• Keine Ergebnisse gefunden

Datentabelle Durchflusszytometrie

8. Literaturverzeichnis

1. Pries, A.R. and W.M. Kuebler, Normal Endothelium, in The Vascular Endothelium I, S. Moncada and A. Higgs, Editors. 2006, Springer Berlin Heidelberg. p. 1-40.

2. WHO Health estimates 2000-2015. 29.05.2017]; Available from:

http://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.ht ml.

3. Cahill, P.A. and E.M. Redmond, Vascular endothelium – Gatekeeper of vessel health.

Atherosclerosis, 2016. 248: p. 97-109.

4. Danielli, J.F., Capillary permeability and oedema in the perfused frog. J Physiol, 1940. 98(1): p. 109-29.

5. Chambers, R. and B.W. Zweifach, INTERCELLULAR CEMENT AND CAPILLARY PERMEABILITY. Vol. 27. 1947. 436-463.

6. Luft, J.H., Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc, 1966. 25(6): p. 1773-83.

7. Klitzman, B. and B.R. Duling, Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Physiol, 1979. 237(4): p. H481-90.

8. Fåhræus, R. and T. Lindqvist, THE VISCOSITY OF THE BLOOD IN NARROW CAPILLARY TUBES. American Journal of Physiology -- Legacy Content, 1931.

96(3): p. 562-568.

9. Desjardins, C. and B.R. Duling, Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am J Physiol, 1990. 258(3 Pt 2): p. H647-54.

10. Henry, C.B. and B.R. Duling, Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol, 1999. 277(2 Pt 2): p. H508-14.

11. Rehm, M., et al., Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology, 2004. 100(5): p. 1211-23.

12. van Haaren, P.M., et al., Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy. Am J Physiol Heart Circ Physiol, 2003.

285(6): p. H2848-56.

13. Megens, R.T., et al., Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. J Vasc Res, 2007. 44(2): p. 87-98.

14. Reitsma, S., et al., The endothelial glycocalyx: composition, functions, and visualization. Pflügers Archiv - European Journal of Physiology, 2007. 454(3): p.

345-359.

15. Carey, D.J., Syndecans: multifunctional cell-surface co-receptors. Biochem J, 1997.

327 ( Pt 1): p. 1-16.

16. Fransson, L.A., et al., Novel aspects of glypican glycobiology. Cell Mol Life Sci, 2004.

61(9): p. 1016-24.

17. Iozzo, R.V., Perlecan: a gem of a proteoglycan. Matrix Biol, 1994. 14(3): p. 203-8.

18. Kinsella, M.G., S.L. Bressler, and T.N. Wight, The regulated synthesis of versican, decorin, and biglycan: extracellular matrix proteoglycans that influence cellular phenotype. Crit Rev Eukaryot Gene Expr, 2004. 14(3): p. 203-34.

19. Weinbaum, S., J.M. Tarbell, and E.R. Damiano, The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng, 2007. 9: p. 121-67.

20. Pries, A.R., T.W. Secomb, and P. Gaehtgens, The endothelial surface layer. Pflugers Arch, 2000. 440(5): p. 653-66.

21. Mulivor, A.W. and H.H. Lipowsky, Inflammation- and ischemia-induced shedding of venular glycocalyx. American Journal of Physiology - Heart and Circulatory Physiology, 2004. 286(5): p. H1672-H1680.

22. Nandi, A., P. Estess, and M.H. Siegelman, Hyaluronan anchoring and regulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44. J Biol Chem, 2000. 275(20): p. 14939-48.

23. Weigel, P.H., V.C. Hascall, and M. Tammi, Hyaluronan synthases. J Biol Chem, 1997.

272(22): p. 13997-4000.

24. Starling, E.H., On the Absorption of Fluids from the Connective Tissue Spaces. The Journal of Physiology, 1896. 19(4): p. 312-326.

25. Adamson, R.H., et al., Oncotic pressures opposing filtration across non-fenestrated rat microvessels. The Journal of Physiology, 2004. 557(Pt 3): p. 889-907.

26. Jacob, M., et al., The endothelial glycocalyx affords compatibility of Starling's principle and high cardiac interstitial albumin levels. Cardiovasc Res, 2007. 73(3):

p. 575-86.

27. Levick, J.R., Revision of the Starling principle: new views of tissue fluid balance. The Journal of Physiology, 2004. 557(Pt 3): p. 704-704.

28. Curry, F.E. and C.C. Michel, A fiber matrix model of capillary permeability.

Microvasc Res, 1980. 20(1): p. 96-9.

29. Chappell, D., et al., Expedition Glykokalyx. Der Anaesthesist, 2008. 57(10): p. 959-969.

30. Vink, H. and B.R. Duling, Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol Heart Circ Physiol, 2000. 278(1):

p. H285-9.

