• Keine Ergebnisse gefunden

Enck AH, Berger UV, Yu AS (2001). Claudin-2 is selectively expressed in proximal nephron in mouse kidney. Am J Physiol Renal Physiol. 281: F966-74.

Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987). Lipofection: a highly efficient, lipid-mediated DNA-transfection proce-dure. Proc Natl Acad Sci U S A. 84: 7413-17.

Florian P, Amasheh S, Lessidrensky M, Todt I, Blödow A, Ernst A, Fromm M, Gitter AH (2003). Claudins in the tight junctions of stria vascularis marginal cells. Biochem Biophys Res Commun. 304: 5-10.

Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993). Oc-cludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 123: 1777-88.

Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998a). Claudin-1 and -2: novel inte-gral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 141: 1539-50.

Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998b). A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol. 143: 391-401.

Furuse M, Sasaki H, Tsukita S (1999). Manner of interaction of heterogeneous claudin spe-cies within and between tight junction strands. J Cell Biol. 147: 891-903.

Furuse M, Furuse K, Sasaki H, Tsukita S (2001). Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol. 153: 263-72.

Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002). Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol. 156: 1099-111.

Gekle M, Wünsch S, Oberleithner H, Silbernagl S (1994). Characterization of two MDCK-cell subtypes as a model system to study principal MDCK-cell and intercalated MDCK-cell properties. Pflu-gers Arch. 428: 157-62.

Gonzalez–Mariscal L, Avila-Flores A, Betanzos A (2001). The relationship between structure and function of tight junctions. In Cereijido M, Anderson JM (Eds). Tight Junctions (pp 89-119). Boca Raton.

González-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003). Tight junction proteins. Prog Biophys Mol Biol. 81: 1-44.

Gumbiner BM (1993). Breaking through the tight junction barrier. J Cell Biol. 123: 1631-3.

Gu JM, Lim SO, Park YM, Jung G (2008). A novel splice variant of occludin deleted in exon 9 and its role in cell apoptosis and invasion. FEBS J. 275: 3145-56.

Heiskala M, Peterson PA, Yang Y (2001). The roles of claudin superfamily proteins in paracellular transport. Traffic 2: 93-8.

Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005). Tricellulin consti-tutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol. 171: 939-45.

Kamimura Y, Chiba H, Utsumi H, Gotoh T, Tobioka H, Sawada N (2002). Barrier function of microvessels and roles of glial cell line-derived neurotrophic factor in the rat testis. Med Elec-tron Microsc. 35: 139-45.

Kausalya PJ, Amasheh S, Günzel D, Wurps H, Müller D, Fromm M, Hunziker W (2006).

Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport func-tion of Claudin-16. J Clin Invest. 116: 878-91.

Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002). Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron seg-ments. J Am Soc Nephrol. 13: 875-86.

Kojima S, Rahner C, Peng S, Rizzolo LJ (2002). Claudin-5 is transiently expressed during the development of the retinal pigment epithelium. J Membr Biol. 186: 81-8.

Kreusel KM, Fromm M, Schulzke JD, Hegel U (1991). Cl-secretion in epithelial monolayers of mucus-forming human colon cells (HT-29/B6). Am J Physiol. 261: C574-82

Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, Huber O, Schulzke JD, Fromm M (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol. Biol. Cell 20, epub ahead of print

Madin SH, Darby NB Jr (1958). Established kidney cell lines of normal adult bovine and ovine origin. Proc Soc Exp Biol Med. 98: 574-6.

McCarthy WH, Shaw HM, McCarthy SW, Rivers JK, Thompson JF (1996). Cutaneous mela-nomas that defy conventional prognostic indicators. Semin Oncol. 23: 709-13.

Morita K, Sasaki H, Furuse M, Tsukita S (1999). Endothelial claudin: claudin-5/TMVCF con-stitutes tight junction strands in endothelial cells. J Cell Biol. 147: 185-94.

