• Keine Ergebnisse gefunden

6. Verzeichnisse

6.1. Literaturverzeichnis

the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J, 2015.

12. Yeh, R.W., et al., Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med, 2010. 362(23): p. 2155-65.

13. Mandelzweig, L., et al., The second Euro Heart Survey on acute coronary syndromes:

Characteristics, treatment, and outcome of patients with ACS in Europe and the Mediterranean Basin in 2004. Eur Heart J, 2006. 27(19): p. 2285-93.

14. Hamm, C.W., et al., ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J, 2011. 32(23): p. 2999-3054.

15. Campeau, L., Letter: Grading of angina pectoris. Circulation, 1976. 54(3): p. 522-3.

16. Task Force, M., et al., 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J, 2013. 34(38): p. 2949-3003.

17. Newby, A.C., An overview of the vascular response to injury: a tribute to the late Russell Ross. Toxicol Lett, 2000. 112-113: p. 519-29.

18. Badimon, L., R.F. Storey, and G. Vilahur, Update on lipids, inflammation and atherothrombosis. Thromb Haemost, 2011. 105 Suppl 1: p. S34-42.

19. Furchgott, R.F. and J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980. 288(5789): p. 373-6.

20. Singhal, A.K., et al., Role of Endothelial Cells in Myocardial Ischemia-Reperfusion Injury. Vasc Dis Prev, 2010. 7: p. 1-14.

21. Stary, H.C., et al., A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb, 1994. 14(5): p. 840-56.

22. Swirski, F.K., et al., Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest, 2007. 117(1): p.

195-205.

23. Arnold, L., et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med, 2007. 204(5): p.

1057-69.

24. Mestas, J. and K. Ley, Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc Med, 2008. 18(6): p. 228-32.

25. Koenen, R.R., et al., Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med, 2009. 15(1): p. 97-103.

26. Peiser, L., S. Mukhopadhyay, and S. Gordon, Scavenger receptors in innate immunity.

Curr Opin Immunol, 2002. 14(1): p. 123-8.

27. Stemme, S., et al., T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A, 1995. 92(9): p. 3893-7.

28. Hansson, G.K., Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol, 2001. 21(12): p. 1876-90.

29. Szabo, S.J., et al., Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol, 2003. 21: p. 713-58.

30. Fernandez-Ortiz, A., et al., Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. J Am Coll Cardiol, 1994. 23(7): p. 1562-9.

31. Amento, E.P., et al., Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb, 1991. 11(5): p. 1223-30.

32. Hansson, G.K., Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med, 2005. 352(16): p. 1685-95.

33. Jones, C.B., D.C. Sane, and D.M. Herrington, Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc Res, 2003. 59(4): p. 812-23.

34. Liu, J., et al., Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol, 2004. 24(8): p. 1359-66.

35. Ross, R., The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 1993.

362(6423): p. 801-9.

36. Moore, K.J. and I. Tabas, Macrophages in the pathogenesis of atherosclerosis. Cell, 2011.

145(3): p. 341-55.

37. Hershko, A., A. Ciechanover, and I.A. Rose, Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP. Proc Natl Acad Sci U S A, 1979. 76(7): p. 3107-10.

38. The Nobel Prize in Chemistry 2004. 2004; nobelprize.org, (http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2004/)

39. Hershko, A., Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr Opin Cell Biol, 1997. 9(6): p. 788-99.

40. Herrmann, J., L.O. Lerman, and A. Lerman, On to the road to degradation:

atherosclerosis and the proteasome. Cardiovasc Res, 2010. 85(2): p. 291-302.

41. Powell, S.R. and A. Divald, The ubiquitin-proteasome system in myocardial ischaemia and preconditioning. Cardiovasc Res, 2010. 85(2): p. 303-11.

42. Hershko, A., A. Ciechanover, and A. Varshavsky, Basic Medical Research Award. The ubiquitin system. Nat Med, 2000. 6(10): p. 1073-81.

43. Orlowski, M. and S. Wilk, Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys, 2000. 383(1): p. 1-16.

44. DeMartino, G.N., Purification of PA700, the 19S regulatory complex of the 26S proteasome. Methods Enzymol, 2005. 398: p. 295-306.

