• Keine Ergebnisse gefunden

121

122

7 Literaturverzeichnis

Adams, R., Foley, J., 1953. The neurological disorders associated with liver disease.

Res. Publ. Res. Nerv. Ment. Dis. Vol. 32, pp. 198-237.

Al Sibae, M., McGuire, B., 2009. Current trends in the treatment of hepatic encephalopathy. Ther. Clin. Risk. Mamag. Vol. 2009, pp. 617-626.

Albrecht, J., Dolinska, M., 2001. Glutamin as pathogenic factor in hepatic encephalopathy J. Neurosci. Res. Vol. 65., pp. 1-5.

Angelini, C.; Trevisan, C.; Isaya, G.; Pegolo, G.; Vergani, L., 1987. Clinical varieties of carnitine and carnitine palmitoyltransferase deficiency. Clin. Biochem.Vol. 20, pp.

1-7.

Badar-Goffer, R., Bachelard, H., 1991. Metabolic studies using 13C nuclear magnetic resonance spectroscopy. Essays Biochem. Vol. 16, pp. 105-119.

Bahl, J., Bressler, R., 1987. The Pharmacology of Carnitine. Ann. Rev. Phamacol.

Toxicol. Vol. 27, pp. 257-277.

Bak, L., Sickmann, H., Schousboe, A., Waagepetersen, H., 2005. Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures. J. Neurosci. Res. Vol. 79, pp. 88-95.

Bass, N., 2007. Review article: the current pharmacological therapies for hepatic encephalopathy. Aliment. Pharmaco. Ther. Vol. 25, pp. 23-31.

Beal, M., 2003. Bioenergetic Approaches for Neuroprotection. Ann. Neurol. Vol. 53, pp. 39-48.

Bear, M., Connors, B., Paradiso, M., 2009. Neurowissenschaften: Ein grundlegendes Lehrbuch für Biologie, Medizin und Psychologie. 3. Aufl.: Hrsg. Springer, pp. 27-55.

Belanger, M., Butterworth, R., 2005. Acute liver failure: a critical appraisal of available animal models. Metab. Brain Dis. Vol. 20, pp. 409-423.

Bessman, S., Bessman, A., 1955. The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J. Clin. Inest. Vol.

34, pp. 622-628.

123

Bieber, L., 1988. Carnitine. Ann. Rev. Biochem. Vol. 57, pp. 261-283.

Biemann, K., 1962. Mass Spectroscopy, Organic Chemical Applications. 1. Aufl.:

Hrsg. New York: McGraw-Hill, pp. 204-250.

Billigmann, P., Siebrecht, S., 2004. Physiologie des L-Carnitins und seine Bedeutung für Sportler. Hannover: Schlütersche Verlagsgesellschaft mbH & Co. KG.

Blei, A., Córdoba, J., 2001. Hepathic Encephalopathy. Am. J. Gastroentero. Vol. 6, pp. 1968-1976.

Blei, A., Olafsson, S., Therrien, G., Butterworth, R., 1994. Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology Vol. 19, pp. 1437-1444.

Bremer, J., 1983. Carnitine - Metabolism and Functions. Physiol. Rev. Vol. 63, pp.

1420-1480.

Butterworth, R., Girard, G., Giguere, J., 1988. Regional differences in the capacity for ammonia removal by brain following portocaval anastomosis. J. Neurochem. Vol.

51, pp. 486-490.

Chan, Y., Tse, M., Lau, F., 2007. Two cases of valproic acid poisoning treated with L-carnitine. Hum. Exp. Toxicol. Vol. 26, pp. 967-969.

Chatauret, N.; Zwingmann, C.; Rose, C.; Leibfritz, D.; Butterworth, R.F., 2003.

Protective metabolic effects of mild hypothermia in frontal cortex of rats with acute liver failure: a 1H/13C-NMR study. Gastroenterology Vol. 125, pp. 815-824.

Clements, J., Lester, R., Tong CE, C., Jahr, C., 1992. The time course of glutamat in the synaptic cleft. Science Vol. 258, pp. 1498-1501.

Conn, H., Bircher, J., 1993. Quantifying the severity of hepatic encephalopathy:

syndromes and therapies In: Conn HO, Bircher J, editors. Bloomington: Medi. Ed.

Press., pp. 13-26.

