• Keine Ergebnisse gefunden

1. Prausnitz, M.R. and R. Langer, Transdermal drug delivery. Nature biotechnology, 2008. 26(11): p. 1261-1268.

2. Lee, H., et al., Device-assisted transdermal drug delivery. Advanced Drug Delivery Reviews, 2018. 127: p. 35-45.

3. Prueksaritanont, T., et al., Species and organ differences in first-pass metabolism of the ester prodrug L-751,164 in dogs and monkeys. In vivo and in vitro studies. Drug Metab Dispos, 1996. 24(11): p. 1263-71.

4. Lin, J.H., Species similarities and differences in pharmacokinetics. Drug Metab Dispos, 1995. 23(10): p. 1008-21.

5. Fadok, V.A., Treating resistant skin infections in dogs. Today's Veterinary Practice - Dermatology Details, 2014. 4(3).

6. Mohammedamin, R.S., et al., Increasing incidence of skin disorders in children? A comparison between 1987 and 2001. BMC Dermatology, 2006. 6(1):

p. 4.

7. Thomsen, S.F., Atopic Dermatitis: Natural History, Diagnosis, and Treatment. ISRN Allergy, 2014. 2014: p. 354250.

8. Canavan, T.N., E. Chen, and B.E. Elewski, Optimizing Non-Antibiotic Treatments for Patients with Acne: A Review. Dermatol Ther (Heidelb), 2016.

6(4): p. 555-578.

9. Jesitus, J., Antibiotic resistance in acne: avoid monotherapy. Dermatology Times, 2017.

10. Bekoff, M., Encyclopedia of animal rights and welfare. 2 ed. 2009:

ABC-Clio/Greenwood publishing group. 685.

11. Kolar, R., Animal experimentation. Sci Eng Ethics, 2006. 12(1): p. 111-22.

12. Erkekoğlu, P., B.K. Giray, and N. Basaran, 3R principle and alternative toxicity testing methods. Vol. 36. 2011. 101-117.

13. Davila, J.C., et al., Predictive value of in vitro model systems in toxicology.

Annu Rev Pharmacol Toxicol, 1998. 38: p. 63-96.

14. Mathes, S.H., H. Ruffner, and U. Graf-Hausner, The use of skin models in drug development. Adv Drug Deliv Rev, 2014. 69-70: p. 81-102.

15. Flaten, G.E., et al., In vitro skin models as a tool in optimization of drug formulation. Eur J Pharm Sci, 2015. 75: p. 10-24.

16. Schmook, F.P., J.G. Meingassner, and A. Billich, Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int J Pharm, 2001. 215(1-2): p. 51-6.

17. Clark, A.J., Introduction, in General Pharmacology. 1937, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1-4.

18. Derendorf, H. and G. Hochhaus, Introduction, in Handbook of Pharmacokinetic/Pharmacodynamic Correlation (Handbooks in Pharmacology and Toxicology)

F. Ebner, Editor. 1995, CRC Press; 1 edition. p. 496.

19. Wehling, M.e.a., Pharmakodynamik, Pharmakokinetik, Wechselwirkungen und Pharmakogenetik, in Klinische Pharmakologie. 2011, Thieme Verlag. p. 20-21.

20. Pajouhesh, H. and G.R. Lenz, Medicinal chemical properties of successful

central nervous system drugs. NeuroRx, 2005. 2(4): p. 541-53.

21. Savjani, K.T., A.K. Gajjar, and J.K. Savjani, Drug solubility: importance and enhancement techniques. ISRN Pharm, 2012. 2012: p. 195727.

22. Bardal, S.K., J.E. Waechter, and D.S. Martin, Pharmacokinetics, in Applied Pharmacology. 2011, Content Repository Only!: Philadelphia. p. 17-34 (19).

23. Manallack, D.T., The pK(a) Distribution of Drugs: Application to Drug Discovery. Perspect Medicin Chem, 2007. 1: p. 25-38.

24. Lehninger, A.L., D.L. Nelson, and M.M. Cox, Prinzipien der Biochemie, in Prinzipien der Biochemie, H. Tschesche, Editor. 1994, Spektrum - akademischer Verlag: Heidelberg/Berlin/Oxford. p. 109.