45. Yoshimura, T., et al., Molecular characterization of the "26S" proteasome complex from rat liver. J Struct Biol, 1993. 111(3): p. 200-11.

46. Tanaka, K., et al., A high molecular weight protease in the cytosol of rat liver. I.

Purification, enzymological properties, and tissue distribution. J Biol Chem, 1986.

261(32): p. 15197-203.

47. Glickman, M.H., et al., A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell, 1998. 94(5): p. 615-23.

48. Lowe, J., et al., Crystal structure of the 20S proteasome from the archaeon T.

acidophilum at 3.4 A resolution. Science, 1995. 268(5210): p. 533-9.

49. Groll, M., et al., Structure of 20S proteasome from yeast at 2.4 A resolution. Nature, 1997. 386(6624): p. 463-71.

50. Orlowski, M., The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry, 1990. 29(45): p. 10289-97.

51. Brannigan, J.A., et al., A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature, 1995. 378(6555): p. 416-9.

52. Seemuller, E., et al., Proteasome from Thermoplasma acidophilum: a threonine protease.

Science, 1995. 268(5210): p. 579-82.

53. Seemuller, E., et al., The proteasome from Thermoplasma acidophilum is neither a cysteine nor a serine protease. FEBS Lett, 1995. 359(2-3): p. 173-8.

54. Calise, J. and S.R. Powell, The ubiquitin proteasome system and myocardial ischemia.

Am J Physiol Heart Circ Physiol, 2013. 304(3): p. H337-49.

55. Gomes, A.V., et al., Mapping the murine cardiac 26S proteasome complexes. Circ Res, 2006. 99(4): p. 362-71.

56. Gomes, A.V., et al., Contrasting proteome biology and functional heterogeneity of the 20 S proteasome complexes in mammalian tissues. Mol Cell Proteomics, 2009. 8(2): p. 302-15.

57. Monaco, C., et al., Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proc Natl Acad Sci U S A, 2004. 101(15): p. 5634-9.

58. Goldberg, A.L., Protein degradation and protection against misfolded or damaged proteins. Nature, 2003. 426(6968): p. 895-9.

59. Kikuchi, J., et al., Induction of ubiquitin-conjugating enzyme by aggregated low density lipoprotein in human macrophages and its implications for atherosclerosis. Arterioscler Thromb Vasc Biol, 2000. 20(1): p. 128-34.

60. Masuda, Y., et al., ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells. J Lipid Res, 2006. 47(1): p. 87-98.

61. Faries, P.L., et al., Relationship of the 20S proteasome and the proteasome activator PA28 to atherosclerosis and intimal hyperplasia in the human vascular system. Ann Vasc Surg, 2001. 15(6): p. 628-33.

62. Herrmann, J., et al., Increased ubiquitin immunoreactivity in unstable atherosclerotic plaques associated with acute coronary syndromes. J Am Coll Cardiol, 2002. 40(11): p.

1919-27.

63. Marfella, R., et al., Increased activity of the ubiquitin-proteasome system in patients with symptomatic carotid disease is associated with enhanced inflammation and may destabilize the atherosclerotic plaque: effects of rosiglitazone treatment. J Am Coll Cardiol, 2006. 47(12): p. 2444-55.

64. Powell, S.R., et al., Oxidized and ubiquitinated proteins may predict recovery of postischemic cardiac function: essential role of the proteasome. Antioxid Redox Signal, 2005. 7(5-6): p. 538-46.

65. Asai, M., et al., PKA rapidly enhances proteasome assembly and activity in in vivo canine hearts. J Mol Cell Cardiol, 2009. 46(4): p. 452-62.

66. Osna, N.A., et al., Peroxynitrite alters the catalytic activity of rodent liver proteasome in vitro and in vivo. Hepatology, 2004. 40(3): p. 574-82.

67. Reinheckel, T., et al., Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J, 1998. 335 ( Pt 3): p. 637-42.

68. Das, S., et al., Cardioprotection with palm tocotrienol: antioxidant activity of tocotrienol is linked with its ability to stabilize proteasomes. Am J Physiol Heart Circ Physiol, 2005.

289(1): p. H361-7.

