• Keine Ergebnisse gefunden

Chapter 5. Nanocomplex formation between chitosan derivatives and

4. CONCLUSION

Based on the results presented above, it is reasonable to conclude that the

interactions involved in PEC formation are predominantly electrostatic. The PEC formation process is influenced by a varity of parameters, including the

1 祄

a

1 祄

b

1 祄

c

1 祄

d

e f

211.3nm 217.8nm g

Figure 9. Atomic force microscopy images of polymer-insulin complexes at optimized charge ratio.

(a) Chitosan 100 kDa, (b) Trimethyl chitosan 100 kDa, (c) PEG(5k)40-g-TMC(100), (d) PEG(550)228-g-TMC(100), (e) Three-dimentional image of chitosan 100 kDa, (f) Three-dimensional image of PEG(550) -g-TMC(100), g) line scan size analysis of

PEG(550)228-g-TMC(100). The inserts are 1x1 µm for each image.

system pH, sequence of mixing, polymer/protein ratio and concentration, polymer molecular weight and structure, ionic strength, etc. Amongst all of these parameters, the most important factor appears to be the system pH. The order of mixing is polymer property dependent. With regard to chitosan, due to its poor solubility at neutral pH, the insulin solution should be added to chitosan solution to avoid precipitation. In contrast, the mixing order appears to have a negligible influence for TMC and PEGylated TMC copolymers. The polymer/protein ratio needs to be optimized individually. When the MW of chitosan and its derivatives were ≥25 kDa, soluble insulin complexes in the size range of 200-400 nm with spherical or sub-spherical morphology can be readily obtained by simply mixing two components at a specific pH and charge ratio. All of the insulin complexes were successfully freeze-dried without influcing the complex properties, by using sucrose as a lyoprotectant. These studies have contributed much to the understanding of PEC formation and complexation with insulin. This work will be furthered by performing intranasal absorption studies in animal models.

References

1. M. Tobio, A. Gref, A. Sanchez, R. Langer, M. Alonso, Stealth PLA-PEG nanoparticles as protein carriers for nasal administration, Pharm. Res. 15 (1998) 270-275.

2. M.C. Julienne, M.J. Alonso, J.L.G. Amoza, J.P. Benoit, Preparation of poly (D, L-Lactide/Glycolide) nanoparticles of controlled particle size distribution: application of experimental design, Drug Dev. Ind. Pharm. 10 (1992) 1063-1077.

3. H. Ibrahim, C. Bindschaedler, E. Doelker, P. Buri, R. Gurny, Aqueous nanodispersions prepared by a salting-out process, Int. J. Pharm. 87 (1992) 239-246.

4. J.C. Leroux, E. Allemann, E. Doelker, R. Gurny, New approach for the preparation of nanoparticles by an emulsification-diffusion method, Eur. J. Pharm. Biopharm. 41 (1995) 14-18.

5. H. Mao, K. Roy, V.L. Troung-Le, K.A. Janes, K.Y. Lin, Y. Wang, J.T. August, K.W.

Leong, Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency, J. Controlled Rel. 70 (2001) 399-421.

6. P. Artursson, T. Lindmark, S.S. Davis, L. Illum, Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2), Pharm. Res. 11 (1994) 1358-1361.

7. A.K. Singla, M. Chawla, Chitosan: Some pharmaceutical and biological aspects-an update, J. Pharm. Pharmacol. 53 (2001) 1047-1067.

8. P. Erbacher, Chitosan-based vector/DNA complexes for gene delivery: biophysical characterization and transfection ability, Pharm. Res. 15 (1998) 1332-1339.

9. C.W. Richardson Simon, V.J. Kolbe Hanno, R. Duncan, Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complexes and protect DNA, Int. J. Pharm. 178 (1999) 231-243.

10. R. Fernandez-Urrusuno, P. Calvo, C. Remunan-Lopez, J.L. Vila-Jato, M.J. Alonso, Enhancement of nasal absorption of insulin using chitosan nanoparticles, Pharm. Res. 16 (1999) 1576-1581.

11. L. Illum, N.F. Farraj, S.S. Davis, Chitosan as a novel nasal delivery system for peptide drugs, Pharm. Res. 11 (1994) 1186-1190.

12. P. Calvo, C. Remunan-Lopez, J.L. Vila-Jato, M.J. Alonso, Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers, J. Appl. Polym. Sci. 63 (1997) 125-132.

