• Keine Ergebnisse gefunden

1 Frost & Sullivan, Global additive manufacturing market, forecast to 2025, MB74-10, 2016.

2 K. Bruen, K. Davidson, D. F. E. Sydes, P. M. Siemens, Benefits of UV-curable coatings, European Coatings Journal, 2004, 04, 42-55.

3 M. Sangermano, N. Razza, J. V. Crivello, Cationic UV-curing: technology and applications, Macromolecular Materials and Engineering, 2014, 299, 7, 775-793.

4 S. P. Pappas, UV curing by radical, cationic and concurrent radical-cationic polymerization, Radiat Phys. Chem., 1985, 25, 633-641.

5 J. Dai, S. Ma, X. Liu, L. Han, Y. Wu, X. Dia, J. Zhu, Synthesis of bio-based unsaturated polyester resins and their application in waterborne UV-curing coatings, Progress in Organic Coatings, 2015, 78, 49-54.

6 S. J. Dorganm, D. M. Knauss, H. A. Al-Muallem, T. Huang, D. Vlassopoulos, Melt rheology of dendritically branched polystyrenes, Macromolecules, 2003, 36, 380-388.

7 S. J. Park, S. Shanbhag, R. G. Larson, A hierarchical algorithm for predicting the linear viscoelastic properties ofpolymer melts with long-chain branching, Rheol Acta, 2005, 3, 319-330.

8 N. Inkson, R. Graham, T. McLeish, D. Groves, C. Fernyhough, Viscoelasticity of monodisperse comb polymer melts, Macromol, 2006, 39, 4217-4227.

9 F. Snijkers, R. Pasquino, P. Olmsted, D. Vlassopoulos, Perspectives on the viscoelasticity and flow behavior of entangled linear and branched polymers, J. Phys. Condens. Matt, 2015, 27, 473002-473006.

10 H.-C. Kim, T. Magbitang, V. Y. Lee, J. N. Cha, H.-L. Wang, W. R. Chung, R. D. Miller, G.

Dubois, W. Volksen, J. L. Hedrik, Oriented perforated nanoporous lamellar organosilicates templates from topologically unsymmetrical dendritic-linear block polymers, Andgewandte Chemie, 2005, 44, 46, 7574-7580.

11 M. Ganjaee Sari, N. Stribeck, S. Moradian, A. Zeinolebadi, S. Bastani, S. Botta, E.

Bakhshandeh, Dynamic mechanical behavior and nanostructure morphology of hyperbranched-modified polypropylene blends, Polym. Int., 2014, 63, 195–205.

12 Y. Saruwatari, RadTech Int. UV & EB Tech. Expo & Conf., 2012.

13 P. J. Flory, Molecular size distribution in three dimensional polymers. I. Gelation, Am. Chem.

Soc., 1941, 63, 11, 3083-3090.

14 W. H. Stockmayer, Theory of molecular size distribution and gel formation in branched-chain polymers, J. Chem. Phys., 1943, 11, 45-55.

15 Q. Yu, S. Xu, H. Zhang, Y. Ding, S. Zhu, Comparison of reaction kinetics and gelation behaviors in atom transfer, reversible addition-fragmentation chain transfer and conventional free radical copolymerization of oligo(ethylene glycol) methyl ether methacrylate and oligi(ethylene glycol) dimethacrylate, Polymer, 2009, 50, 3488-3494.

16 J. Rosselgong, S. P. Armes, W. Barton, D. Price, Synthesis of highly branched methacrylic copolymers: observation of near-ideal behavior using RAFT polymerisation, Macromol., 2009, 42, 5919-5924.

17 M. Yan, F.-Y. Lin, E. W. Cochran, Dynamic of hyperbranched polymers derived from acrylated epoxidized soybean oil, Polymer, 2017, 125, 117-125.

18 X. Zhang, Modification and applications of hyperbranched aliphatic polyesters based on dimethylolpropionic acid, Polym. Int., 2011, 60, 153-166.

19 K. K. Jena, K. V. S. N. Raju, B. Prathab, T. M. Aminabhavi, Hyperbranched polyesters:

synthesis, characterization, and molecular simulations, J. Phys. Chem., 2007, 111, 8801-8811.