25. Yip, K.W. and F.-F. Liu, Small Molecule Screens, in Encyclopedia of Cancer, M. Schwab, Editor. 2011, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 3451-3455.

26. Schneider, G., Prediction of drug-like properties. 2000-2013, Madame Curie Bioscience Database: Austin, Texas, US.

27. Gibaldi, M. and P.J. McNamara, Apparent volumes of distribution and drug binding to plasma proteins and tissues. Eur J Clin Pharmacol, 1978. 13(5):

p. 373-80.

28. Sim, D.S.M., Drug Elimination, in Pharmacological Basis of Acute Care, Y.K. Chan, K.P. Ng, and D.S.M. Sim, Editors. 2015, Springer International Publishing.

29. Smith, Y., Pharmacokinetics, in News Medical Life Sciences.

30. Hamidi, M., et al., A pharmacokinetic overview of nanotechnology-based drug delivery systems: an ADME-oriented approach. Crit Rev Ther Drug Carrier Syst, 2013. 30(5): p. 435-67.

31. Evans, E.F., et al., Blood flow in muscle groups and drug absorption. Clin Pharmacol Ther, 1975. 17(1): p. 44-7.

32. Palm, K., et al., Evaluation of dynamic polar molecular surface area as predictor of drug absorption: comparison with other computational and experimental predictors. J Med Chem, 1998. 41(27): p. 5382-92.

33. Ferry, J.J., J.H. Shepard, and G.J. Szpunar, Relationship between contact time of applied dose and percutaneous absorption of minoxidil from a topical solution. J Pharm Sci, 1990. 79(6): p. 483-6.

34. Kwan, K.C., Oral bioavailability and first-pass effects. Drug Metab Dispos, 1997. 25(12): p. 1329-36.

35. Hilmer, S.N. and G.A. Ford, General Principles of Pharmacology, in Hazzard's Geriatric Medicine and Gerontology. 2009, McGraw-Hill Education/Medical.

36. Greenblatt, D.J., Elimination half-life of drugs: value and limitations.

Annu Rev Med, 1985. 36: p. 421-7.

37. von Essen, M., et al., Constitutive and ligand-induced TCR degradation. J Immunol, 2004. 173(1): p. 384-93.

38. Dellas, C., Eliminationskinetik; Wichtige pharmakologische Begriffe, in Kurzlehrbuch Pharmakologie. 2012, Urban & Fischer Verlag/Elsevier GmbH. p.

8-9.

39. Haffner, H.T., et al., The elimination kinetics of methanol and the

influence of ethanol. Int J Legal Med, 1992. 105(2): p. 111-4.

40. Sabine, Allgemeine und spezielle Pharmakologie, T.F.d.L. München, Editor., Skriptenverein der tierärztlichen Fakultät LMU München: München.

41. DiPiro, J.T., Concepts in clinical pharmacokinetics. 2010: TBS (2010).

248.

42. Carrillo Norte, J.A., [Volume of distribution of drugs: an apparent data in pharmacology]. Rev Enferm, 2010. 33(10): p. 48-52.

43. Bischoff, K.B. and R.L. Dedrick, Generalized solution to linear, to-compartment, open model for drug distribution. J Theor Biol, 1970. 29(1): p. 63-8.

44. Groll, A.H., et al., Compartmental pharmacokinetics and tissue drug distribution of the pradimicin derivative BMS 181184 in rabbits. Antimicrob Agents Chemother, 1998. 42(10): p. 2700-5.

45. Klinke, R., et al., Physiologie. 5 ed. 2005: Thieme Verlag. 930.

46. Bertram, T.A., et al., Chapter 56 - Digestive Tract A2 - Haschek, Wanda M, in Haschek and Rousseaux's Handbook of Toxicologic Pathology (Third Edition), C.G. Rousseaux and M.A. Wallig, Editors. 2013, Academic Press:

Boston. p. 2277-2359.

47. Dahlstrom, B.E. and L.K. Paalzow, Pharmacokinetic interpretation of the enterohepatic recirculation and first-pass elimination of morphine in the rat. J Pharmacokinet Biopharm, 1978. 6(6): p. 505-19.

