• Keine Ergebnisse gefunden

1. Embley, T.M. and E. Stackebrandt, The molecular phylogeny and systematics of the actinomycetes. Annu Rev Microbiol, 1994. 48: p. 257-89.

2. Jankute, M., et al., Assembly of the Mycobacterial Cell Wall. Annu Rev Microbiol, 2015.

69: p. 405-23.

3. Fedrizzi, T., et al., Genomic characterization of Nontuberculous Mycobacteria. Sci Rep, 2017. 7: p. 45258.

4. King, H.C., et al., Environmental reservoirs of pathogenic mycobacteria across the Ethiopian biogeographical landscape. PLoS One, 2017. 12(3): p. e0173811.

5. Falkinham, J.O., 3rd, et al., Mycobacterium avium in a shower linked to pulmonary disease. J Water Health, 2008. 6(2): p. 209-13.

6. De Groote, M.A., et al., Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl Environ Microbiol, 2006. 72(12): p. 7602-6.

7. von Reyn, C.F., et al., Persistent colonisation of potable water as a source of Mycobacterium avium infection in AIDS. Lancet, 1994. 343(8906): p. 1137-41.

8. Rahman, S.A., et al., Comparative analyses of nonpathogenic, opportunistic, and totally pathogenic mycobacteria reveal genomic and biochemical variabilities and highlight the survival attributes of Mycobacterium tuberculosis. MBio, 2014. 5(6): p. e02020.

9. Nicklisch, N., et al., Rib lesions in skeletons from early neolithic sites in Central Germany: on the trail of tuberculosis at the onset of agriculture. Am J Phys Anthropol, 2012. 149(3): p. 391-404.

10. Global tuberculosis report 2018. 2018, Geneva: World Health Organisation.

11. Ernst, J.D., The immunological life cycle of tuberculosis. Nat Rev Immunol, 2012. 12(8):

p. 581-91.

12. Wallgren, A., The time-table of tuberculosis. Tubercle, 1948. 29(11): p. 245-51.

13. Poulsen, A., Some clinical features of tuberculosis. Acta Tuberc Scand, 1957. 33(1-2): p.

37-92; concl.

14. Ramakrishnan, L., Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol, 2012. 12(5): p. 352-66.

15. Ringshausen, F.C., et al., Burden and trends of hospitalisations associated with pulmonary non-tuberculous mycobacterial infections in Germany, 2005-2011. BMC Infect Dis, 2013. 13: p. 231.

16. Kendall, B.A. and K.L. Winthrop, Update on the epidemiology of pulmonary nontuberculous mycobacterial infections. Semin Respir Crit Care Med, 2013. 34(1): p.

87-94.

17. Prevots, D.R. and T.K. Marras, Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med, 2015. 36(1): p. 13-34.

18. Calmette, A., Preventive Vaccination Against Tuberculosis with BCG. Proc R Soc Med, 1931. 24(11): p. 1481-90.

19. Mangtani, P., et al., Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis, 2014. 58(4): p. 470-80.

20. Levine, M.I. and M.F. Sackett, Results of BCG immunization in New York City. Am Rev Tuberc, 1946. 53: p. 517-32.

21. Ferguson, R.G. and A.B. Simes, BCG vaccination of Indian infants in Saskatchewan.

Tubercle, 1949. 30(1): p. 5-11.

Literature

66 22. Scriba, T.J., et al., Vaccination Against Tuberculosis With Whole-Cell Mycobacterial

Vaccines. J Infect Dis, 2016. 214(5): p. 659-64.

23. Levin, M., et al., Familial disseminated atypical mycobacterial infection in childhood: a human mycobacterial susceptibility gene? Lancet, 1995. 345(8942): p. 79-83.

24. Bradley, D.J., Regulation of Leishmania populations within the host. II. genetic control of acute susceptibility of mice to Leishmania donovani infection. Clin Exp Immunol, 1977. 30(1): p. 130-40.

25. Plant, J. and A.A. Glynn, Genetics of resistance to infection with Salmonella typhimurium in mice. J Infect Dis, 1976. 133(1): p. 72-8.

26. Gros, P., E. Skamene, and A. Forget, Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J Immunol, 1981. 127(6): p. 2417-21.

27. Vidal, S., et al., The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med, 1995. 182(3): p.

655-66.

28. Blackwell, J.M., et al., Divalent cation transport and susceptibility to infectious and autoimmune disease: continuation of the Ity/Lsh/Bcg/Nramp1/Slc11a1 gene story.

Immunol Lett, 2003. 85(2): p. 197-203.

29. Vila-del Sol, V., C. Punzon, and M. Fresno, IFN-gamma-induced TNF-alpha expression is regulated by interferon regulatory factors 1 and 8 in mouse macrophages. J Immunol, 2008. 181(7): p. 4461-70.