69. Hedhli, N., et al., Proteasome activation during cardiac hypertrophy by the chaperone H11 Kinase/Hsp22. Cardiovasc Res, 2008. 77(3): p. 497-505.

70. Jennings, R.B. and C. Steenbergen, Jr., Nucleotide metabolism and cellular damage in myocardial ischemia. Annu Rev Physiol, 1985. 47: p. 727-49.

71. Divald, A. and S.R. Powell, Proteasome mediates removal of proteins oxidized during myocardial ischemia. Free Radic Biol Med, 2006. 40(1): p. 156-64.

72. Sarikas, A., et al., Impairment of the ubiquitin-proteasome system by truncated cardiac myosin binding protein C mutants. Cardiovasc Res, 2005. 66(1): p. 33-44.

73. Davies, K.J., S.W. Lin, and R.E. Pacifici, Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J Biol Chem, 1987. 262(20): p. 9914-20.

74. Davies, K.J., M.E. Delsignore, and S.W. Lin, Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J Biol Chem, 1987. 262(20): p. 9902-7.

75. Takashima, N., et al., Validation of the association between the gene encoding proteasome subunit alpha type 6 and myocardial infarction in a Japanese population. Circ J, 2007. 71(4): p. 495-8.

76. Sjakste, T., et al., SNPs of PSMA6 gene--investigation of possible association with myocardial infarction and type 2 diabetes mellitus. Genetika, 2007. 43(4): p. 553-9.

77. Barbieri, M., et al., The -8 UTR C/G polymorphism of PSMA6 gene is associated with susceptibility to myocardial infarction in type 2 diabetic patients. Atherosclerosis, 2008.

201(1): p. 117-23.

78. Ozaki, K., et al., A functional SNP in PSMA6 confers risk of myocardial infarction in the Japanese population. Nat Genet, 2006. 38(8): p. 921-5.

79. Liu, X., et al., The functional variant rs1048990 in PSMA6 is associated with susceptibility to myocardial infarction in a Chinese population. Atherosclerosis, 2009.

206(1): p. 199-203.

80. Sjakste, T., et al., PSMA6 (rs2277460, rs1048990), PSMC6 (rs2295826, rs2295827) and PSMA3 (rs2348071) genetic diversity in Latvians, Lithuanians and Taiwanese. Meta Gene, 2014. 2: p. 283-98.

81. Krause, S., et al., Immunoproteasome subunit LMP2 expression is deregulated in Sjogren's syndrome but not in other autoimmune disorders. Ann Rheum Dis, 2006. 65(8):

p. 1021-7.

82. Coppo, R., et al., Upregulation of the immunoproteasome in peripheral blood mononuclear cells of patients with IgA nephropathy. Kidney Int, 2009. 75(5): p. 536-41.

83. Kupca, S., et al., Association of obesity with proteasomal gene polymorphisms in children. J Obes, 2013. 2013: p. 638154.

84. Li, F., et al., Aging and dietary restriction effects on ubiquitination, sumoylation, and the proteasome in the heart. Mech Ageing Dev, 2008. 129(9): p. 515-21.

85. Aki, M., et al., Interferon-gamma induces different subunit organizations and functional diversity of proteasomes. J Biochem, 1994. 115(2): p. 257-69.

6.2. Abbildungsverzeichnis

Abbildung 1: T-Lymphozyten-Aktivierung und Plaqueinflammation ... 11

Abbildung 2: Entstehung einer vulnerablen Plaque sowie Thrombusformation ... 12

Abbildung 3: Ubiquitinierung ... 13

Abbildung 4: Struktur des 26S-Proteasoms ... 15

Abbildung 5: Zusammensetzung der konstitutiven und induzierbaren Untereinheiten des Proteasoms ... 16

Abbildung 6: Die relative mRNA-Expression der α3-Untereinheit ... 33

Abbildung 7: Die relative mRNA-Expression der ß5-Untereinheit ... 34

Abbildung 8: Die relative mRNA-Expression der ß5i-Untereinheit ... 35

Abbildung 9: Die relative mRNA-Expression der ß1-Untereinheit ... 36

Abbildung 10: Die relative mRNA-Expression der ß1i-Untereinheit ... 37

Abbildung 11: Die relative mRNA-Expression der α3-Untereinheit in den AK- und GP-Gruppen ... 38