Cooper, A., Lai, J., 1987. Cerebral ammonia metabolism in normal and hyperammonemic rats. Neurochem. Pathol. Vol. 6, pp. 67-74.

Cooper, A., Mora, S., N.F., C., Gelbard, A., 1985. Cerebral ammonia metabolism in hyperammonemic rats. J. Neurochem. Vol. 44, pp. 1716-1723.

124

Cooper, A., Plum, F., 1987. Biochemistry and physiology of brain ammonia. Physiol.

Rev. Vol. 67, pp. 440-519.

De Graaf, A.A.; Deutz, N.E.; Bosman, D.K.; Chamuleau, R.A.; de Haan, J.G.;

Bovee, W.M., 1991. The use of in vivo proton NMR to study the effects of hyperammonemia in the rat cerebral cortex. NMR Biomed. Vol. 4, pp. 31-37.

Del Olmo, J.A.; Castillo, M.; Rodrigo, J.M.; Aparisi, L.; Serra, M.A.; Wassel, A.;

Bixquert, M., 1990. Effect of L-carnitine upon ammonia tolerance test in cirrhotic patients. Adv. Exp. Med. Biol. Vol. 272, pp. 197-208.

Dhiman, R., Chawla, Y., 2009. Minimal hepatic encephalopathy. Indian J.

Gastroenterol Vol. 28, pp. 5-16.

Dingledine, R., McBain, C., McNamara, J., 1990. Excitatory amino acids in epilepsy.

Trends. Pharmacol. Sci. Vol. 11, pp. 334-338.

Dringen, R., Gebhardt, R., Hamprecht, B., 1993. Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res. Vol. 623, pp. 208-214.

Etawil, K., Laryea, M., Peltekin, K., Molinari, M., 2012. Rifaximin vs conventional oral therapy for hepatic encephalopathy: A meta-analysis. W. J. Gastroentrerol. Vol. 18, pp. 767-777.

Flanagan, JL.; Simmons, P.A.; Vehige, J.; Willcox, M.D.; Garrett, Q., 2010. Role of carnitine in disease. Nutr. Metab. (Lond). Vol. 7, pp. 1-4.

Fonnum, F., 1984. Glutamate: A Neurotransmitter in Mammalian Brain. J. Neurochem.

Vol. 42, pp. 1-11.

Fornasini, G., Upton, R., Evans, A., 2007. A pharmacokinetic model for L-carnitine in patients receiving haemodialysis. Br. J. Clin. Pharmacol. Vol. 64, pp. 335-345.

Froilet, R.; Colombo, J.P.; Lazeyras, F.; Aue, W.P.; Kretschmer, R.; Zimmermann, A.; Bachmann, C., 1989. In vivo 31P spectroscopy of energy rich phosphates in the brain of the hyperammonaemic rat. Biochem. Biophys. Res. Commun. Vol. 159, pp.

815-820.

Gjedde, A., Marrett, S., 2001. Glycolysis in neurons, not astrocytes, delays oxidative metabolism of human visual cortex during ustained checkerboard stimulation. in vivo.

J. Cereb. Blood Flow Metab. Vol. 21, pp. 1384-1392.

125

Goa, J., 1953. A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand. J. Clin. Lab. Invest. Vol. 5, pp. 218-222.

Gottschalk, S., Zwingmann, C., 2009. Altered fatty acid metabolism and composition in cultured astrocytes under hyperammonemic conditions. J. Neurochem. Vol. 109, pp.

258-264.

Gross, J., 2004. Mass Spectrometry. Hrsg. Berlin, Heidelberg: Springer Verlag.

Häussinger, D., Maier, K.-P., 1996. Hepatische Enzephalopathie. Hrsg. Stuttgart:

Thieme Verlag.

Heinrich, M., Gorath, M. & Richter-Landsberg, C., 1999. Neurotrophin-3 (NT-3) modulates early differentiation of oligodendrocytes in rat brain cortical cultures. Glia Vol. 28, pp. 244-255.

Hertz, L.; Murthy, C.R.; Lai, J.C.; Fitzpatrick, S.M.; Cooper, A.J., 1987. Some metabolic effects of ammonia on astrocytes and neurons in primary cultures.

Neurochem. Pathol. Vol. 6, pp. 97-129.

Hesse M., M. H. Z. B., 2002. Spektroskopische Methoden in der organischen Chemie.