20 A. Carlmark, E. Malmström, M. Malkoch, Dendritic architectures based on bis-MPA:

functional polymeric scaffolds for application driven research, Chem. Soc. Rev., 2013, 42, 5858.

173

21 K. Olofsson, O. C. J. Andrén, M. Malkoch, Recent advances on crosslinked dendritic networks, J. Appl. Polym. Sci., 2014, 131,39876.

22 M. Johansson, T. Glauser, A. Jansson, A. Hult, E. Malmström, H. Claesson, Design of coating resins by changing the macromolecular architecture: solid and liquid coating systems, Progress in Organic Coating, 2003, 48, 194-200.

23 J. Wang, T. Xu, Facile construction of multivalent targeted drug delivery system from Boltorn series hyperbranched aliphatic polyester and folic acid, Pol. Adv. Tech., 2011, 22, 5, 763-767.

24 M. Ifran, M. Seiler, Encapsulation using hyperbranched polymers: from research and technologies to emerging application, Ing. Eng. Chem. Res., 2010, 49, 3, 1169-1196.

25 A. Aboudzadeh, M. Fernandez, M. E. Munoz, A. Santamaría, D. Mecerreyes, Ionic supramolecular network fully based on chemicals coming from renewable resources, Macromol. Rapid Commun., 2014, 35, 460-465.

26 P. Busson, J. Örtegen, H. Ihre, U. W. Gedde, A. Hult, G. Andersson, Ferroelectric liquid crystalline dendrimers: synthesis, thermal behavior and electrooptical characterization, Macromolecules, 2001, 34, 5, 1221-1229.

27 K. L. Wooley, J. M. J. Fréchet, C. J. Hawker, Influence of shape on the reactivity and properties of dendritic, hyperbranched and linear aromatic polyesters, Polymer, 1994, 35, 4489.

28 L. Tang, Y. Fang, Z. Fu, Chem. Res. Chinese U., 2003, 20, 248-252.

29 M. Johansson, T. Glauser, G. Rospo, A. Hult, Radiation curing of hyperbranched polyester resins, J. of Applied Polymer Science, 2000, 75, 612-618.

30 L. E. Schmidt, Y. Leterrier, D. Schmäh, J.-A. E. Manson, D. James, E. Gustavsson, L. S.

Svensson, Conversion analysis of acrylated polymers UV cured below their ultimate glass transition temperature, J. of Applied Polymer Science, 2007, 104, 2366-2376.

31 F. Gao, S. R. Schricker, Y. Tong, B. M. Culbertson, Hyperbranched polyester with mixed methacryloyl andaliphatic ester temrinal groups: synthesis, characterization, and application in dental restorative formulations, J. Macromol. Sci. – Pure Appl. Chem., 2002, A39, 367-386.

32 E. K. Viljanen, M. Skrifvars, P. K. Vallittu, Dendrimers/methyl methacrylate co-polymers:

residual methyl methacrylate and degree of conversion, J. Biomater. Sci. Polymer Edn., 2005, 16, 1219-1231.

33 J. E. Klee, C. Schneider, D. Hölter, A. Burgath, H. Frey, R. Mülhaupt, Hyperbranched polyesters and their application in dental composites: monomers for low shrinking composites, Polymers for Advanced Technologies, 2001, 12, 346-354.

34 H. Mukohyama, H. Oka, K. Shibusawa, US patent, 1989, 4, 886-840.

35 E. Higgins, P. Collins, Urticarial allergic contact dermatitis caused by UV-cured printing ink, Contact Dermat., 2012, 66, 340-341.

36 K. Aalto-Korte, M.-L. Henriks-Eckerman, O. Kuuliala, R. Jolanki, Occupational methacrylate and acrylate allergy-cross-reactions and possible screening allergens, Contact Dermat. 2010, 63, 301-312.

37 H. Tanii, K. Hashimoto, Structure-toxicity relationship of acrylates and methacrylates, Toxicol. Lett. 1982, 125-129.

38 J. Autian, Structure-toxicity relationships of acrylic acid, Environ. Health Perspect. 1975, 11, 141-152.

39 R. M. LoPachin, T. Gavin, A. DeCaprio, D. S. Barber, Application of the hard and soft, acid and bases (HSAB) theory to toxicant-target interactions, Chem. Res. in Toxicol. 2012, 25, 239-251.