30. Alter-Koltunoff, M., et al., Innate immunity to intraphagosomal pathogens is mediated by interferon regulatory factor 8 (IRF-8) that stimulates the expression of macrophage-specific Nramp1 through antagonizing repression by c-Myc. J Biol Chem, 2008. 283(5):

p. 2724-33.

31. Rosain, J., et al., Mendelian susceptibility to mycobacterial disease: 2014-2018 update.

Immunol Cell Biol, 2018.

32. Pierre-Audigier, C., et al., Fatal disseminated Mycobacterium smegmatis infection in a child with inherited interferon gamma receptor deficiency. Clin Infect Dis, 1997. 24(5):

p. 982-4.

33. Jouanguy, E., et al., Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N Engl J Med, 1996. 335(26): p. 1956-61.

34. Wei, Z., et al., A single nucleotide polymorphism in the interferon-gamma gene (IFNG +874 T/A) is associated with susceptibility to tuberculosis. Oncotarget, 2017. 8(31): p.

50415-50429.

35. Wheelock, E.F., Interferon-Like Virus-Inhibitor Induced in Human Leukocytes by Phytohemagglutinin. Science, 1965. 149(3681): p. 310-1.

36. Bloom, B.R. and B. Bennett, Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science, 1966. 153(3731): p. 80-2.

37. Bennett, B. and B.R. Bloom, Reactions in vivo and in vitro produced by a soluble substance associated with delayed-type hypersensitivity. Proc Natl Acad Sci U S A, 1968. 59(3): p. 756-62.

38. Bloom, B.R. and L. Jimenez, Migration inhibitory factor and the cellular basis of delayed-type hypersensitivity reactions. Am J Pathol, 1970. 60(3): p. 453-68.

39. Salvin, S.B., J.S. Youngner, and W.H. Lederer, Migration inhibitory factor and interferon in the circulation of mice with delayed hypersensitivity. Infect Immun, 1973. 7(1): p. 68-75.

Literature

67 40. Youngner, J.S. and S.B. Salvin, Production and properties of migration inhibitory factor and interferon in the circulation of mice with delayed hypersensitivity. J Immunol, 1973.

111(6): p. 1914-22.

41. Belosevic, M., et al., Regulation of activated macrophage antimicrobial activities.

Identification of lymphokines that cooperate with IFN-gamma for induction of resistance to infection. J Immunol, 1988. 141(3): p. 890-6.

42. Flesch, I.E. and S.H. Kaufmann, Activation of tuberculostatic macrophage functions by gamma interferon, interleukin-4, and tumor necrosis factor. Infect Immun, 1990. 58(8):

p. 2675-7.

43. Denis, M., Interferon-gamma-treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates. Cell Immunol, 1991.

132(1): p. 150-7.

44. Chan, J., et al., Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med, 1992. 175(4):

p. 1111-22.

45. Dalton, D.K., et al., Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science, 1993. 259(5102): p. 1739-42.

46. Flynn, J.L., et al., An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med, 1993. 178(6): p. 2249-54.

47. Cooper, A.M., et al., Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med, 1993. 178(6): p. 2243-7.

48. Huang, S., et al., Immune response in mice that lack the interferon-gamma receptor.

Science, 1993. 259(5102): p. 1742-5.

49. Kamijo, R., et al., Mice that lack the interferon-gamma receptor have profoundly altered responses to infection with Bacillus Calmette-Guerin and subsequent challenge with lipopolysaccharide. J Exp Med, 1993. 178(4): p. 1435-40.

50. Rashidbaigi, A., et al., The gene for the human immune interferon receptor is located on chromosome 6. Proc Natl Acad Sci U S A, 1986. 83(2): p. 384-8.

51. Jung, V., et al., Human chromosomes 6 and 21 are required for sensitivity to human interferon gamma. Proc Natl Acad Sci U S A, 1987. 84(12): p. 4151-5.

52. Soh, J., et al., Identification and sequence of an accessory factor required for activation of the human interferon gamma receptor. Cell, 1994. 76(5): p. 793-802.

53. Hemmi, S., et al., A novel member of the interferon receptor family complements functionality of the murine interferon gamma receptor in human cells. Cell, 1994. 76(5):

p. 803-10.

54. Krause, C.D., et al., Seeing the light: preassembly and ligand-induced changes of the interferon gamma receptor complex in cells. Mol Cell Proteomics, 2002. 1(10): p. 805-15.

55. Krause, C.D., et al., Preassembly and ligand-induced restructuring of the chains of the IFN-gamma receptor complex: the roles of Jak kinases, Stat1 and the receptor chains.