6. Aufl. Hrsg. Stuttgart; New York: Thieme Verlag.

Hogstad, S.; Svenneby, G.; Torgner, I.A.; Kvamme, E.; Hertz, L.; Schousboe, A., 1988. Glutaminase in neurons and astrocytes cultured from mouse brain: kinetic properties and effects of phosphate, glutamate and ammonia. Neurochem. Res. Vol.

13, pp. 383-388.

Holleman, A., Wiberg, E., 1995. Lehrbuch der Anorganischen Chemie. 101. Aufl.

Hrsg. Berlin; New York: Walter de Gruyter.

Hübschmann, H.-J., 1996. Handbuch der GC/MS. Weinheim: VCH Verlagsgesellschaft.

Jayakumar, A., Rama Rao, K., Murthy, C., 2006. Glutamine in the mechanism of ammonia-induced astrocyte swelling. Neurochem. Int. Vol. 48, pp. 623-628.

Kandel, E., 1995. Neurowissenschaften: eine Einführung. Hrsg. Heidelberg; Berlin;

Oxford: Spektrum, Akad. Verlag.

Kato, M., Hughes, R., Keays, R., Williams, R., 1992. Electron microscopic study of brain capillaries in cerebral edema from fulminant hepatic failure. Hepatology Vol. 15, pp. 1060-1066.

126

Kuntz, H., Kuntz, E., 2002. Hepatology: Textbook and Atlas. 1. Aufl. Hrsg. Heidelberg:

Springer Medizin Verlag.

Kuratsune, H.; Yamaguti, K.; Lindh, G.; Evengård, B.; Hagberg, G.; Matsumura, K.; Iwase, M.; Onoe, H.; Takahash, M.; Machii, T.; Kanakura, Y.; Kitani, T.;

Långstro, B.; Watanabe, Y., 2002. Brain regions Involved in Fatigue Sensation:

Reduced Acetylcarnitine Uptake into the Brain. Neuroimage Vol. 17, pp. 1256-1265.

Lai, J., Cooper, A., 1991. Neurotoxicity of ammonia and fatty acids: Differential inhibition of mitochondrial dehydrogenases by ammonia and fatty acyl coenzyme A derivates. Neurochem. Res. Vol. 16, pp. 795-803.

Leevy, C., Philipps, J., 2007. Hospitalizations during the use of rifaximin versus lactulose for the treatment of hepatic encephalopathy. Dig. Dis. Sci. Vol. 52, pp.

737-741.

Löffler, G., 2005. Basiswissen Biochemie mit Pathobiochemie. 6. Aufl. Hrsg.

Heidelberg: Spinger Verlag .

Longo, N., di San Filippo, C., Pasquali, M., 2006. Disorders of carnitine transport and the carnitine cycle. Am. J. Med. Genet. Part. C. Semin. Med. Genet. Vol. 142, pp.

77-85.

Loockwood, A., McDonald, J., Reiman, R., 1979. The dynamics of ammonia metabolism in man: effects of liver disease and hyperammonemia. J.Clin. Invest. Vol.

63, pp. 449-460.

Lottspeich F., Zorbas H., 2006. Bioanalytik. 2. Aufl. Hrsg. Berlin, Heidelberg:

Spektrum, Akad. Verlag.

Lowry, O., Rosebrough, N., Farr, A., 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. Vol. 193, pp. 265-275.

Luppa, D., 2002. Dietary compensation of exercise-induced L-carnitine losses prevents manifold functional disorders. Clin. Sports Med. Vol. 3, pp. 61-67.

Luppa, D., 2004. Contribution of L-Carnitin in the Regulation of Metabolism of Lipids and Carbohydrates. Clin. Sports Med. Vol. 5, pp. 25-34.

MacKenzie, S., Tenaschuk, D., 1985. Gas-liquid chromatography assay for asparagine and glutamine. Journ. Chromatogr. Vol. 322, pp. 228-235.

127

Magistretti, P., Pellerin, L., 1999a. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Phil. Trans. R. Soc. Lond. B. Vol. 354, pp. 1155-1163.

Magistretti, P., Pellerin, L., Rothmann, D., Shulman, R., 1999b. Energy on demand.

Science Vol. 283, pp. 496-497.