31. Bruegger, D., et al., Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2005. 289(5): p. H1993-H1999.

32. Rehm, M., et al., Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology, 2001. 95(4): p. 849-56.

33. Rehm, M., et al., Changes in intravascular volume during acute normovolemic hemodilution and intraoperative retransfusion in patients with radical hysterectomy. Anesthesiology, 2000. 92(3): p. 657-64.

34. Chappell, D., et al., Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx. Anesthesiology, 2007. 107(5): p. 776-84.

35. Rehm, M., et al., Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation, 2007.

116(17): p. 1896-906.

36. Nieuwdorp, M., et al., Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes, 2006. 55(2): p. 480-6.

37. Vlodavsky, I., et al., Heparanase, heparin and the coagulation system in cancer progression. Thromb Res, 2007. 120 Suppl 2: p. S112-20.

38. Vink, H., A.A. Constantinescu, and J.A.E. Spaan, Oxidized Lipoproteins Degrade the Endothelial Surface Layer. Implications for Platelet-Endothelial Cell Adhesion, 2000. 101(13): p. 1500-1502.

39. van den Berg, B.M., et al., Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am J Physiol Heart Circ Physiol, 2006. 290(2): p. H915-20.

40. Nelson, A., et al., Increased levels of glycosaminoglycans during septic shock:

relation to mortality and the antibacterial actions of plasma. Shock, 2008. 30(6):

p. 623-7.

41. Henry, C.B.S. and B.R. Duling, TNF-α increases entry of macromolecules into luminal endothelial cell glycocalyx. American Journal of Physiology - Heart and Circulatory Physiology, 2000. 279(6): p. H2815-H2823.

42. Ostrowski, S.R. and P.I. Johansson, Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg, 2012. 73(1): p. 60-6.

43. Spannagl, M. and G. Moessmer, Hämostaseologische Globaltests. Hämostaseologie, 2006. 26(1): p. 27-37.

44. Pötzsch, B. and K. Madlener, Globaltests und Einzelfaktoren, in Hämostaseologie, B.

Pötzsch and K. Madlener, Editors. 2010, Springer Berlin Heidelberg. p. 861-866.

45. Beipackzettel: "Thromborel(R) S". Dade Behring.

46. Smith, S.A., P.C. Comp, and J.H. Morrissey, Phospholipid composition controls thromboplastin sensitivity to individual clotting factors. Journal of Thrombosis and Haemostasis, 2006. 4(4): p. 820-827.

47. Quick, A.J., M. Stanley-Brown, and F.W. Bancroft, A STUDY OF THE COAGULATION DEFECT IN HEMOPHILIA AND IN JAUNDICE.*. The American Journal of the Medical Sciences, 1935. 190(4).

48. Kirkwood, T.B., Calibration of reference thromboplastins and standardisation of the prothrombin time ratio. Thromb Haemost, 1983. 49(3): p. 238-44.

49. WHO, Annex 3: Guidelines for thromboplastins and plasma used to

control oral anticoagulant therapy. WHO Technical Report Series, 1999. No. 889.

50. Beipackzettel: "Dade(R) Actin(R) FSL Reagenz zur Bestimmung der aPTT. Siemens.

51. Beipackzettel: "BC-Thrombin-Reagenz". Siemens.

52. Johnson, K.L., Basics of flow cytometry. Clinical laboratory science : journal of the American Society for Medical Technology, 1992. 5(1): p. 22-24.

53. Goetzman, E.A., Flow cytometry: basic concepts and clinical applications in immunodiagnostics. Clinical laboratory science : journal of the American Society for Medical Technology, 1993. 6(3): p. 177-182.

54. Introduction to Flow Cytometry Web-Based Training. 06.08.2014]; Available from:

http://www.bdbiosciences.com/services/training/itf_launch.jsp.

55. Baldridge, C.W.G.R.W., THE EXTRA RESPIRATION OF PHAGOCYTOSIS. American Journal of Physiology -- Legacy Content, 1932. 103(1): p. 235-236.

56. Fantone, J.C. and P.A. Ward, Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol, 1982. 107(3): p. 395-418.

57. Emmendörffer, A., et al., A fast and easy method to determine the production of reactive oxygen intermediates by human and murine phagocytes using dihydrorhodamine 123. Journal of Immunological Methods, 1990. 131(2): p. 269-275.

58. Rothe, G., A. Oser, and G. Valet, Dihydrorhodamine 123: a new flow cytometric indicator for respiratory burst activity in neutrophil granulocytes.

Naturwissenschaften, 1988. 75(7): p. 354-355.

59. Tem International GmbH: Thromboelastometrie. 07.08.2014]; Available from:

http://www.rotem.de/methodik/thromboelastometrie/.

60. Hartert, H., Blutgerinnungsstudien mit der Thrombelastographie, einem neuen Untersuchungsverfahren. Klinische Wochenschrift, 1948. 26(37-38): p. 577-583.