Cell Res, 2006. 16(1): p. 55-69.

56. Blouin, C.M., et al., Glycosylation-Dependent IFN-gammaR Partitioning in Lipid and Actin Nanodomains Is Critical for JAK Activation. Cell, 2016. 166(4): p. 920-934.

57. Greenlund, A.C., et al., Stat recruitment by tyrosine-phosphorylated cytokine receptors:

an ordered reversible affinity-driven process. Immunity, 1995. 2(6): p. 677-87.

58. Decker, T., P. Kovarik, and A. Meinke, GAS elements: a few nucleotides with a major impact on cytokine-induced gene expression. J Interferon Cytokine Res, 1997. 17(3): p.

121-34.

Literature

68 59. Chan, J., et al., Effects of nitric oxide synthase inhibitors on murine infection with

Mycobacterium tuberculosis. Infect Immun, 1995. 63(2): p. 736-40.

60. Flesch, I.E., J.H. Hess, and S.H. Kaufmann, NADPH diaphorase staining suggests a transient and localized contribution of nitric oxide to host defence against an intracellular pathogen in situ. Int Immunol, 1994. 6(11): p. 1751-7.

61. Ni Cheallaigh, C., et al., A Common Variant in the Adaptor Mal Regulates Interferon Gamma Signaling. Immunity, 2016. 44(2): p. 368-79.

62. Matsuzawa, T., E. Fujiwara, and Y. Washi, Autophagy activation by interferon-gamma via the p38 mitogen-activated protein kinase signalling pathway is involved in macrophage bactericidal activity. Immunology, 2014. 141(1): p. 61-9.

63. Kim, B.H., et al., A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection. Science, 2011. 332(6030): p. 717-21.

64. Singh, S.B., et al., Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science, 2006. 313(5792): p. 1438-41.

65. Gutierrez, M.G., et al., Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004. 119(6): p.

753-66.

66. Wu, G., et al., Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells. PLoS Biol, 2011. 9(7): p. e1001099.

67. Perez-Rodriguez, R., et al., Signaling mechanisms of interferon gamma induced apoptosis in chromaffin cells: involvement of nNOS, iNOS, and NFkappaB. J Neurochem, 2009. 108(4): p. 1083-96.

68. Delisle, J.S., et al., Graft-versus-host disease causes failure of donor hematopoiesis and lymphopoiesis in interferon-gamma receptor-deficient hosts. Blood, 2008. 112(5): p.

2111-9.

69. Zeng, W., et al., Interferon-gamma-induced gene expression in CD34 cells:

identification of pathologic cytokine-specific signature profiles. Blood, 2006. 107(1): p.

167-75.

70. Brendel, C., et al., Human miR223 promoter as a novel myelo-specific promoter for chronic granulomatous disease gene therapy. Hum Gene Ther Methods, 2013. 24(3):

p. 151-9.

71. He, W., et al., Development of a synthetic promoter for macrophage gene therapy.

Hum Gene Ther, 2006. 17(9): p. 949-59.

72. Chiriaco, M., et al., Dual-regulated lentiviral vector for gene therapy of X-linked chronic granulomatosis. Mol Ther, 2014. 22(8): p. 1472-1483.

73. Fishilevich, S., et al., GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford), 2017. 2017.

74. Zhao, Y., H. Stepto, and C.K. Schneider, Development of the First World Health Organization Lentiviral Vector Standard: Toward the Production Control and Standardization of Lentivirus-Based Gene Therapy Products. Hum Gene Ther Methods, 2017. 28(4): p. 205-214.

75. Gandara, C., V. Affleck, and E.A. Stoll, Manufacture of Third-Generation Lentivirus for Preclinical Use, with Process Development Considerations for Translation to Good Manufacturing Practice. Hum Gene Ther Methods, 2018. 29(1): p. 1-15.

76. van de Vosse, E. and J.T. van Dissel, IFN-gammaR1 defects: Mutation update and description of the IFNGR1 variation database. Hum Mutat, 2017. 38(10): p. 1286-1296.

Literature

69 77. Lee, S.H., et al., Identifying the initiating events of anti-Listeria responses using mice with conditional loss of IFN-gamma receptor subunit 1 (IFNGR1). J Immunol, 2013.

191(8): p. 4223-34.

78. Starr, R., et al., SOCS-1 binding to tyrosine 441 of IFN-gamma receptor subunit 1 contributes to the attenuation of IFN-gamma signaling in vivo. J Immunol, 2009.

183(7): p. 4537-44.

79. Kreutzfeldt, M., et al., Neuroprotective intervention by interferon-gamma blockade prevents CD8+ T cell-mediated dendrite and synapse loss. J Exp Med, 2013. 210(10): p.