40 H.-P. Gelbke, R. Ellis-Hutchings, H. Müllerschön, S. Murphy, M. Pemberton, Toxicological assessment of lower alkyl methacrylate esters by a category approach, Regul. Toxicol.

Pharmacol. 2018, 92, 104-127.

174

41 T. Salthammer, M. Bednarek, F. Fuhrmann, R. Funaki, S.-I. Tanabe, Formation of organic indoor air pollutants by UV-curing chemistry, Journal of Photochemistry and Photobiology A Chemistry, 2002, 152 (1-3), 1-9.

42 G. Werpy, T.P. U.S. Department of Energy: Energy Efficiency and Renewable Energy, 2004.

43 T. Willke, K. D. Vorlop, Biotechnological production of itaconic acid, Appl. Microbiol.

Biotechnol, 2001, 56, 289–295.

44 S. Krull, M. Lünsmann, U. Prüße, A. Kuenz, Ustilago Rabenhorstiana - An Alternative Natural Itaconic Acid Producer, 2020, 24, 1–16.

45 B. C. Saha, G. J. Kennedy, Phosphate limitation alleviates the inhibitory effect of manganese on itaconic acid production by Aspergillus terreus, Biocatal. Agric. Biotechnol, 2019, 18, 101016.

46 J. J. Bozell, G. R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates- the US Department of Energy’s “Top 10” revisited, Green Chemistry, 2010, 12, 539-554.

47 J.-T. Miao, S. Peng, M. Ge, Y. Li, J. Zhong, Z. Weng, L. Wu, L. Zheng, 3D printing fully biobased heat resistant photoactive acrylates from aliphatic biomass, ACS Sustainable Chem.

Eng., 2020.

48 L. Fertier, H. Koleilat, M. Stemmelen, O. Giani, C. Joly-Duhamel, V. Lapinte, J.-J. Robin, The use of renewable feedstock in UV-curable materials – A new age for polymers and green chemistry, Progress in Polymer Science, 2013, 38, 932-962.

49 M. Carlsson, C. Habenicht, L. C. Kam, M. J. Jr. Antal, N. Bian, R. J. Cunningham, M. Jr.

Jones, Study of the Sequential Conversion of Citric to Itaconic to Methacrylic Acid in Near-Critical and Supercritical Wate, Ind. Eng. Chem. Res., 1994, 33 (8), 1989-1996.

50 J. C. Lansing, R. E. Murray, B. R. Moser, Biobased Methacrylic Acid via Selective Catalytic Decarboxylation of Itaconic Acid. ACS Sustainable Chem. Eng., 2017, 5 (4), 3132-3140.

51 T. Robert, S. Eschig, T. Biemans, F. Scheiffer, Bio-based polyester itaconates as binder resins for UV-curing offset printing inks, J. Caot. Technol. Res., 2018, 16, 689-697.

52 K. S. Anseth, C. M. Wang, C. N. Bowman, Reaction behavior and kinetic constants for photopolymerisations of multi(meth)acrylate monomers, Polymers, 1994, 35, 15, 3243.

53 K. Miyazaki, T. Horibe, Polymerization of multifunctional methacrylates and acrylates, Journal of Biomedical Materials Research, 1988, 22, 1011-1022.

54 K. C. McCurdy, K. J. Laidler, Thermochemical studies of some acrylate and methacrylate polymerizations in emulsion systems, Canadian Journal of Chemistry, 1964, 42, 818-824.

55 C. Iojoiu, M. J. M. Abadie, V. Harabagiu, M. Pinteala, B. C. Simionescu, Synthesis and photocrosslinking of benzyl acrylate substituted polydimethylsiloxanes, European Polymer Journal, 2000, 36, 2115-2123.

56 R. Harikrishna, S. M. Bhosle, S. Ponrathnam, Synthesis and photopolymerization kinetics of linear alicyclic urethane acrylate macromonomer in presence of reactive diluents, J. Mater. Sci., 2011, 46, 2221-2228.