Malaguarnera, M.; Bella, R.; Vacante, M.; Giordano, M.; Malaguarnera, G.;

Gargante, M.P.; Motta, M.; Mistretta, A.; Rampello, L.; Pennisi, G., 2011. Acetyl-L-carnitine reduces depression and improves quality of life in patients with minimal hepatic encephalopathy. Scand. J. Gastroenterol. Vol. 46, pp. 750-759.

Malaguarnera, M.; Pistone, G.; Astuto, M.; Dell'Arte, S.; Finocchiaro, G.; Lo Giudice, E.; Pennisi, G., 2003. L-Carnitine in the treatment of mild or moderate hepatic encephalopathy. Dig. Dis. Sci. Vol. 21, pp. 271-275.

Malaguarnera, M.; Pistone, G.; Elvira, R.; Leotta, C.; Scarpello, L.; Liborio, R., 2005. Effects of L-carnitine in patients with hepatic encephalopathy. World. J.

Gastroentero. Vol. 11, pp. 7197-7207.

Mans, A., DeJoseph, M., Hawkins, R., 1994. Metabolic abnormalities and grade of encephalopathy in acute hepatic failure. J. Neurochem. Vol. 63, pp. 1829-1838.

Mawhinney, T., Robinett, R., Atalay, A., Madison, R., 1986. Analysis of amino acids as their tert.-butyldimethylsilyl derivatives by gas-liquid chromatography and mass spectrometry. J.Chromatogr. Vol. 358, pp. 231-242.

McCarthy, K. d. V. J., 1980. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. Vol. 85, pp. 890-902.

McConnell, J.R.; Antonson, D.L.; Ong, C.S.; Chu, W.K.; Fox, I.J.; Heffron, T.G.;

Langnas, A.N; Shaw Jr., B.W., 1995. Proton spectroscopy of brain glutamine in acute liver failure. Hepatology Vol. 22, pp. 69-74.

Meldrum, B., 2000. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. Vol.130, pp. 1007-1015.

Misel, M., Gish, R., Patton, H., Mendler, M., 2013. Sodium benzoate for treatment of hepatic encephalopathy. Gastroenterol. Hepatol. Vol. 9, pp. 219-227.

Missler, J., Zwingmann, C., 2012. L-carnitine in hyperammonemia and Hepatic encephalopathy. In: Miscellanea on encephalopathies - a second look. INTECH open Access Publisher, pp. 365-390.

128

Montgomery, S., Thal, L., Amrein, R., 2003. Meta-analysis of double randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild codnitine impairment and Alzheimer's disease. Int. Clin. Psychopharmacol. Vol. 18, pp.

61-71.

Neri, S.; Pistone, G.; Saraceno, B.; Pennisi, G.; Luca, S.; Malaguarnera, M., 2003.

L-Carnitine decreases severity and type of fatigue induced by interferon-α in the treatment of patients with hepatitis C. Neuropsychobiology Vol. 47, pp. 94-97.

Norenberg, M., 1987. The role of astrocytes in hepatic encephalopathy. Neurochem.

Pathol. Vol. 6, pp. 13-33.

Norenberg, M., Jayakumar, A., Rama Rao, K., 2004. Oxidative stress in the pathogenisis of hepatic encephalopathy. Met. Brain. Disease Vol. 19, pp. 313-329.

Norenberg, M., Martinez-Hermandez, A., 1979. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. Vol. 161, Band Vol. 161, pp.

303-310.

O’Connor, J., Costell, M., Grisola, S., 1984a. Prevention of ammonia toxicity by L-carnitine : metabolic changes in brain. Neurochem. Res. Vol. 9, pp. 563-570.

O’Connor, J., Costell, M., Grisola, S., 1984b. Protective effect of L-carnitine on hyperammonemia. FEBS Lett. Vol. 166, pp. 331-334.

Olstad, E., Qu, H., Sonnewald, U., 2007. Glutamate is preferred over glutamine for intermediary metabolism in cultured cerebellar neurons. J. Cerebr. Blood Flow Metab.

Vol. 27, pp. 811-820.

Pellerin, L.; Pellegri, G.; Bittar, P.G.; Charnay, Y.; Bouras, C.; Martin, J.L.; Stella, N.; Magistretti, P.J., 1998. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev. Neurosci. Vol. 20, pp. 291-299.