2087-103.

80. Farrar, M.A., J. Fernandez-Luna, and R.D. Schreiber, Identification of two regions within the cytoplasmic domain of the human interferon-gamma receptor required for function. J Biol Chem, 1991. 266(29): p. 19626-35.

81. Randal, M. and A.A. Kossiakoff, The structure and activity of a monomeric interferon-gamma:alpha-chain receptor signaling complex. Structure, 2001. 9(2): p. 155-63.

82. Walter, M.R., et al., Crystal structure of a complex between interferon-gamma and its soluble high-affinity receptor. Nature, 1995. 376(6537): p. 230-5.

83. Yancoski, J., et al., A novel internalization motif regulates human IFN-gamma R1 endocytosis. J Leukoc Biol, 2012. 92(2): p. 301-8.

84. Fieschi, C., et al., High levels of interferon gamma in the plasma of children with complete interferon gamma receptor deficiency. Pediatrics, 2001. 107(4): p. E48.

85. Rottman, M., et al., IFN-gamma mediates the rejection of haematopoietic stem cells in IFN-gammaR1-deficient hosts. PLoS Med, 2008. 5(1): p. e26.

86. Harden, J.L., et al., Humanized anti-IFN-gamma (HuZAF) in the treatment of psoriasis.

J Allergy Clin Immunol, 2015. 135(2): p. 553-6.

87. Reinisch, W., et al., Fontolizumab in moderate to severe Crohn's disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis, 2010. 16(2): p. 233-42.

88. Hommes, D.W., et al., Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn's disease. Gut, 2006. 55(8): p. 1131-7.

89. Administration, F.a.D. 2018 [cited 2019 20.02.2019]; Available from:

https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm626280.htm.

90. Filipovich, A.H. and S. Chandrakasan, Pathogenesis of Hemophagocytic Lymphohistiocytosis. Hematol Oncol Clin North Am, 2015. 29(5): p. 895-902.

91. Marsh, R.A., et al., Salvage therapy of refractory hemophagocytic lymphohistiocytosis with alemtuzumab. Pediatr Blood Cancer, 2013. 60(1): p. 101-9.

92. Lounder, D.T., et al., Treatment of refractory hemophagocytic lymphohistiocytosis with emapalumab despite severe concurrent infections. Blood Adv, 2019. 3(1): p. 47-50.

93. Happle, C., et al., Pulmonary Transplantation of Human Induced Pluripotent Stem Cell-derived Macrophages Ameliorates Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med, 2018. 198(3): p. 350-360.

94. Happle, C., et al., Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis. Sci Transl Med, 2014. 6(250): p. 250ra113.

95. Ackermann, M., et al., Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections. Nat Commun, 2018. 9(1): p. 5088.

Literature

70 96. Bustamante, J., et al., Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin Immunol, 2014. 26(6): p. 454-70.

97. Goldberg, M.F., N.K. Saini, and S.A. Porcelli, Evasion of Innate and Adaptive Immunity by Mycobacterium tuberculosis. Microbiol Spectr, 2014. 2(5).

98. Fricke, I., et al., Mycobacteria induce IFN-gamma production in human dendritic cells via triggering of TLR2. J Immunol, 2006. 176(9): p. 5173-82.

99. Munn, D.H., et al., Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med, 1999. 189(9): p. 1363-72.

100. Mellor, A.L. and D.H. Munn, IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol, 2004. 4(10): p. 762-74.

101. Zhang, Y.J., et al., Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell, 2013. 155(6): p. 1296-308.

Abbreviations BM-DC Bone marrow derived dendritic cells

bp Base pair

Gp91phox Glycosylated protein 91 a subunit of the phagocyte NADPH oxidase

HIV Human immunodeficiency virus

HLH Primary hemophagocytic lymphohistiocytosis

HSCT Hematopoietic stem cell transplantation HSPC Hematopoietic stem/progenitor cell IDO1 Indoleamine-pyrrole 2,3-dioxygenase

IKBKG Inhibitor of nuclear factor kappa-B kinase subunit gamma

IL Interleukin

M. tb. Mycobacterium tuberculosis

MAC Mycobacterium avium complex

MAC-LD Mycobacterium avium complex-lung disease

Mal MyD88 adaptor-like

MCFCs Myeloid-cell-forming complexes-

MDR-TB Multidrug resistant Mycobacterium tuberculosis

MFI Mean fluorescence intensity

MHC-II Major histocompatibility complex class 2

MIF Migration inhibitory factor

miR223 Micro ribonucleic acid 223

moDC Monocyte-derived dendritic cell

MSMD Mendelian susceptibility to mycobacterial disease