• Keine Ergebnisse gefunden

1. Ghedotti MJ: Phylogenetic analysis and taxonomy of the poecilioid fishes (Teleostei; Cyprinodontiformes). Zoological journal of the Linnean Society 2000, 130.

2. Parenti LR: A Phylogenetic and Biogeographic Analysis of Cyprinodontiform Fishes (Teleostei, Atherinomorpha). Bull Amer Mus Nat Hist 1981, 168:335-557.

3. Kallman KD, Kazianis S: The Genus Xiphophorus in Mexico and Central America. Zebrafish 2006, 3:271-285.

4. Meyer A, Morrissey JM, Schartl M: Recurrent origin of a sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny. Nature 1994, 368:539-542.

5. Meyer A, Salzburger W, Schartl M: Hybrid origin of a swordtail species (Teleostei: Xiphophorus clemenciae) driven by sexual selection. Mol Ecol 2006, 15:721-730.

6. Gordon M: Platypoecilus now becomes Xiphophorus. The Aquarium 1951, 20:277-279.

7. Atz JW: Effects of hybridization on pigmentation in fishes of the genus Xiphophorus. Zoologica: NY Zoolog Soc 1962, 47.

8. Rosenthal GG, De La Rosa Reyna XF, Kazianis S, Stephens MJ, Morizot DC, Ryan MJ, De Leon FJG: Dissolution of sexual signal complexes in a hybrid zone between the swordtails Xiphophorus birchmanni and Xiphophorus malinche (Poeciliidae). Copeia 2003:299-307.

9. Fisher HS, Wong BB, Rosenthal GG: Alteration of the chemical environment disrupts communication in a freshwater fish. Proc Biol Sci 2006, 273:1187-1193.

10. Axelrod HR, Wischnath L: Swordtails and Platies. Neptune, Nj: TFH Publications; 1991.

11. Gordon M: Heritable color variations in the Mexican swordtail-fish. J Hered 1937, 28:223-230.

12. Zander CD: Uber die Entstehung und Veränderung von Farbmustern in der Gattung Xiphophorus (Pisces). Mitt Hamburg Zool Mus Inst 1969, 66:241-271.

13. Meierjohann S, Schartl M: From Mendelian to molecular genetics: the Xiphophorus melanoma model. Trends Genet 2006, 22:654-661.

14. Rosenthal GG, Garcıà de Leon FJ: Sexual Behavior, Genes, and Evolution in Xiphophorus. Zebrafish 2006, 3:85-90.

15. Rosen DE: Fishes from the uplands and intermontane basins of Guatemala:

revisionary studies and comparative geography. Bull Amer Mus Nat Hist 1979, 162:269-375.

16. Franck D: Weitere Untersuchungen zur vergleichenden Ethologie der Gattung Xiphophorus. Behaviour 1968, 30:75-95.

17. Franck D: Vergleichende Verhaltensstudien an lebendgebärenden

Zahnkarpfen der Gattung Xiphophorus. Zool Jb Physiol 1964, 71:117-170.

18. Ryan MJ, Causey BA: "Alternative" mating behavior in the swordtails

Xiphophorus nigrensis and Xiphophorus pygmaeus (Pisces: Poeciliidae). Behav Ecol Sociobiol 1989, 24:341-348.

19. Zimmerer EJ, Kallman KD: Genetic Basis for Alternative Reproductive Tactics in the Pygmy Swordtail, Xiphophorus nigrensis. Evolution 1989, 43:1298-1307.

20. Kallman KD, Schreibman MP: A sex-linked gene controlling gonadotrop differentiation and its significance in determining the age of sexual maturation and size of the platyfish, Xiphophorus maculatus. Gen Comp Endocrinol 1973, 21:287-304.

21. Schreibman MP, Kallman KD: The genetic control of the pituitary-gonadal axis in the platyfish, Xiphophorus maculatus. J Exp Zool 1977, 200:277-293.

22. Chang YS, Huang FL: The mode of action of carp gonadotropin on the stimulation of androgen production by carp testis in vitro. Gen Comp Endocrinol 1982, 48:147-153.

23. Yazawa T, Uesaka M, Inaoka Y, Mizutani T, Sekiguchi T, Kajitani T, Kitano T, Umezawa A, Miyamoto K: Cyp11b1 is induced in the murine gonad by luteinizing hormone/human chorionic gonadotropin and involved in the production of 11-ketotestosterone, a major fish androgen: conservation and evolution of the androgen metabolic pathway. Endocrinology 2008, 149:1786-1792.