13. A.M. Dyer, M. Hinchcliffe, P. Watts, J. Castile, I. Jabbal-Gill, R. Nankervis, A. Smith, L.

Illum, Nasal delivery of insulin using novel chitosan based formulations: A comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles, Pharm. Res. 19 (2002) 998-1008.

14. S. Mao, X. Shuai, F. Unger, M. Simon, D. Bi and T. Kissel, The depolymerization of chitosan: effects on physicochemical and biological properties, Int. J. Pharm. 281 (2004) 45-54.

15. A.B. Sieval, M. Thanou, A.F. Kotze, J.C. Verhoef, J. Brussee, H.E. Junginger, Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride, Carbohydrate Polymers 36 (1998) 157-165.

16. S. Mao, X. Shuai, M. Wittar and T. Kissel, Poly (ethylene glycol)-graft-trimethyl chitosan block copolymers: synthesis, characterization and potential as water-soluble insulin carriers. (in preparation)

17. A. Tsuboi, T. Izumi, M. Hirata, J. Xia, P.L. Dubin, E. Kokufuta, Complexation of

6295-6303.

18. J.M. Park, B.B. Muhoberac, P.L. Dubin, J. Xia, Effects of protein charge heterogeneity in protein-polyelectrolyte complexation, Macromolecules 25 (1992) 290-295.

19. J. Brange, Galenics of insulin: The physio-chemical and pharmaceutical aspects of insulin and insulin preparations, Springer-Verlag, Berlin (1987) 1-103.

20. M.M. Beppu, C.C. Santana, Influence of calcification solution on in vitro chitosan mineralization, Mat. Res. 5 (2002) 47-50.

21. L. Illum, I. Jabbal-Gill, M. Hinchcliffe, A.N. Fisher, and S.S. Davis, Chitosan as a novel nasal delivery system for vaccines, Adv. Drug Deliv. Rev. 51 (2001) 81-96.

22. M. Thanou, B.I. Florea, M.Geldof, H.E. Junginger, G. Borchard, Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines, Biomaterials 23 (2002) 153-159.

23. V.A. Kabanov, Basic properties of soluble interpolyelectrolyte complexes applied to bioengineering and cell transformations, Macromolecular complexes in chemistry and biology, Springer-Verlag Berlin Heidelberg (1994) 151.

24. H. Dautzenberg, J. Koetz, K.J. Linow, B. Philipp and G. Rother, Static light scattering of polyelectrolyte complexes solutions, Macromolecular complexes in chemistry and biology, Springer-Verlag Berlin Heidelberg (1994) 119.

25. K.W. Mattison, I.J. Brittain and P.L. Dubin, Protein-Polyelectrolyte phase boundaries, Biotechnol. Progr. 11 (1995) 632-637.

26. J. Brange, L. Langkjaer, Chemical stability of insulin. 3. Influence of excipients, formulation, and pH, Acta Pharm. Nord. 4 (1992) 149-158.

27. E. Tsuchida and S. Takeoka, Interpolymer complexes and their ion-conduction, Macromolecular complexes in chemistry and biology, Springer-Verlag Berlin Heidelberg (1994) 183.

28. K.A. Janes, M.J. Alonso, Effect of polymer molecular weight on chitosan nanoparticles for peptide delivery, Proc. Int. Symp. Control. Rel. Bioact. Mater. 27 (2000) 8043.

29. Z. Ma, H. Yeoh, L. Lim, Formulation pH modulates the interaction of insulin with chitosan nanoparticles, J. Pharm. Sci. 91 (2002) 1396-1404.

30. N. Karibyants and H. Dautzenberg, Preferential binding with regard to chain length and chemical structure in the reactions of formation of quasi-soluble polyelectrolyte complexes, Langmuir 14 (1998) 4427-4434.

31. H. Petersen, K. Kunach, A.L. Martin, S. Stolnik, C.J. Roberts, M.C. Davies and T.

Kissel, Star-Shaped poly (ethylene glycol)-block-polyethylenimine copolymers enhance

DNA condensation of low molecular weight polyethylenimines, Biomacromolecules 3 (2002) 926-936.

32. M. Huang, E. Khol, L. Lim, Uptake and cytotoxicity of chitosan molecules and nanoparticles: Effects of the molecular weight and degree of deacetylation, Pharm. Res.

21 (2004) 344-353.

33. H.G. Shi, L. Farber, J.N. Michaels, A. Dickey, K.C. Thompson, S.D. Shelukar, P.N.

Hurter, S.D. Reynolds, M.J. Kaufman, Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques, Pharm. Res. 20(2003) 479-484.