Morita K, Sasaki H, Furuse K, Furuse M, Tsukita S, Miyachi Y (2003). Expression of claudin-5 in dermal vascular endothelia. Exp Dermatol. 12: 289-95.

Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003). Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol. 161:

653-60.

Nitz T, Eisenblätter T, Psathaki K, Galla HJ (2003). Serum-derived factors weaken the barrier properties of cultured porcine brain capillary endothelial cells in vitro. Brain Res. 981: 30-40.

Poliak S, Matlis S, Ullmer C, Scherer SS, Peles E (2002). Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. J Cell Biol. 159: 361-72.

Rahner C, Mitic LL, Anderson JM (2001). Heterogeneity in expression and subcellular local-ization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 120: 411-22.

Reiter B, Kraft R, Günzel D, Zeissig S, Schulzke JD, Fromm M, Harteneck C (2006).

TRPV4-mediated regulation of epithelial permeability. FASEB J. 20: 1802-1812.

Reuss, L (1992). Tight junction permeability to ions and water. In Cereijido M. (Ed). Tight Junctions (pp. 49-66). London, CRC Press.

Reyes JL, Lamas M, Martin D, del Carmen Namorado M, Islas S, Luna J, Tauc M, González-Mariscal L (2002). The renal segmental distribution of claudins changes with development.

Kidney Int. 62: 476-87.

Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000).

Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell. 11: 4131-42.

Sanger F, Nicklen S, Coulson AR (1977). DNA sequencing with chain-terminating inhibitors.

Proc Natl Acad Sci USA 74: 5463-7.

Schneeberger EE, Lynch RD (1992). Structure, function, and regulation of cellular tight junc-tions. Am J Physiol. 262: L647-61.

Schulzke JD, Gitter AH, Mankertz J, Spiegel S, Seidler U, Amasheh S, Saitou M, Tsukita S, Fromm M (2005). Epithelial transport and barrier function in occludin-deficient mice. Bio-chim Biophys Acta. 1669: 34-42.

Sirotkin H, Morrow B, Saint-Jone B, Paech A, Das Gupta R, Pantajali SR, Skoultchi A, Weissman SM, Kucherlapati R (1997). Identification, Characterisation, and precise mapping of a human gene encoding a novel membrane spanning protein from the 22q11 region deleted in velo-cardio-facial syndrome. Genomics 42: 245-51

Shprintzen RJ, Goldberg RB, Young D, Walford L (1981). The velo-cardio-facial syndrome:

a clinical and genetic analysis. Pedeatrics 67: 167-72

Shprintzen RJ (2008). Velo-cardio-facial syndrome: 30 Years of study. Dev Disabil Res Rev.

14: 3-10.

Stähelin LA (1973). Further observations on the fine structure of freeze-cleaved tight junc-tions. J Cell Sci. 13: 763-86.

Tebbe B, Mankertz J, Schwarz C, Amasheh S, Fromm M, Assaf C, Schultz-Ehrenburg U, Sánchez Ruderish H, Schulzke JD, Orfanos CE (2002). Tight junction proteins: a novel class of integral membrane proteins. Expression in human epidermis and in HaCaT keratinocytes.

Arch Dermatol Res. 294: 14-8.

Tsukita S, Furuse M, Itoh M (2001). Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2: 285-93.

Ussing HH, Zerahn K (1999). Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. J Am Soc Nephrol. 10: 2056-65. (Reprinted from Acta Physiol Scand. 23: 110-27, 1951.)

Wang F, Daugherty B, Keise LL, Wei Z, Foley JP, Savani RC, Koval M (2003). Heterogene-ity of claudin expression by alveolar epithelial cells. Am J Respir Cell Mol Biol. 29: 62-70.

Wen H, Watry DD, Marcondes MC, Fox HS (2004). Selective decrease in paracellular con-ductance of tight junctions: role of the first extracellular domain of claudin-5. Mol Cell Biol.

24: 8408-17.

Wolburg H, Wolburg-Buchholz K, Liebner S, Engelhardt B (2001). Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci Lett. 307: 77-80.