48. Kang, H.E., et al., Pharmacokinetics and first-pass effects of liquiritigenin in rats: low bioavailability is primarily due to extensive gastrointestinal first-pass effect. Xenobiotica, 2009. 39(6): p. 465-75.

49. Barve, A., et al., Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats. Biopharm Drug Dispos, 2009. 30(7): p. 356-65.

50. Taft, D.R., Chapter 9 - Drug Excretion A2 - Hacker, Miles, in Pharmacology, W. Messer and K. Bachmann, Editors. 2009, Academic Press: San Diego. p. 175-199.

51. Roberts, M.S., et al., Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet, 2002. 41(10): p.

751-90.

52. Kenakin, T.P., Chapter 8 - Pharmacokinetics II: Distribution and Multiple Dosing - renal excretion, in Pharmacology in Drug Discovery and Development (Second Edition). 2017, Academic Press. p. 193-224.

53. Alkilani, A.Z., M.T. McCrudden, and R.F. Donnelly, Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the stratum corneum. Pharmaceutics, 2015. 7(4): p. 438-70.

54. König, H.E. and H.-G. Liebich, Anatomie der Haussäugetiere. 4 ed. 2008:

Schattauer. 783.

55. Amirlak, B. and L. Shahabi, Skin anatomy. Medscape, 2017.

56. Wickett, R.R. and M.O. Visscher, Structure and function of the epidermal barrier. American Journal of Infection Control, 2006. 34(10, Supplement): p. S98-S110.

57. Geerligs, M., Skin layer mechanics, in Department of Biomedical Engineering. 2010, TU Eindhoven: Eindhoven : Technische Universiteit Eindhoven. p. VII, 112 p.

58. Barankin, B. and J. DeKoven, Psychosocial effect of common skin diseases. Can Fam Physician, 2002. 48: p. 712-6.

59. Tuckman, A., The Potential Psychological Impact of Skin Conditions.

Dermatol Ther (Heidelb), 2017. 7(Suppl 1): p. 53-57.

60. Kanitakis, J., Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol, 2002. 12(4): p. 390-9; quiz 400-1.

61. Farris, P.K., Skin anatomy and physiology, in Nu Skin.

62. Janssens, A.S., et al., Mast cell distribution in normal adult skin. J Clin Pathol, 2005. 58(3): p. 285-9.

63. Wilgus, T.A. and B.C. Wulff, The Importance of Mast Cells in Dermal Scarring. Adv Wound Care (New Rochelle), 2014. 3(4): p. 356-365.

64. Mills, P.C. and S.E. Cross, Transdermal drug delivery: basic principles for the veterinarian. Vet J, 2006. 172(2): p. 218-33.

65. Theerawatanasirikul, S., et al., Histologic morphology and involucrin, filaggrin, and keratin expression in normal canine skin from dogs of different breeds and coat types. Vol. 13. 2012. 163-70.

66. Avon, S.L. and R.E. Wood, Porcine skin as an in-vivo model for ageing of human bite marks. J Forensic Odontostomatol, 2005. 23(2): p. 30-9.

67. Bijman, J. and P.M. Quinton, Predominantly beta-adrenergic control of equine sweating. Am J Physiol, 1984. 246(3 Pt 2): p. R349-53.

68. Harker, M., Psychological sweating: a systematic review focused on aetiology and cutaneous response. Skin Pharmacol Physiol, 2013. 26(2): p. 92-100.

69. Robertshaw, D., Effects of Adrenergic Activators and Inhibitors on the Sweat Glands, in Adrenergic Activators and Inhibitors: Part II, L. Szekeres, Editor. 1981, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 345-362.

70. Jonsson, E.H., et al., The relation between human hair follicle density and touch perception. Sci Rep, 2017. 7(1): p. 2499.

71. Yang, F.C., Y. Zhang, and M.C. Rheinstadter, The structure of people's hair. PeerJ, 2014. 2: p. e619.

72. Zafarina, Z. and S. Panneerchelvam, Analysis of hair samples using microscopical and molecular techniques to ascertain claims of rare animal species. Malays J Med Sci, 2009. 16(3): p. 35-40.