57 C. S. B. Ruiz, L. D. B. Machado, J.E. Volponi, E. S. Pino, Influence of sample composition and processing parameters on the UV cure of clear coatings, Nuclear Instruments and Methods in Physics Research B, 2003, 208, 309-313.

58 D. E. Roberts, Heats of polymerization. A summary of published values and their relation to structure, Journal of Research of the National Bureau of Standards, 1950, 221-232.

59 A. G. Evans, E. Tyrrall, Heats of polymerization of acrylic acid derivates, Journal of Polymer Science, 1947, 2, 4, 387-396.

60 J. Britner, H. Ritter, Methylenelactide: vinyl polymerization and spatial reactivity effects, J.

Org. Chem., 2016, 2378-2389.

61 O. Ito, Y. Arito, M. Matsuda, Captodative effects on rates of addition reactions of arylthiyl radicals to disubstituted olefins, J. Chem. Soc., 1988, 869-873.

175

62 S. Chakraborty, L. Ju, A. A. Galuska, R. B. Moore, S. R. Turner, Suspension polymerization of itaconic acid diesters, J. Appl. Polym. Sci. 2018, 135, 46417.

63 F. Lopez-Carrasquero, A. M. de Ilarduya, M. Cardenas, M. Carrillo, M. L. Arnal, E. Laredo, C. Torres, B. Mendez, A. J. Muller, New comb-like poly(n-alkyl itaconate)s with crystalizable side chains, Polymer (Guildf). 2003, 44, 4969–4979.

64 J. Retuert, M. Y. Pedram, F. Martiacutenez, M. Jeria, Soluble Itaconic Acid-Ethylene Glycol Polyesters, Bull. Chem. Soc. Jpn. 1993, 66, 1707–1708.

65 V. Arrighi, I. J. McEwen, P. F. Holmes, Dielectric Relaxations in Poly(di-n-alkyl itaconate)s, Macromolecules 2004, 37, 6210–6218

66 R. Wang, J. Ma, X. Zhou, Z. Wang, H. Kang, L. Zhang, K.-C. Hua, J. Kulig, Design and preparation of a novel cross-linkable, high moleculare weight, and bio-based elastomer by emuslion polymerisation, Macromolecules, 2012, 45, 6830-6939.

67 H. Inciarte, M. Orozco, M. Fuenmayor, F. López-Carrasquero, H. Oliva, Comb-like copolymers of n-alkyl monoitaconates and styrene, e-Polymers 2006, 56.

68 M. E. Báez, E. Jiménez, E. Laredo, M. García-Alvarez, A. M. de Ilarduya, F. López-Carrasquero, Comblike complexes of poly(itaconic acid) and poly(mono methyl itaconate) and alkyltrimethylamonium cationic surfactants, Polym. Bull. 2007, 529-539.

69 T. Robert, S. Friebel, A versatile building block for renewable polyesters with enhanced functionality, Green Chemistry, 2016, 18, 2922-2934.

70 S. Brännström, M. Finnveden, M. Johansson, M. Martinelle, E. Malmström, Itaconate based polyesters: selectivity and performance of esterification catalyst, European Polymer Journal, 2018, 103, 370-377.

71 V. V. Panic, S. I: Seslja, I. G. Popovic, V. D. Spasojevic, A. R. Popovic, V. B. Nikolic, P. M.

Spasojevic, Simple one-pot synthesis of fully biobased unsaturated resins base on itaconic acid, Biomacromolecules, 2017, 18, 12, 3881-3891.

72 J. Dai, S. Ma, N. Teng, X. Dai, X. Shen, S. Wang, X. Liu, J. Zhu, 2,5-furandicarboxylic acid- and itaconic acid-derived fully biobased unsaturated polyesters and their cross-linked network, Ind. Eng. Chem. Res., 2017, 56, 10, 2650-2657.

73 D. G. Barrett, T. J: Merkel, J. C. Luft, M. N. Yousaf, One-step Synthesis of photocurable polyesters based on a renewable resource, Macromolecules, 2010, 43, 9660-9667.

74 B. Guo, Y. Chen, Y. Li, L. Zhang, W. Y. Zhou, A. B. M. Rabie, Biobased poly(propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications, Biomacromolecules, 2011, 12, 1312-1321.