Abbildung 12: Die relative mRNA-Expression der ß5-Untereinheit in den AK- und GP-Gruppen ... 39

Abbildung 13: Die relative mRNA-Expression der ß5i-Untereinheit in den AK- und GP-Gruppen ... 40

Abbildung 14: Die relative mRNA-Expression der ß1-Untereinheit in den AK- und GP-Gruppen ... 41

Abbildung 15: Die relative mRNA-Expression der ß1i-Untereinheit ist in den AK- und GP-Gruppen ... 42

Abbildung 16: Die relative mRNA-Expression der α3-Untereinheit in Abhängigkeit von der arteriellen Hypertonie ... 43

Abbildung 17: Die relative mRNA-Expression der α3-Untereinheit in Abhängigkeit von Hyperlipoproteinämie ... 44

Abbildung 18: Die relative mRNA-Expression der proteasomalen Untereinheiten in Abhängigkeit von Interferontherapie ... 45

Abbildung 19: Die Relation zwischen der Expression der konstitutiven und induzierbaren Untereinheiten des Proteasoms in der ACS-Gruppe ... 46

Abbildung 20: Die Relation zwischen der Expression der konstitutiven und induzierbaren Untereinheiten des Proteasoms in der SAP-Gruppe ... 47 Abbildung 21: Die Relation zwischen der Expression der konstitutiven und induzierbaren

Untereinheiten des Proteasoms in der GP-Gruppe ... 48 Abbildung 22: Die Korrelation der mRNA-Expression zwischen den ß5- und

ß5i-Untereinheiten in der ACS-Gruppe ... 49 Abbildung 23: Die Korrelation der mRNA-Expression zwischen den ß1- und

ß1i-Untereinheiten in der ACS-Gruppe ... 50 Abbildung 24: Die Korrelation der mRNA-Expression zwischen den ß5- und

ß5i-Untereinheiten in der SAP-Gruppe ... 51 Abbildung 25: Die Korrelation der mRNA-Expression zwischen den ß1- und

ß1i-Untereinheiten in der SAP-Gruppe ... 52 Abbildung 26: Die Korrelation der mRNA-Expression zwischen den ß5- und

ß5i-Untereinheiten in der GP-Gruppe ... 53 Abbildung 27: Die Korrelation der mRNA-Expression zwischen den ß1- und

ß1i-Untereinheiten in der GP-Gruppe ... 54 Abbildung 28: Die Korrelation zwischen den CRP-Werten und mRNA-Expression der

ß5-Untereinheit in der ACS-Gruppe ... 56

6.3. Tabellenverzeichnis

Tabelle 1: CCS-Klassifikation ... 7

Tabelle 2: Ein- und Ausschlusskriterien ... 20

Tabelle 3: Anamnesebogen ... 21

Tabelle 4: Materialien für Blutabnahme ... 22

Tabelle 5: Blutröhrchen und Parameter ... 23

Tabelle 6: Aufschlüsselung von Differenzialblutbild und Lipidwerten ... 23

Tabelle 7: Materialien für PBMC-Isolierung ... 24

Tabelle 8: Materialien für RNA-Isolierung... 25

Tabelle 9: Materialien für die reverse Transkription (c-DNA-Erststrangsynthese)... 26

Tabelle 10: Zusammensetzung des Mastermixes ... 26

Tabelle 11: Materialien für Real-Time TaqMan™ PCR ... 27

Tabelle 12: Pipettierschema für Mastermix ... 28

Tabelle 13: Zeit- und Temperaturschema für Denaturierung der c-DNA... 29

Tabelle 14: Für RT-PCR verwendete Forward- und Reverse-Primer ... 29

Tabelle 15: Baseline-Charakteristika ... 32

Tabelle 16: Die Korrelation zwischen den Inflammationsmarkern und der Expression der proteasomalen Untereinheiten in der ACS-Gruppe ... 55

Tabelle 17: Die Korrelation zwischen den Inflammationsmarkern und der Expression der proteasomalen Untereinheiten in der SAP-Gruppe ... 55

6.4. Abkürzungsverzeichnis

Abkürzung Erklärung

Abb.