73. Ling, J.K., Pelage and Molting in Wild Mammals with Special Reference to Aquatic Forms. The Quarterly Review of Biology, 1970. 45(1): p. 16-54.

74. Prausnitz, M.R., P.M. Elias, and T.J. Franz, Skin barrier and transdermal drug delivery, in Medical therapy. 2012. p. 2065-2073.

75. Moon, K.C. and H.I. Maibach, Percutaneous absorption in diseased skin:relationship to the exogenous dermatoses, in Exogenous dermatoses:

environmental dermatitis, T. Menné and H.I. Maibach, Editors. 1991, CRC Press, Inc.: Boca Raton, Florida, US.

76. Neagu, M., et al., Chemically induced skin carcinogenesis: Updates in experimental models (Review). Oncol Rep, 2016. 35(5): p. 2516-28.

77. Homey, B., et al., Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol, 2006. 118(1): p. 178-89.

78. Trenam, C.W., D.R. Blake, and C.J. Morris, Skin inflammation: reactive oxygen species and the role of iron. J Invest Dermatol, 1992. 99(6): p. 675-82.

79. Skelly, J.P., et al., FDA and AAPS Report of the Workshop on Principles and Practices of In Vitro Percutaneous Penetration Studies: Relevance to Bioavailability and Bioequivalence. Pharmaceutical Research, 1987. 4(3): p. 265-267.

80. Friend, D.R., In vitro skin permeation techniques. Journal of Controlled Release, 1992. 18(3): p. 235-248.

81. Wurster, D.E., J.A. Ostrenga, and L.E. Matheson, Sarin Transport across excised human skin I: Permeability and Adsorption Characteristics. Journal of Pharmaceutical Sciences, 1979. 68(11): p. 1406-1409.

82. Flynn, G.L. and E.W. Smith, Membrane Diffusion I: Design and Testing of a New Multifeatured Diffusion Cell. Journal of Pharmaceutical Sciences, 1971.

60(11): p. 1713-1717.

83. Southwell, D. and B.W. Barry, Penetration enhancers for human skin:

mode of action of 2-pyrrolidone and dimethylformamide on partition and diffusion of model compounds water, n-alcohols, and caffeine. J Invest Dermatol, 1983.

80(6): p. 507-14.

84. OCDE, Test No. 428: Skin Absorption: In Vitro Method. 2004.

85. Brodin, B., B. Steffansen, and C. Nielsen, Passive diffusion of drug substances: The concepts of flux and permeability. 2010. p. 135-151.

86. Kolackova, L., A comparison in vitro study of permeation of selected drugs from lipophilic solutions through human skin, in Department of pharmaceutical technology/Department of biopharmaceutics and pharmaceutical technology. 2007, Charles University/Saarland University: Kveten. p. 58.

87. Benson, H.A., Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv, 2005. 2(1): p. 23-33.

88. Barry, B.W., Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci, 2001. 14(2): p. 101-14.

89. Moser, K., et al., Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm, 2001. 52(2): p. 103-12.

90. Herman, A. and A.P. Herman, Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: a review. J Pharm Pharmacol, 2015. 67(4): p. 473-85.

91. Escobar-Chávez, J., et al., Nanocarriers for transdermal drug delivery.

Vol. 2012:1. 2012. 3.

92. Desai, P., R.R. Patlolla, and M. Singh, Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol, 2010. 27(7): p. 247-59.

93. Au, W.L., M. F Skinner, and I. Kanfer, Comparison of Tape Stripping with the Human Skin Blanching Assay for the Bioequivalence Assessment of Topical Clobetasol Propionate Formulations. Vol. 13. 2010. 11-20.

94. Prausnitz, M.R., S. Mitragotri, and R. Langer, Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov, 2004. 3(2): p. 115-24.

95. Birchall, J., et al., Cutaneous DNA delivery and gene expression in ex vivo human skin explants via wet-etch micro-fabricated micro-needles. J Drug Target, 2005. 13(7): p. 415-21.

96. Scognamiglio, I., et al., Nanocarriers for topical administration of resveratrol: a comparative study. Int J Pharm, 2013. 440(2): p. 179-87.

