• Keine Ergebnisse gefunden

1. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239-57.

2. Martin SJ, Green DR, Cotter TG. Dicing with death: dissecting the components of the apoptosis machinery.Trends Biochem Sci. 1994;19:26-30.

3. Steller H.Mechanisms and genes of cellular suicide. Science 1995;267:1445-1449.

4. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development.

Cell. 1997;88:347-354.

5. Raff MC. Social controls on cell survival and cell death. Nature. 1992;356:397-400.

6. Vaux DL, Haecker G, Strasser A. An evolutionary perspective on apoptosis. Cell.

1994;76:777-779.

7. Bredesen DE. Neural apoptosis. Ann Neurol. 1995;38:839-851.

8. Cory S, Strasser A, Jacks T, et al. Enhanced cell survival and tumorigenesis.

Cold Spring Harb Symp Quant Biol. 1994;59:365-375

9. Cory S. Regulation of lymphocyte survival by the bcl-2 gene family.

Annu Rev Immunol. 1995;13:513-543.

10. Strasser A, Huang DC, Vaux DL. The role of the bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumourigenesis and resistance to chemotherapy. BiochimBiophys Acta 1997;1333:F151-178

11. Yang E, Korsmeyer SJ. Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood 1996;88:386-401.

12. Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol.

1998;16:395-419.

13. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456-1462.

14. Reed JC. Bcl-2 family proteins: strategies for overcoming chemoresistance in cancer.

Adv Pharmacol. 1997;41:501-532

15. Cotman CW, Anderson AJ. A potential role for apoptosis in neurodegeneration and Alzheimer’s disease. Mol Neurobiol 1995;10:19-45.

16. Kim TW, Pettingwell WH, Jung YK, et al. Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science. 1997;277:373-376.

17. Hara H, Friedlander RM, Gagliardini V, et al. Inhibition of interleukin 1β converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA 1997;94:2007-2012.

18. Namura S, Zhu J, Fink K, et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neuroscience 1998;18:3659-68.

19. Yuan J, Shaham S, Ledoux S, et al.The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993;75:641-652.

20. Thornberry NA, Lazebnik Y. Caspases: Enemies Within. Science 1998;281:1312-1316 21. Green DR, Reed JC. Mitochondria and Apoptosis. Science 1998;281:1309-1312 22. Newmeyer DD, Farschon DM, Reed JC. Cell-free apoptosis in Xenopus egg extracts:

inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria.

Cell. 1994;79:353-364.

23. Liu X, Kim CN, Yang J, et al. Induction of apoptotic program in cell-free extracts:

requirement for dATP and cytochrome c. Cell. 1996;86:147-157.

24. Kluck RM, Bossy-Wetzel E, Green DR, et al. The release of cytochrome c from

mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275:1132-1126.

25. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;9:479-489.

26. Mancini M, Nicholson DW, Roy S, et al. The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling.

J Cell Biol. 1998;140:1485-1495.

27. Susin SA, Zamzami N, Castedo M, et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 1996 ;184:1331-1341.

28. Susin SA, Zamzami N, Castedo M, el al. The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis. J Exp Med. 1997;186:25-37.

29. Adachi S, Cross AR, Babior BM, Gottlieb RA. Bcl-2 and the outer mitochondrial membrane in the inactivation of cytochrome c during Fas-mediated apoptosis. J Biol Chem 1997;272:21878-21882.

30. Garcia-Ruiz C, Colell A, Mari M, et al. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of

mitochondrial glutathione. J Biol Chem. 1997;272:11369-11377.

31. Boise LH, Thompson CB. Hierarchical control of lymphocyte survival. Science 1996;274:67-68.

32. Osborne BA. Apoptosis and the maintenance of homoeostasis in the immune system.

Curr Opin Immunol. 1996;8:245-254.

33. Winoto A. Cell death in the regulation of immune responses.

Curr Opin Immunol. 1997;9:365-70.

34. Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell. 1994;76:959-962.

35. Gruss HJ, Dower SK. Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood. 1995;85:33783-404.

36. Baker JS, Premkumar Reddy E. Modulation of life and death by the TNF receptor superfamily. Oncogene 1998;17:3261-3270.

37. Tartaglia LA, Ayres TM, Wong GHW, et al. A novel domain within the 55 kd TNF receptor signals cell death. Cell 1993;74:845-853.