75 O. Goerz, H. Ritter, Polymers with shape memory effect from renewable resources:

crosslinking of polyesters based on isosorbide, itaconic acid and succinic acid, Polymer Int., 2013, 62, 709-712.

76 S. Paul, Y. Zhu, C. Romain, R. Brooks, P. K. Saini, C. K. Williams, Ring-opening copolymerisation (ROCOP): synthesis and properties of polyesters and polycarbonates, Chem.

Commun., 2015, 30, 51, 6459-6479.

77 D. M. Patil, G. A. Phalak, S. T. Mhaske, Design and synthesis of bio-based UV curable PU acrylate resin from itaconic acid for coating applications, Designed Monomers and Polymers, 2016, 20, 1, 269-282.

78 L. B. Mehta, K. K. Wadgaonkar, R. N. Jagtap, Synthesis and characterisation of high bio-based content unsaturated polyester resin for wood coating from itaconic acid: effect of various reactive diluents as an alternative to styrene, Journal of Dispersion Science and Technology, 2019, 40, 5, 756-765.

79 P. Qi, H.-L. Chen, H. T. H. Nguyen, C.-C. Lin, S. A. Miller, Synthesis of biorenewable and water-degradable polylactam esters from itaconic acid, Green Chemistry, 2016, 18, 4170-4175.

80 Y. Jiang, K. Loos, Enzymatic synthesis of biobased polyesters and polyamides, Polymers, 2016, 8, 7, 243.

176

81 P. Li, S. Ma, J. Dai, X. Lui, Y Jiang, S. Wang, J. Wei, J. Chen, J. Zhu, Itaconic acid as a green alternative to acrylic acid for producing a soybean oil-based thermoset: synthesis and properties, ACS Sustainable Chem. Eng. 2017, 5, 1228-1236.

82 B. R. Baker, R. E. Schaub, J. H. Williams, An antimalarial alkaloid from hydrangea. XI.

Synthesis of 3-[β-keto-γ-(3- and 4-hydroxymethyl-2-pyrrolidyl)propyl]-4-quinazolones, American Cyanamid Co. 1952, 116-131.

83 A. León, L. Gargallo, D. Radic, A. Horta, Synthesis and solution properties of comb-like poly(mono-n-alkyl-itaconates): 2. Poly(monododecyl itaconate), Polymer 1991, 32, 761-763.

84 E. Domínguez, C. Laborra, A. Linaza, A. Madoz, I. A. Katime, A series of mono and diesters of itaconic acid: synthesis and structural determination, Chemical Monthly 1989, 120, 743-748.

85 J. Tsibouklis, M. Petty, Y.-P. Song, R. Richardson, J. Yarwood, M. C. Petty, W. J. Feast, Docosanoyl itaconate/1-docosylamine alternate-layer Langmuir boldgett films:

polymerization, pyroelectric properties and infrared spectroscopic studies, J. Mater. Chem.

1991, 5, 819-826.

86 P. Ferraboschi, S. Casati, P. Grisenti, E. Santaniello, Selective enzymatic transformations of itaconic acid derivatives: an access to potentially useful building blocks, Tetrahedron 1994, 10, 3251-3258.

87 R. M. Ram, I. Charles, Selective esterification of aliphatic nonconjugated carboxylic acids in the presence of aromatic or conjugated carboxylic acids catalyzed by NiCl2.6H2O, Tetrahedron 1997, 53, 7335-7340.

88 G. Kumar, S. Aggarwal, Studies on the copolymerization of n-alkyl itaconates with styrene, Indian J. Chem. 2003, 42A, 2523-2526.

89 Y. Zhu, Z. Hua, Y. Song, W. Wu, X. Zhou, J. Zhou, J. Shi, Higlhy chemoselective esterification for the synthesis of monobutyl itaconate catalyzed by hierarchical porous zeolites, J. Catal. 2013, 299, 20-29.

90 A. Matsumoto, S. Umehara, H. Watanabe, T. Otsu, Poly(N-n-butylitaconimide). Preparation and characterization, J. Polym. Sci.: Part B 1993, 31, 527-535.