97. Gomes, M.J., et al., Lipid nanoparticles for topical and transdermal

application for alopecia treatment: development, physicochemical characterization, and in vitro release and penetration studies. Int J Nanomedicine, 2014. 9: p. 1231-42.

98. Senyigit, T., et al., Lecithin/chitosan nanoparticles of clobetasol-17-propionate capable of accumulation in pig skin. J Control Release, 2010. 142(3):

p. 368-73.

99. Hathout, R.M., et al., Microemulsion formulations for the transdermal delivery of testosterone. Eur J Pharm Sci, 2010. 40(3): p. 188-96.

100. Cilurzo, F., P. Minghetti, and C. Sinico, Newborn pig skin as model membrane in in vitro drug permeation studies: a technical note. AAPS PharmSciTech, 2007. 8(4): p. E94-E94.

101. Hanno, I., C. Anselmi, and K. Bouchemal, Polyamide nanocapsules and nano-emulsions containing Parsol(R) MCX and Parsol(R) 1789: in vitro release, ex vivo skin penetration and photo-stability studies. Pharm Res, 2012. 29(2): p.

559-73.

102. Godin, B. and E. Touitou, Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev, 2007.

59(11): p. 1152-61.

103. Kao, J., F.K. Patterson, and J. Hall, Skin penetration and metabolism of topically applied chemicals in six mammalian species, including man: An in vitro study with benzo[a]pyrene and testosterone. Toxicology and Applied Pharmacology, 1985. 81(3, Part 1): p. 502-516.

104. Ahmad, N. and H. Mukhtar, Cytochrome p450: a target for drug development for skin diseases. J Invest Dermatol, 2004. 123(3): p. 417-25.

105. Tsang, V.L. and S.N. Bhatia, Three-dimensional tissue fabrication. Adv

Drug Deliv Rev, 2004. 56(11): p. 1635-47.

106. Kim, J.B., R. Stein, and M.J. O'Hare, Three-dimensional in vitro tissue culture models of breast cancer-- a review. Breast Cancer Res Treat, 2004. 85(3):

p. 281-91.

107. UK, P., Cosmetics and animal testing, in PETA UK. PETA UK.

108. Yamaguchi, K., et al., Structure-permeability relationship analysis of the permeation barrier properties of the stratum corneum and viable epidermis/dermis of rat skin. J Pharm Sci, 2008. 97(10): p. 4391-403.

109. Nitsche, Johannes M. and Gerald B. Kasting, A Microscopic Multiphase Diffusion Model of Viable Epidermis Permeability. Biophysical Journal, 2013.

104(10): p. 2307-2320.

110. Cunliffe, W., Acne vulgaris, in Treatment of skin disease. 2002: London, England. p. 6-13.

111. Oberemok, S.S. and A.R. Shalita, Acne vulgaris, II: treatment. Cutis, 2002. 70(2): p. 111-4.

112. Haberland, A., et al., The impact of skin viability on drug metabolism and permeation -- BSA toxicity on primary keratinocytes. Toxicol In Vitro, 2006.

20(3): p. 347-54.

113. Hikima, T., K. Tojo, and H.I. Maibach, Skin Metabolism in Transdermal Therapeutic Systems. Skin Pharmacology and Physiology, 2005. 18(4): p. 153-159.

114. Rachakonda, V.K., et al., Screening of chemical penetration enhancers for transdermal drug delivery using electrical resistance of skin. Pharm Res, 2008.

25(11): p. 2697-704.

115. Roustit, M., S. Blaise, and J.-L. Cracowski, Trials and tribulations of skin iontophoresis in therapeutics. British journal of clinical pharmacology, 2014.

77(1): p. 63-71.

116. Shimizu, K. and J. Krištof, Enhancement of Percutaneous Absorption on Skin by Plasma Drug Delivery Method. 2017.

117. Abd, E., et al., Skin models for the testing of transdermal drugs. Clinical pharmacology : advances and applications, 2016. 8: p. 163-176.

118. Hao, J., et al., Heat effects on drug delivery across human skin. Expert opinion on drug delivery, 2016. 13(5): p. 755-768.