38. Itoh N, et al. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol chem 1993;268:10932-10937.

39. Nagata S. Apoptosis by death factor. Cell. 1997;88:355-365.

40. Chinnaiyan AM, O’Rourke K, Yu GL, et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science. 1996;274:990-992.

41. Marsters S, Sheridan JP, Donahue CJ, et al. Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kappa B.

Curr Biol. 1996;6:1669-1676.

42. Kitson J, Raven T, Jiang YP, et al. A death-domain-containing receptor that mediates apoptosis. Nature 1996;384:372-375.

43. Bodmer JL, Burns K, Schneider P, et al. TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas (Apo-1/CD95).

Immunity. 1997;6:79-88.

44. Tartaglia LA, Goeddel DV. Two TNF receptors. Immunol Today 1992;13:151-153.

45. Locksley Rm, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies:

integrating mammalian biology. Cell 2001;104:487-501

46. MacEwan DJ. TNF ligands and receptors – a matter of life and death. British J of Pharmacology 2002;135:855-875.

47. Carswell EA, Old LJ, Kassel RL, et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975;72:3666-3670.

48. Williams TW, Granger GA. Lymphocyte in vitro cytotoxicity: lymphotoxins of several mammalian species. Natur 1968;7:1076-1077.

49. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003;3:745-756.

50. Ashkenazi A, Dixit VM. Death Receptors: Signaling and Modulation. Science 1998;281:1305-1308.

51. Nagata S. Apoptosis regulated by a death factor and its receptor: Fas ligand and Fas.

Philos Trans R Soc Lond B Biol Sci. 1994;345:281-287.

52. Song K, Chen Y, Göke R, et al. Tumor necrosis factor-related apoptosis –inducing ligand (TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. J Exp Med 2000;191:1095-1104.

53. Cretney E, Takeda K, Yagita H, et al. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligend-deficient mice. J Immunol 2002;168:1356-1361.

54. Lamhamedi-Cherradi SE, Zhenq SJ, Maquschak KA, Peschon J, Chen YH. Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL -/- mice. Nature Immunol 2003;4:255-260.

55. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies:

integrating mammalian biology. Cell 200;104:487-501.

56. Kishimoto H, Surh CD, Sprent J. A role for Fas in negative selection of thymocytes in vivo. J Exp Med. 1998;187:1427-1438.

57. Nagata S. Fas ligand-induced apoptosis. Annu Rev Genet 1999;33:29-55.

58. Griffith TS, Brunner T, Fletcher SM. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 1995,270:1189-1192.

59. Adams AB, Larsen CP, Pearson TC, Newell KA. The role of TNF receptor and TNF superfamily molecules in organ transplantation. Am J Transplant 2002; 2:12-18.

60. Gardam MA, Keystone EC, Menzies R, et al. Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect Dis

61. Moore RJ, Owens DM, Stamp G, et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med. 1999;5:828-31

62. Romas E, Gillespie MT, Martin TJ. Involvement of receptor activator of NF-kappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone 2002;30:340-346.

63. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999;397:315-323.

64. Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998;12:1260-1268.

65. Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell 1996;87:13-20.

66. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996;274:782-784.

67. Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. Philos Trans R Soc Lond B Biol Sci 1996;351:127-134.

68. Shaulian E, Karin M. AP-1 in cell proliferation and survival. Oncogene 2001;20:2390-2400.

69. Arch RH, Gedrich RW, Thompson CB. Tumor necrosis factor receptor-associated factors (TRAFs) a family of adaptor proteins that regulates life and death. Genes Dev

1998;12:2821-2830.

70. Rothe M, Wong SC, Henzel WJ, et al. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor.

Cell 1994;78:681-692.

71. Hu HM, O’Rourke K, Bogusi MS, et al. A novel RING finger protein interacts with the cytoplasmic domain of CD40. J Biol Chem 1994;269:30069-30072.

72. Sato T, Irie S, Reed JC. A novel member of the TRAF family of putative signal transducer proteins binds to the cytosolic domain of CD40. FEBS Lett 1995;358:113-118.

73. Régnier CH, Tomasetto C, Moog-Lutz C, et al. Presence of a new conserved domain in CART1, a novel member of the TRAF protein family, which is expressed in breast carcinoma. J Biol Chem 1995;270:25715-25721.