ACE-Hemmer ACS

AT1-Antagonisten ASS

adrp AK BD BHQ1 BMI

CCS-Klassifikation CD4

CD8 c-DNA Cit Ct CP CRP DEPC dl DNA DNase dNTP DTT EDTA EKG eNOS EPU ELISA FA

Abbildung

Hemmer des Angiotensin Converting Enzymes Acute coronary syndrom (Akutes Koronarsyndrom) Angiotensin-II-Rezeptor-Subtyp-1-Antagonisten Acetylsalicylsäure

Adipose deferentiation-related protein

Patienten mit Ausschluss einer koronaren Herzerkrankung Becton Dickinson

Black-Hole-Quencher 1 Body-Mass-Index

Klassifikation der Canadian Cardiovascular Society Cluster of differentiation 4

Cluster of differentiation 8 Complementary DNA Citrat

Cycle threshold Cysteine-Protease C-reaktives Protein Diethylpyrocarbonat Deziliter

Deoxyribonucleic acid Desoxyribonuklease

Desoxyribonukleosidtriphosphate Dithiothreitol

Ethylendiamintetraessigsäure Elektrokardiogram

Endotheliale Stickstoffmonoxid-Synthase Elektrophysiologische Untersuchung Enzyme Linked Immunosorbent Assay Familienanamnese

FAM FW GC GTP GRK2 GP HbA1c HDL Hep HF HIF-1α HLP

HMG-CoA-Reduktase H2O

kDa Kg KHK LDL LMP LVEF Ly-6C-hi Ly-6C-lo IAP IκBα

m2 Mac M-CSF MCH

MCV mg min

Fluorescein Forward

Guanylatzyklase Guanosintriphosphat

G-protein-coupled receptor kinase 2 Gesunde Probanden

Glykohämoglobin

High-density lipoprotein Heparin

Herzfrequenz

Hypoxie-induzierter Faktor Hyperlipoproteinämie

3-Hydroxy-3-Methylglutaryl-Coenzym-A-Reduktase Aqua

Kilodalton Kilogramm

Koronare Herzerkrankung Low-density lipoprotein Low molecular mass protein

Linksventrikuläre Ejektionsfraktion Monozyten Subtyp-hi

Monozyten Subtyp-low Instabile Angina pectoris

Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha

Quadratmeter Macintosh

Macrophage-colony stimulation factor

Mean Corpuscular Haemoglobin (Mittlerer korpuskulärer Hämoglobingehalt)

Mean Corpuscular Volume

(

Mittleres korpuskuläres Volumen) Milligramm

Minute(n)

MPV

MHC-Klasse

M-MLV MMP mRNA NF-κB ng nl NO NSTEMI

NYHA-Klassifikation PBMC

PBS PCR PDF RNA RNase ROX rpm RQ RR-sys RR-dia PSGL I PSMA3 PSMB RPL 19 RV SAP Se STEMI TAMRA

Mean platelet volume

Major histocompatibility complex (Haupthistokompatibilitätskomplexe) Moloney Murine Leukemia Virus Matrix-Metalloproteinase

Messenger RNA

Nuclear factor 'kappa-light-chain-enhancer' of activated B-cells Nanogramm

Nanoliter

Nitrogen Monoxide (Stickstoffmonoxid) Nicht-ST-Strecken-Hebungsinfarkt

Klassifikation der New York Heart Association

Peripheral Blood Mononuclear Cell (mononukleäre Zellen des peripheren Blutes)

Phosphate buffered saline

Polymerase Chain Reaction (Polymerasekettenreaktion) Portable Document Format

Ribonucleic acid Ribonuklease Passive Reference Rotations per minute RNA Qualified

Systolischer Blutdruck Diastolischer Blutdruck

P-Selectin Glycoprotein Ligand I Proteasome subunit alpha type-3 Proteasome subunit beta

Ribosomal protein L19 (Hauskeeping Gen) Reverse

Patienten mit stabiler Angina pectoris Serum

ST-Strecken-Hebungsinfarkt Tetramethylrhodamine

Tbl.

TNF-α µl UPS VEGF

Tabelle

Tumor necrosis factor alpha Mikroliter

Ubiquitin-Proteasom-System

Vascular Endothelial Growth Factor (Vaskuläre-endothel Wachstumsfaktor)