91 R. D. Prabha, J. Santhanalakshmi, R. ArunPrasath, Analysis of micellar behavior of as synthesized sodium itaconate monoesters with various hydrophobic chain lengths, in aqueous media, Res. J. Chem. Sci. 2013, 3, 43-49.

92 J.-V. Richard, C. Delaite, G. Riess, A.-S. Schuller, A comparative study of the thermal properties of homologous series of crystallizable n-alkyl maleate and itaconate monoesters, Thermochim. Acta 2016, 623, 136-143.

93 L. Saleh-Ghadimi, M. Fathi, A. Akbar Entezami, Hetero stqr-shaped poly (N-isopropylacrylamide-co-itaconic acid) copolymer prepared by glucose core as ATPR initiator, International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 63, 246-255.

94 A. Jahandideh, N. Esmaeili, K. Muthukumarappan, Synthesis and characterization of novel star-shaped itaconic acid based thermosetting resins, J. Polym. Environ., 2018, 26, 2072-2085

95 D. Akesson, M. Skrifvars, S. Lv, W. Shi, K. Adekunle, J. Seppälä, M. Turunen, Preparation of nanocomposites from biobased thermoset resins by UV-curing, Progress in Organic Coatings, 2010, 67, 281-286

96 E. Yildiz, H. Güçlü, H. Yildirim, A. Kuyulu, A. Güngör, Effects of reactive diluents on the mechanical and physical properties of UV-curable acrylated urethane prepolymer, Andgewandte Makromolekulare Chemie, 1995, 230, 105-115.

97 M. Fies, U. Poth, O. Seewald, W. Bremser, US Patent 8999512, 2015.

98 H. Lu, J. W. Stansbury, J. Nie, K. A. Berchtold, C. N. Bowman, Development of highly reactive mono-(meth)acrylates as reactive diluents for dimethylacrylates-based dental resin systems, Biomaterials, 2005, 26, 1329-1336.

99 C. Decker, K. Moussa, A new class of highly reactive acrylic monomers, Makromol. CHem.

Rapid Commun., 1990, 11, 159-167.

177

100 J. J. La Scala, J. M. Sands, J. A. Orlicki, E. J. Robinette, G. R. Palmese

101 A. Campanella, J. J. La Scala, R. P. Wool, The use of acrylated fatty acid methyl esters as styrene replacements in triglyceride-based thermosetting polymers, Polymer Engineering and Science, 2009, 2384-2392.

102 S. K. Yadav, K. M. Schmalbach, E. Kinaci, J. F. Stanzione III, G. R. Palmese, Recent advances in plant-based vynil ester resins and reactive diluents, European Polymer Journal, 2018, 98, 199-215.

103 T. J. Farmer, R. L. Castle, J. H. Clark, D. J. Macquarrie, Synthesis of unsaturated polyester resins from various bio-derived platform molecuels, Int. J. Mol. Sci., 2015,16, 14912-14932.

104 T. Sato, Y. Hirose, M. Seno, H. Tanaka, N. Uchiumi, M. Matsumoto, Kinetic and ESR studies on radical polymerization of diisopropyl itaconate, Eur. Polym., 1994, 30, 347-352.

105 B. Z. Fidanovski, P. M. Spasojevic, V. V. Panic, S. I. Seslija, J. P. Spasojevic, I. G. Popovic, Synthesis and characterization of fully bio*based unsaturated polyester resins, Polymers, 2018, 53, 4635-4666.

106 H. Kilambi, S. K. Reddy, L. Scheidewind, T. Yeon Lee, J. W. Stansbury, C. N. Bowman, Design, development and evaluation of monovinyl acrylates characterized by secondary functionalities as reactive diluents to diacrylates, Macromolecules, 2007, 40, 6112-6118.

107 K. Moussa, C. Decker, Light-induced polynerization of new highly reactive acrylic monomers, J Polym Sci, 1993, 31, 2197–2203.

108 J. Jansen, A. A. Dias, M. Dorschu, B. Coussens, Fast monomers: factores affecting the inherent reactivity of acrylate monomers in photoinitiated acrylate polymerisation, Macromolecules, 2002,35, 7529–31.