119. Kamboj, S., Transdermal Drug Delivery Systems: Approaches and Advancements in Drug Absorption Through Skin. International journal of pharmaceutical sciences review and research, 2013.

120. Tagami, H., Location-related differences in structure and function of the stratum corneum with special emphasis on those of the facial skin. Int J Cosmet Sci, 2008. 30(6): p. 413-34.

121. Davis, S.L., et al., Skin blood flow influences near-infrared spectroscopy-derived measurements of tissue oxygenation during heat stress. J Appl Physiol (1985), 2006. 100(1): p. 221-4.

122. Bopp, S.K. and T. Lettieri, Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacol, 2008. 8: p. 8.

123. Stoddart, M.J., WST-8 analysis of cell viability during osteogenesis of human mesenchymal stem cells. Methods Mol Biol, 2011. 740: p. 21-5.

124. Roche, Cytotoxicity detection kit plus [LDH] manual, Roche, Editor. 2016.

125. Bauhammer, I., M. Sacha, and E. Haltner, Establishment of a novel in vitro viable human skin model as a basis for the treatment of human and veterinary chronic skin diseases. Journal of Drug Delivery Science and Technology, 2019.

51: p. 695-699.

126. Bauhammer, I., M. Sacha, and E. Haltner, Validation and stability analysis of a modified lactate dehydrogenase (LDH) test method to be employed for an in vitro viable skin model. Heliyon, 2019. 5(5): p. e01618.

127. Serra, M., et al., Development and characterization of a canine skin equivalent. Exp Dermatol, 2007. 16(2): p. 135-42.

128. Khiao In, M., et al., Histological and functional comparisons of four anatomical regions of porcine skin with human abdominal skin. 2019. 48(3): p.

207-217.

129. Hu, F., et al., Effects of epidermal growth factor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cells. Cell Reprogram, 2013. 15(3): p. 224-32.

130. Xu, Z.Z., et al., Using bovine pituitary extract to increase proliferation of keratocytes and maintain their phenotype in vitro. Int J Ophthalmol, 2013. 6(6): p.

758-65.

131. Oku, H., et al., Serum-free culture of rat keratinocytes. In Vitro Cell Dev Biol Anim, 1994. 30a(8): p. 496-503.

132. Li, L., M. Fukunaga-Kalabis, and M. Herlyn, The three-dimensional human skin reconstruct model: a tool to study normal skin and melanoma progression. J Vis Exp, 2011(54).

133. Progress in the Biological Sciences in Relation to Dermatology--2. CUP Archive.

134. Stark, H.J., et al., Organotypic keratinocyte cocultures in defined medium with regular epidermal morphogenesis and differentiation. J Invest Dermatol, 1999. 112(5): p. 681-91.

135. Schmitz, S., Der Experimentator: Zellkultur. 3rd ed. 2011, Heidelberg:

Spektrum Akademischer Verlag.

136. Bisswanger, H., Enzyme assays. Perspectives in Science, 2014. 1(1): p. 41-55.

137. Jacques, C., et al., Percutaneous absorption and metabolism of [14C]-ethoxycoumarin in a pig ear skin model. Toxicol In Vitro, 2010. 24(5): p. 1426-34.

138. Nagelreiter, C., et al., Influence of drug content, type of semi-solid vehicle and rheological properties on the skin penetration of the model drug fludrocortisone acetate. Int J Pharm, 2013. 448(1): p. 305-12.

139. Abramo, F., et al., Development of a Short-Term Canine Full-Thickness Skin Organ Culture Method under Serum-Free Conditions. American Journal of Animal and Veterinary Sciences, 2016. 11: p. 61-69.

140. Suarato, G., et al., 3D-printed, pocket-size diffusion cells for skin permeation investigation. 2018.

141. Wever, B., S. Kurdykowski, and P. Descargues, Human Skin Models for Research Applications in Pharmacology and Toxicology: Introducing NativeSkin

® , the “Missing Link” Bridging Cell Culture and/or Reconstructed Skin Models and Human Clinical Testing. Applied In Vitro Toxicology, 2015. 1: p. 26.