74. Nakano H, Oshima H, Chung W, et al. TRAF5, an acivator of NF-kappaB and putative signal transducer of the lymphotoxin-beta receptor. J Biol Chem 1996;271:14661-14664.

75. Cao Z, Xiong J, Takeuchi M, et al. TRAF6 is a signal transducer for interleukin-1. Nature 1996;383:443-446.

76. Ishida T, Mizushima S, Azuma S, et al. Identification of TRAF6, a novel tumor necrosis factor receptor associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J Biol Chem 1996;271:28745-28748.

77. Zapata JM, Pawlowski E, Haas E, et al. A diverse family of proteins containing tumor necrosis factor receptor-associated domains. J Biol Chem 2001;276:24242-24252.

78. Zapata JM, Krajewska M, Krajewski S, et al. TNFR-associated factor family protein expression in normal tissues and lymphoid malignancies. J Immunol 2000;165:5084-5096.

79. Rothe M, Sarma V, Dixit VM, et al. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science 1995;269:1424-1427.

80. Tsitsikov EN, Laouini D, Dunn IF, et al. TRAF1 is a negative regulator of TNF signaling ; enhanced TNF signaling in TRAF1-deficient mic. Immunity 2001;15:647-657.

81. Gedrich RW, Gilfillan Mc, Duckett CS, et al. CD30 contains two binding sites with different specificities for members of the tumor necrosis factor receptor-associated family of transducing proteins. J Biol Chem 1996;271:12852-12858.

82. Lee SY, Park CG, Choi Y. T cell receptor-dependent cell death of T cell hybridomas mediated through the CD30 cytoplasmic domain in association with tumor necrosis receptor-associated factors. J Exp Med 1996;183:669-674.

83. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS. NF-κB antiapoptosis:

induction of TRAF1 and TRAF1 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998;281:1680-1683.

84. Arch RH, Thompson CB. 4-1BB and Ox40 are members of a tumor necrosis factor (TNF) growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor kappaB. Mol Cell Biol 1998;18:558-565.

85. Marsters SA, Ayres TM, Skubatch M, Gray CL, Rothe M, Ashkenazi A. Hervesvirus entry mediator, a member of the tumor necrosis factor receptor (TNFR) family, interacts with members of the TNFR-associated factor family and activates the transcription factors NF-kappaB and AP-1. J Biol Chem 1997;272:14029-14032.

86. Wong BR, Josien R, Lee SY, et al. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J Biol Chem 1998;273:28355-28359.

87. Galibert L, Tometsko ME, Anderson DM, et al. The involvement of multiple tumor

receptor activator of NF-kappaB, a member of the TNFR superfamily. J Biol Chem 1998;273:34120-34127.

88. Pullen SS, Miller HG, Everdeen DS. CD40-tumor necrosis factor receptor-associated factor (TRAF) interactions: regulation of CD40 signaling through multiple TRAF binding sites and TRAF hetero-oligomerization. Biochemistry 1998;37:11836-11845.

89. Devergne O, Hatzivassiliou E, Izumi KM et al. Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol Cell Biol 1996;16:7098-7108.

90. Hatzoglou A, Roussel J, Bourgeade MF, et al. TNF receptor family member BCMA (B cell maturation) associates with TNF receptor-associated factor (TRAF) 1, TRAF2, and TRAF3 and activates NF-kappa B, elk-1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. J Immunol 2000;165:1322-1330.

91. Cheng G, Baltimore D. TANK, a co-inducer with TRAF2 of TNF- and CD 40L-mediated NF-kappaB activation. Genes Dev. 1996;10:963-973.

92. Rothe M, Xiong J, Shu HB Williamson K, Goddard A, Goeddel DV. I-TRAF is a novel TRAF-interacting protein that regulates TRAF-mediated signal transduction. Proc Natl Acad Sci USA 1996;93:8241-8246.

93. Lee SY, Lee SY, Choi Y. TRAF-interacting protein (TRIP): a novel component of the tumor necrosis factor receptor (TNFR)- and CD30-TRAF signaling complexes that inhibits TRAF2-mediated NF-kappaB activation. J Exp Med. 1997;185:1275-85.