109 D. M. Price, J. C. Duncan, Thermomechanical, dynamic mechanical and dielectric methods, Royal Society of Chemistry, 2016, chapt 9.

110 I. Schoon, M. Kluge, S. Eschig, T. Robert, Catalyst influence on undesired side reactions in the polycondensation of fully bio-based polyester itaconates, Polymers, 2017, 9, 693-704.

111 A. Jahandideh, K. Muthukumarappan, Star-shaped lactic acid-based systems and their thermosetting resins; synthesis, characterization, potential opportunities and drawbacks, European Polymer Journal, 2017, 87, 360-379.

112 E. Malmström, A. Hult, Kinetics of formation of hyperbranched polyesters based on 2,2-bis(methylol) propionic acid, Macromolecules, 1996, 29, 1222-1228.

113 B. K. Myers, J. E. Lapucha, S. M. Grayson, Synthesis and MALDI-ToF characterization of dendronized poly(ethylene glycol)s, Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 45-55.

114 D. Yu, N. Vladimirov, J. M. J. Fréchet, MALDI-ToF in the characterizations of dendritic-linear block copolymers and stars, Macromolecules, 1999, 32, 5186-5192.

115 Z. Ordelt, V. Novak, B. Kratky, Über die umkehrbarkeit der Diolenaddition an die olefinische Doppelbindung der Äthylen-1,2-dicarbonsäuren bei der Polykondensation in der Schmelze, Collect. Czechoslov. Chem. Commun., 1968, 33, 405–415.

116 F. Nadeau, M. Sind, N. Oget, Free-solvent Michael addition of glycerol to acrylic compounds, New J. Chem., 2015, 39, 9155.

117 S. Ostrowski, M. E. Jamrόz, J. C. Dobrowolski, Formation of heavy adducts in the esterification of acrylic acid: a DFT study, Computational and Theoretical Chemistry, 2011, 974, 100-108.

118 R. T. Pogue, J. S. Ullett, R. P. Chartoff, Determination of the effects of cure conditions on the photopolymerization of liquid crystalline monomers using differential photo-calorimetry, Thermochim Acta, 1999, 339, 21-27.

119 M. R. Keenan, Autocatalytic cure kinetics from DSC measurements: zero initial cure rate, J. Appl. Polym. Sci., 1987, 33, 1725.

178

120 J. D. Nam, J. C. Seferis, Application of the kinetic composite methodology to autocatalytic-type thermoset prepreg cures, J. Appl. Polym. Sci., 1993, 33, 1555.

121 F. Y. C. Boey, W. Quiang, Experimental modelling of the cure kinetics of an epoxy-hexaanhydro-4-methylphthalicanhydride (MHHPA) system, Polymer, 2000, 41, 2081.

122 R. Harikrishna, S. Ponrathnam, C. R. Rajan, Photopolymerisation kinetics of bis-aromatic based urethane acrylate macromonomers in the presence of reactive diluent, Progress in Org.

Coatings, 2014, 77, 225-231.

123 C. W. Macosko, British Polymer Journal, Rheological changes during crosslinking, 1985, 17, 239-245.

124 R. L. Shriner, C. L. Furrow, Jr., Diacetyl-d-tartaric anhydride, Organic Syntheses, 1963, 4, 242.

125 N. Guigo, A. Mija, L. Vincent, N. Sbirrazzuoli, Chemorheological analysis and model-free kinetics of acid catalysed furfuryl alcohol polymerization, Physical Chemistry Chemical Analysis, 2007, 39.

126 A. R. Evans, E. Tyrrall, Heats of polymerization of acrylic acid and derivates, J. Polym. Sci.

1947, 2, 387-396.

127 F. S. Dainton, K. J. Ivin, D. A. G. Walmsley, The heats of polymerization of some cyclic and ethylenic compounds, Trans. Faraday Soc. 1960, 1784-1792.

128 P. Glöckner, T. Jung, S. Struck, K. Studer, Radiation curing : coating and printing inks, European Coating Tech Files, 3.3.2.1.

129 R. Dowbenko, C. Friedlander, G. Gruber, P. Prucnal, M. Wismer, Radiation curing of organic coatings, Progress in Organic Coatings, 1983, 11, 71-103.