142. Castagnoli, C., et al., Evaluation of donor skin viability: fresh and cryopreserved skin using tetrazolioum salt assay. Burns, 2003. 29(8): p. 759-67.

143. Reus, A.A., et al., Development and characterisation of an in vitro photomicronucleus test using ex vivo human skin tissue. Mutagenesis, 2011.

26(2): p. 261-8.

144. Legrand, C., et al., Lactate dehydrogenase (LDH) activity of the cultured eukaryotic cells as marker of the number of dead cells in the medium [corrected].

J Biotechnol, 1992. 25(3): p. 231-43.

145. Rodríguez-Luna, A., et al., Fucoxanthin-Containing Cream Prevents Epidermal Hyperplasia and UVB-Induced Skin Erythema in Mice. Marine drugs, 2018. 16(10): p. 378.

146. Lasnitzky, I., Progress in the Biological Sciences in Relation to Dermatology--2. 1993: CUP Archive.

147. Gharibi, B. and F.J. Hughes, Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells Transl Med, 2012. 1(11): p. 771-82.

148. Hebert, T.L., et al., Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis. Journal of tissue engineering and regenerative medicine, 2009. 3(7): p. 553-561.

149. Blaimauer, K., et al., Effects of epidermal growth factor and keratinocyte growth factor on the growth of oropharyngeal keratinocytes in coculture with autologous fibroblasts in a three-dimensional matrix. Cells Tissues Organs, 2006.

182(2): p. 98-105.

150. Pastore, S., et al., The epidermal growth factor receptor system in skin repair and inflammation. J Invest Dermatol, 2008. 128(6): p. 1365-74.

151. Zoller, N.N., et al., Evaluation of beneficial and adverse effects of

glucocorticoids on a newly developed full-thickness skin model. Toxicol In Vitro, 2008. 22(3): p. 747-59.

152. Dokmanovic, M., et al., Correlations among Stress Parameters, Meat and Carcass Quality Parameters in Pigs. Asian-Australasian journal of animal sciences, 2015. 28(3): p. 435-441.

153. Kraeling, M.E.K., et al., In vitro percutaneous penetration of silver nanoparticles in pig and human skin. Regulatory Toxicology and Pharmacology, 2018. 95: p. 314-322.

154. Lu, Z., et al., Towards the development of a simplified long-term organ culture method for human scalp skin and its appendages under serum-free conditions. Exp Dermatol, 2007. 16(1): p. 37-44.

155. Valk, J.B.F., et al., The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture. Vol. 18. 2004.

156. Valk, J.B.F., et al., Optimization of chemically defined cell culture media-Replacing fetal bovine serum in mammalian in vitro methods. Vol. 24. 2010.

1053-63.

157. Rohaya, M.A.W., et al., Stability of Human Salivary Lactate Dehydrogenase in the Present of Ethylenediaminetetraacetic Acid, Glycerol and Polyethylene Glycol at Various Temperatures: Preliminary Study. J of Biological Sciences, 2010. 10(6): p. 520-5.

158. de la Peña, V.A., et al., A standardised protocol for the quantification of lactate dehydrogenase activity in saliva. Archives of Oral Biology, 2004. 49(1): p.

23-7.

159. Cline, J., Skin and Coat.

160. Lambers, H., et al., Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci, 2006. 28(5): p. 359-70.

161. Agren, U.M., M. Tammi, and R. Tammi, Hydrocortisone regulation of hyaluronan metabolism in human skin organ culture. J Cell Physiol, 1995. 164(2):

p. 240-8.

162. Tanghetti, E.A., The role of inflammation in the pathology of acne. J Clin Aesthet Dermatol, 2013. 6(9): p. 27-35.

163. Layton, A.M., Optimal management of acne to prevent scarring and psychological sequelae. Am J Clin Dermatol, 2001. 2(3): p. 135-41.

164. Hensel, P., et al., Canine atopic dermatitis: detailed guidelines for diagnosis and allergen identification. BMC Vet Res, 2015. 11: p. 196.

165. Diesel, A., Cutaneous Hypersensitivity Dermatoses in the Feline Patient:

A Review of Allergic Skin Disease in Cats. Veterinary sciences, 2017. 4(2): p. 25.