94. Song HY, Rothe M, Goeddel DV. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc Natl Acad Sci USA 1996;93:6721-6725.

95. Meylan E, Martinon F, Thome M, Gschwendt M, Tschopp J. RIP4 (DIK/PKK), a novel member of the RIP kinase family, activates NF-kappa B and is processed during apoptosis. EMBO Rep 2002;3:1201-1208.

96. Thome M, Hofmann K, Burns K, et al. Identification of CARDIAK, a RIP-like kinase that associates with caspase-1. Curr Biol. 1998;8:885-888

97. Chaudhary PM, Jasmin A, Eby MT, Hood L. Modulation of the NF-kappa B pathway by virally encoded death effector domains-containing proteins. Oncogene 1999;18:5738-5746.

98. Song HY, Régnier, CH, Kirschning CJ, Goeddel DV, Rothe M. Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-kappaB and c-jun

N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc Natl Acad Sci USA 1997;94:9792-9796.

99. Bradley JR, Pober JS. Tumor necrsosis factor receptor-associated factors (TRAFs).

Oncogene 2001;20:6482-6491.

100. Speiser DE, Lee SY, Wong B, et al. A regulatory role for TRAF1 in antigen-induced apoptosis of T cells. J Exp Med 1997;185:1777-1783.

101. Fotin-Mleczek M, Henkler F, Hausser A, et al. Tumor necrosis factor receptor-associated factor (TRAF) 1 regulates CD40-induced TRAF2-mediated NF-kappaB activation. J Biol Chem 2004;279:677-685.

102. Schwenzer R, Siemienski K, Liptay S, et al. The human tumor necrosis factor (TNF) Receptor-associated factor 1 gene (TRAF1) is up-regulated by cytokines of the TNF ligand family and modulates TNF-induced activation of NF-κB and c-Jun N-terminal kinase. J Biol chem 1999, 274;19368-19374.

103. Irmler M, Steiner V, Ruegg C, Tschopp J. Caspase-induced inactivation of the anti-apoptotic TRAF1 during Fas ligand-mediated apoptosis. J FEBS Lett 2000;468:19-133.

104. Leo E, Deveraux Ql, Buchholtz C, et al. TRAF1 is a substrate of caspases activated during tumor necrosis factor receptor-alpha-induced apoptosis. J Biol Chem

2001;276:8087-8093.

105. Jang HD, Chung YM, Baik JH, et al. Caspase-cleaved TRAF1 negatively regulates the antiapoptotic signals of TRAF2 during TNF-induced cell death. Biochem Biophys Res Commun 2001;281:499-505.

106. Krajewska M, Krajewski S, Zapata JM, et al. TRAF-4 expression in epithelial progenitor cells. Analysis in normal adult, fetal, and tumor tissues.Am J Pathol. 1998;152:1549-1561.

107. Dürkop H, Foss HD, Demel G, Klotzbach H, Hahn C, Stein H. Tumor necrosis factor receptor-associated factor 1 is overexpressed in Reed-Sternberg cells of Hodgkin's disease and Epstein-Barr virus-transformed lymphoid cells. Blood 1999;93:617-623.

108. Savage KJ, Monti S, Kutok JL, et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma.Blood. 2003;102:3871-3879.

109. Rodig SJ, Savage KJ, Nguyen V, et al. TRAF1 Expression and c-Rel activation are useful adjuncts in distinguishin classical Hodgkin lymphoma from a subset of

110. Rodig SJ, Savage KJ, LaCasce AS, et al. Expression of TRAF1 and Nuclear c-Rel distinguishes primary mediastinal large cell lymphoma from other types of diffuse large B-cell lymphoma. Am J Surg Pathol 2007;31:106-112.

111. Jaffe ES, Harris NL, Stein H, Vardiman JW. Tumours of haematopoietic and lymphoid tissues. 1st ed. Lyon, France: IARC Press 2001.

112. Cordell JL, Falini B, Erber W, et al. Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem 1984;32:219-229.

113. Inoue JI, Ishida T, Tsukamoto N, et al. Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res

2000;254:14-24.

114. Murray PG, Flavell JR, Baumforth KR, et al. Expression of the tumour necrosis factor receptor-associated factors1 and 2 in Hodgkin’s disease. J Pathol 2001;194:158-164.