Pettergrew, J., Levine, J., McClure, R., 2000. Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer's disease and geriatric depression. Mol. Psychiatry Vol. 5, pp. 616-632.

Pons, R., De Vivo, D., 1995. Primary and Secondary Carnitine Deficiency Syndromes.

J. Child. Neurol. Vol. 10, pp. 8-24.

Rama Rao, K., Jayakumar, A., Norenberg, M., 2012. Glutamine in the pathogenesis of acute hepatic encephalopathy. Neurochem. Int. Vol. 61, pp. 575-580.

129

Rasmussen, J.; Nielsen, O.; Lund, A.M.; Køber, L.; Djurhuus, H., 2013. Primary carnitine deficiency and pivalic acid exposure causing encephalopathy and fatal cardiac events. J. Inherit. Metab. Dis. Vol. 36, pp. 35-41.

Richter-Landsberg, C., 2000. The oligodendroglia cytoskeleton in health and disease.

J. Neurosci. Res. Vol. 59, pp. 11-18.

Richter-Landsberg, C. & Heinrich, M., 1995. S-100 immunoreactivity in rat brain glial cultures is associated with both astrocytes and oligodendrocytes. J. Neurosci. Res.

Vol. 42, pp. 657-665.

Shank, R., Bennett, G., Freytag, S., Campbell, G., 1985. Pyruvate carboxylase : an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res. Vol. 329, pp. 354-367.

Shokati, T., Zwingmann, C., Leibfritz, D., 2005. Contribution of extracellular glutamine as an anaplerotic substrate to neuronal metabolism: a re-evaluation by multinuclear NMR spectroscopy in primary cultured neurons. Neurochem. Reson. Vol.

30, pp. 1269-1281.

Siegenthaler, B., Blum, H., 2006. Klinische Pathophysiologie. 9. Aufl. Hrsg. Stuttgart:

Thieme Verlag.

Silva, M.F.B.; Aires, C.C.P.; Luis, P.B.M.; Ruiter, J.P.N.; Ijlst, L.; Duran, M.;

Wanders, R.J.A.; Tavares de Almeida, I., 2008. Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: A review. J. Inherit. Metab. Dis. Vol. 31, pp. 205-216.

Sommer, K., 1983. Der Mensch: Anatomie, Physiologie, Ontogenie. 4. Aufl. Hrsg.

Berlin: Volk und Wissen Volkseigener Verlag.

Swain, M., Butterworth, R., Blei, A., 1992. Ammonia and related amino acids in the pathogenesis of brain edem in acute ischemic liver failure in rats. Hepathology Vol. 15, pp. 449-453.

Therrien, G., Rose, C., Butterworth, J., Butterworth, R., 1997. Protective effect of L-carnitine in ammonia-precipitated encephalopathy in the portacaval shunted rat.

Hepatology Vol. 25, pp. 551-556.

Thompson, R., 2001. Das Gehirn: Von der Nervenzelle zur Verhaltenssteuerung. 3.

Aufl. Hrsg. Heidelberg: Spektrum Akad. Verlag.

130

Virmani R., M.A.; Biselli, R.; Spadoni, A.; Ross, S.; Corsico, N.; Calvani, M.;

Fattoross, A.; De Simone, C.; Arrigoni-Martelli, E., 1995. Protective actions of L-carnitine and acetyl-L-carnitine on the neurotoxicity evoked by mitochondrial uncoupling or inhibitors. Pharmacol. Res. Vol. 32, pp. 383-389.

Virmani, A, Binienda, Z., 2004. Role of carnitine esters in brain neuropathology. Mol.

Aspects. Med. Vol. 23, pp. 533-549.

Watkins, J., Evans, R., 1981. Excitatory amino acid transmitters. Annu. Rev.

Pharmacol. Toxicol. Vol. 21, pp. 165-204.

Westergaard, N.; Varming, T.; Peng, L.; Sonnewald, U.; Hertz, L.; Schousboe, A., 1993. Uptake, release, and metabolism of alanine in neurons and astrocytes in primary cultures. J. Neurosci. Res. Vol. 35, pp. 540-545.

Yavin, E., Yavin, Z., 1974. Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysine-coated surface. J. Cell Biol. Vol. 62, pp. 540-546.

Zaikin, V., Halket, J., 2009. A handbook of derivatives for mass spectrometry. IM Publications.

