation by nerve growth factor involves the mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 94, 4086-4091 (1997).

71. Durbec, P., et al. GDNF signalling through the Ret receptor tyrosine kinase.

Nature 381, 789-793 (1996).

72. Earnshaw, W.C., Martins, L.M. & Kaufmann, S.H. Mammalian caspases:

structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68, 383-424 (1999).

73. Ebendal, T. Function and evolution in the NGF family and its receptors. J Neurosci Res 32, 461-470 (1992).

74. Ernfors, P., Duan, M.L., ElShamy, W.M. & Canlon, B. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nat Med 2, 463-467 (1996).

75. Ernfors, P., Merlio, J.P. & Persson, H. Cells Expressing mRNA for Neurotrophins and their Receptors During Embryonic Rat Development. Eur J Neurosci 4, 1140-1158 (1992).

76. Ernfors, P., Van De Water, T., Loring, J. & Jaenisch, R. Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14, 1153-1164 (1995).

77. Eshraghi, A.A., et al. Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss induced by both electrode insertion trauma and neomycin ototoxicity. Hear Res 226, 168-177 (2007).

78. Farinas, I., Jones, K.R., Backus, C., Wang, X.Y. & Reichardt, L.F. Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369, 658-661 (1994).

79. Farinas, I., et al. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 21, 6170-6180 (2001).

80. Fetterman, B.L., Luxford, W.M. & Saunders, J.E. Sudden bilateral sensorineural hearing loss. Laryngoscope 106, 1347-1350 (1996).

81. Forge, A. Outer hair cell loss and supporting cell expansion following chronic gentamicin treatment. Hear Res 19, 171-182 (1985).

82. Forge, A. & Schacht, J. Aminoglycoside antibiotics. Audiol Neurootol 5, 3-22 (2000).

83. Formigli, L., et al. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol 182, 41-49 (2000).

84. Fourmy, D., Recht, M.I., Blanchard, S.C. & Puglisi, J.D. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic.

Science 274, 1367-1371 (1996).

85. Fransen, E., et al. Occupational noise, smoking, and a high body mass index are risk factors for age-related hearing impairment and moderate alcohol consumption is protective: a European population-based multicenter study. J Assoc Res Otolaryngol 9,

85. Fransen, E., et al. Occupational noise, smoking, and a high body mass index are risk factors for age-related hearing impairment and moderate alcohol consumption is protective: a European population-based multicenter study. J Assoc Res Otolaryngol 9,