115. Liou HC, Hsia CY. Distinctions between c-Rel and other NF-kappaB proteins in immunity and disease. Bioessays 2003;25:767-780.

116. Shamoto M, Osada A, Shinzato M, Kaneko C, Yoshida A. Do epidermal Langerhans cells, migrating from skin lesions, induce the paracortical hyperplasia of dermatopathic lamphadenopathy? Pathol Int 1996;46:348-354.

117. Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005;105:3768-3785.

118. Bekkenk MW, Geelen FA, van Voorst Vader PC, et al. Primary and secondary cutaneous CD30(+) lymphoproliferative disorders: a report from the Dutch Cutaneous Lymphoma Group on the long-term follow-up data of 219 patients and guidelines for diagnosis and treatment. Blood 2000;95:3653-3661.

119. Liu HL, Hoppe RT, Kohler S et al. CD30+ cutaneous lymphoproliferative disorders: the Stanford experience in lymphomatoid papulosis and primary cutaneous anaplastic large cell lymphoma. J Am Acad Dermatol 2003;49:1049-1058.

120. Willemze R, Beljaards RC. Spectrum of primary cutaneous CD30 (Ki-1) positive lymphoproliferative disorders. A proposal for classification and guidelines for management and treatment. J Am Acad Dermatol 1993;28:973-980.

121. Macaulay WL. Lymphomatoid papulosis. A continuing self-healing eruption, clinically benign – histologically malignant. Arch Dermatol 1968;97:23-30.

122. Willemze R, Meyer CJ, van Vloten WA, Scheffer E. The clinical and histological spectrum of lymphomatoid papulosis. Br J Dermatol 1982;107:131-144.

123. DeCoteau JF, Butmarc JR, Kinney MC, Kadin ME. The t(2;5) chromosomal

translocation is not a common feature of primary cutaneous CD30+ lymphoproliferative disorders: comparison with anaplastic large cell lymphoma of nodal origin. Blood 1996;87:3437-3441.

124. Herbst H, Sander C, Tronnier M et al. Absence of anaplastic lomphoma kinase (ALK) and Epsten-Barr virus gene products in primary cutaneous anaplastic large cell

lymphoma and lymphomatoid papulosis. Br J Dermatol 1997;137:680-686.

125. Chott A, Vonderheid EC, Olbricht S, Miao NN, Balk SP, Kadin ME. The dominant T cell clone is present in multiple regressing skin lesions and associated T cell lymphomas of patients with lymphomatoid papulosis. J Invest Dermatol 1996;106:696-700.

126. Weiss LM, Wood Gs, Trela M, Warnke RA, Sklar J. Clonal T-cell populations in

lymphomatoid papulosis. Evidence of a lymphoproliferative origin for a clinically benign disease. N Engl J Med 1986;315:475-479.

127. Whittaker S, Smith N, Jones RR, Luzzatto L. Analysis of beta, gamma and delta T-cell receptor genes in lymphomatoid papulosis: cellular basis of two distinct histologic subsets. J Invest Dermatol 1991;96:786-791.

128. Steinhoff M, Hummel M, Anagnostopoulos I, et al. Single-cell analysis of CD30+ cells in lymphomatoid papulosis demonstrates a common clonal T-cell origin. Blood

2002;100:578-584.

129. Dürkop H, Hirsch B, Hahn C, Stein H. cIAP2 is highly expressed in Hodgkin-Reed-Sternberg cells and inhibits apoptosis by interfering with constitutively acitve caspase-3.

J mol med 2006;84:132-141.

130. Levi E, Wang Z, Petrogiannis-Haliotis T, et al. Distinct effects of CD30 and Fas signaling in cutaneous anaplastic lymphomas : a possible mechanism for disease progression. J Invest Dermatol 2000;115:1034-1040.

131. Mir SS, Richter BW, Duckett CS. Differential effects of CD30 activation in anaplastic large cell lymphoma and Hodgkin disease cells. Blood 2000;96:4307-4312.

132. Dürkop H, Hirsch B, Hahn C, Foss HD, Stein H. Differential expression and function of A20 and TRAF1 in Hodgkin lymphoma and anaplastic large cell lymphoma and their induction by CD30 stimulation. J Pathol 2003;200:229-239.

7. Abkürzungen und Erläuterungen der vorstehenden