166. Pierezan, F., et al., The skin microbiome in allergen-induced canine atopic dermatitis. Vet Dermatol, 2016. 27(5): p. 332-e82.

167. Spaulding, C.N., et al., Precision antimicrobial therapeutics: the path of least resistance? npj Biofilms and Microbiomes, 2018. 4(1): p. 4.

168. Bebell, L.M. and A.N. Muiru, Antibiotic use and emerging resistance—

how can resource-limited countries turn the tide? Global heart, 2014. 9(3): p.

347-358.

169. Ahuja, A.A., et al., Successful treatment of canine cutaneous leishmaniasis using radio-frequency induced heat (RFH) therapy. Am J Trop Med Hyg, 2012.

87(2): p. 261-3.

170. Pinelli, E., et al., Cellular and humoral immune responses in dogs experimentally and naturally infected with Leishmania infantum. Infect Immun, 1994. 62(1): p. 229-35.

171. farmhealthonline.com, skin conditions in pigs, in farmhealthonline.com.

172. Eriksson, S., et al., Genetic analysis of insect bite hypersensitivity (summer eczema) in Icelandic horses. Animal, 2008. 2(3): p. 360-5.

173. Hallamaa, R.E., Characteristics of equine summer eczema with emphasis on differences between Finnhorses and Icelandic horses in a 11-year study. Acta veterinaria Scandinavica, 2009. 51(1): p. 29-29.

174. Doster, A.R., skin diseases of swine. Diagnostic notes, 1995.

175. Verlinden, A., et al., Food allergy in dogs and cats: a review. Crit Rev Food Sci Nutr, 2006. 46(3): p. 259-73.

176. Jensen-Jarolim, E., et al., Pollen Allergies in Humans and their Dogs, Cats and Horses: Differences and Similarities. Clinical and Translational Allergy, 2015. 5(1): p. 15.

177. Bruet, V., et al., Prospective pilot study to detect dogs with non food-induced canine atopic dermatitis using Fourier transform infrared spectroscopy.

Vet Dermatol, 2016. 27(5): p. 356-e89.

178. Fisara, P., et al., A small-scale open-label study of the treatment of canine flea allergy dermatitis with fluralaner. Vet Dermatol, 2015. 26(6): p. 417-20, e97-8.

179. Dryden, M.W., Flea allergy dermatitis. Veterinary Manual.

180. Mueller, R.S., T. Olivry, and P. Prélaud, Critically appraised topic on

adverse food reactions of companion animals (2): common food allergen sources in dogs and cats. BMC Veterinary Research, 2016. 12(1): p. 9.

181. Ricci, R., et al., Identification of undeclared sources of animal origin in canine dry foods used in dietary elimination trials. J Anim Physiol Anim Nutr (Berl), 2013. 97 Suppl 1: p. 32-8.

182. Brachelente, C., et al., Cutaneous leishmaniasis in naturally infected dogs is associated with a T helper-2-biased immune response. Vet Pathol, 2005. 42(2):

p. 166-75.

183. Baneth, G., et al., Leishmania major infection in a dog with cutaneous manifestations. Parasites & Vectors, 2016. 9(1): p. 246.

184. Cavalcanti, A., et al., Canine cutaneous leishmaniasis caused by neotropical Leishmania infantum despite of systemic disease: A case report.

Parasitol Int, 2012. 61(4): p. 738-40.

185. Leishmaniasis, in Companion Vector Borne Diseases (CVBD).

186. Bjornsdottir, S., et al., Summer eczema in exported Icelandic horses:

influence of environmental and genetic factors. Acta Vet Scand, 2006. 48: p. 3.

187. Bos, M.E., et al., Livestock-associated MRSA prevalence in veal calf production is associated with farm hygiene, use of antimicrobials, and age of the calves. Prev Vet Med, 2012. 105(1-2): p. 155-9.

188. Colditz, I.G., Effects of the immune system on metabolism: implications for production and disease resistance in livestock. Livestock Production Science, 2002. 75(3): p. 257-268.

189. Omer, M.K., et al., Prevalence of antibodies to Brucella spp. in cattle, sheep, goats, horses and camels in the State of Eritrea; influence of husbandry