Zwingmann, C., 2000. Role of astrocytes in the pathomechanisms of hyperammonemia and related brain disorders. Berlin, Germany: Dissertation.de, Verlag im Internet GmbH.

Zwingmann, C., Butterworth, R., 2005. An update on the role of brain glutamine synthesis and its relation to cell-specific energy metabolism in the hyperammonaemic brain: Further studies using NMR spectroscopy. Neurochem. Int. Vol. 47, pp. 19-30.

Zwingmann, C., Chatauret, N., Leibfritz, D. und Butterworth, R., 2003. Selective increase of brain lactate synthesis in experimental acute liver failure: results of a [1H-13C] nuclear magnetic resonance study. Hepatology Vol. 37, pp. 420-428.

Zwingmann, C. und Leibfritz, D., 2000. Lipid synthesis in glia cells during hyperammonemia studied by NMR spectroscopy. Adv. Hep. Encephal. Metab. Liv.

Dis., in press.

Zwingmann, C. und Leibfritz, D., 2003. Regulation of glial metabolism studied by

13C-NMR. NMR Biomed. Vol. 16, pp. 370-399.

Zwingmann, C. und Leibfritz, D., 2007. Glial-neuronal shuttle systems. Berlin, Heidelberg: Springer Verlag .

131

Zwingmann, C., Richter-Landsberg, C., Brand, A. und Leibfritz, D., 2000. A NMR spectroscopic study on the metabolic fate of [3-13C]alanine in astrocytes, neurones, and cocultures: Implication for glia-neuron interactions in neurotransmitter metabolism.

Glia Vol. 32, pp. 286-303.

132

8 Abkürzungsverzeichnis

α-KGDH α-Ketoglutarat-Dehydrogenase A Aconitse

ADP Adenosindiphosphat

Ala,TBDMS L-Alanin, N-(t-Butyldimethylsilyl)-, t-Butyldimethylsilylester AAT Aspartataminotransferase

ALAT Alaninaminotransferase

AMPA (α-Amino-3-hydroxy-5-methyl-4-isoxazol-Propionsäure)

AS Aminosäure

ATP Adenosintriphosphat

BME Basal Medium

BSA Rinderserumalbumin (bovine serum albumin) Cr Kreatin

CS Zitratsynthase

CPT-I Carnitin-Palmitoyltransferase I CPT-II Carnitin-Palmitoyltransferase II DMEM Dulbeccos Modifiziertes Eagle Medium EDTA Ethylendiamintetraessigsäure F Fumarase

FBS fetales Rinderserum (fetal bovine serum) FT Fourier Transformation

GAP Glycerinaldehyd-3-phosphat

GC-MS Gaschromatographie-Massenspektrometrie GDH Glutamatdehydrogenase

Gln Glutamin

Glu Glutamat

GS Glutaminsynthetase

HA Hyperammonämie

HE Hepatische Enzephalopathie IDH Isozitratdehydrogenase

L-C L-Carnitin

LDH Laktatdehydrogenase

MDH Malat-Dehydrogenase

MTBSTFA N-tert-Butyldimethylsilyl-N-methyl-trifluoracetamid NDP Nukleosiddiphosphate (nucleoside diphosphate) NH4Cl Ammoniumchlorid

NMDA N-Methyl-D-Aspartat

133

NMR Magnetresonanzspektroskopie (nuclear magnetic resonance) NTP Nukleosidtriphosphate (nucleoside triphosphate)

PAG phosphataktivierte Glutaminase

PBS Phosphatgepufferte Salzlösung (phosphate buffered saline)

PC Pyruvatcarboxylase

PCA Perchlorsäure (perchloric acid) PCr Phosphokreatin (phosphocreatine)

PDH Pyruvatdehydrogenase

PLL Poly-L-Lysin

P/S Penicillin/Streptomycin PVDF Polyvinylidenfluorid Rt Retentionszeit

SBTI Trypsin Inhibitor aus Glycine max SDS Natriumdodecylsulfat

SDH Succinat-Dehydrogenase STK Succinat-Thiokenase

t-BDMS-Cl t-Butyldimethylchlorsilan TCA tricarboxylic acid

TSP (Trimethylsilyl)-2,2,3,3-d4-propionat

134

9 Anhang

9.1 Ergebnisse der NMR-Spektroskopie