24. Okuzawa K: Puberty in teleosts. Fish Physiol Biochem 2002, 26:31-41.

25. Ryan MJ, Hews DK, Wagner WE: Sexual Selection on Alleles That Determine Body Size in the Swordtail Xiphophorus-Nigrensis. Behavioral Ecology and Sociobiology 1990, 26:231-237.

26. Ryan MJ, Pease CM, Morris MR: A Genetic-Polymorphism in the Swordtail Xiphophorus-Nigrensis - Testing the Prediction of Equal Fitnesses. Am Nat 1992, 139:21-31.

27. Rosenthal GG, Martinez TYF, Garcıá de Leon FJ, Ryan MJ: Shared Preferences by Predators and Females for Male Ornaments in Swordtails. Am Nat 2001, 158:146-154.

28. McLennan DA, Ryan MJ: Responses to conspecific and heterospecific olfactory cues in the swordtail Xiphophorus cortezi. Animal Behaviour 1997, 54:1077-1088.

29. Cummings ME, Rosenthal GG, Ryan MJ: A private ultraviolet channel in visual communication. P Roy Soc Lond B Bio 2003, 270:897-904.

30. Kingston JJ, Rosenthal GG, Ryan MJ: The role of sexual selection in

maintaining a colour polymorphism in the pygmy swordtail, Xiphophorus pygmaeus. Animal Behaviour 2003, 65:735-743.

31. Morris MR, Mussel M, Ryan MJ: Vertical Bars on Male Xiphophorus-Multilineatus - a Signal That Deters Rival Males and Attracts Females.

Behavioral Ecology 1995, 6:274-279.

32. Rosenthal GG, Evans CS: Female preference for swords in Xiphophorus helleri reflects a bias for large apparent size. Proc Natl Acad Sci U S A 1998, 95:4431-4436.

33. Rosenthal GG, Evans CS, Miller WL: Female preference for dynamic traits in the green swordtail, Xiphophorus helleri. Animal Behaviour 1996, 51:811-820.

34. Cummings ME, Larkins-Ford J, Reilly CR, Wong RY, Ramsey M, Hofmann HA:

Sexual and social stimuli elicit rapid and contrasting genomic responses. Proc Biol Sci 2008, 275:393-402.

35. Darwin C: The descent of man, and selection in relation to sex. London: J.

Murray; 1871.

36. Basolo AL: Male swords and female preferences: response. Science 1991, 253.

37. Meyer A: The evolution of sexually selected traits in male swordtail fishes (Xiphophorus: Poeciliidae). Heredity 1997, 79:329-337.

38. Basolo AL: A further examination of a pre-existing bias favouring a sword in the genus Xiphophorus. Anim Behav 1995, 50:365-375.

39. Basolo AL: Female preference for male sword length in the green swordtail, Xiphophorus helleri (Pisces: Poeciliidae). Anim Behav 1990, 40:332–338.

40. Basolo AL, Trainor BC: The conformation of a female preference for a composite male trait in green swordtails. Anim Behav 2002, 63:469-474.

41. Trainor BC, Basolo AL: Location, location, location: stripe position effects on female sword preference. Anim behav 2006, 71:135-140.

42. Basolo AL: Female Preference Predates the Evolution of the Sword in Swordtail Fish. Science 1990, 250:808-810.

43. Dzwillo M: Sekundäre Geschlechtsmerkmale einiger Xiphophorini unter dem Einfluss von Methyl-testosteron. Kosswig-Festschrift 1964:15-22.

44. Zander CD, Dzwillo M: Untersuchungen zur Entwicklung und Vererbung des Caudalfortsatzes der Xiphophorus-Arten (Pisces). Zeitschrift für

Wissenschaftliche Zoologie 1969, 178:276-315.

45. Becerra J, Montes GS, Bexiga SR, Junqueira LC: Structure of the tail fin in teleosts. Cell Tissue Res 1983, 230:127-137.

46. Montes GS, Becerra J, Toledo OM, Gordilho MA, Junqueira LC: Fine structure and histochemistry of the tail fin ray in teleosts. Histochemistry 1982, 75:363-376.

47. Santamaria JA, Mari-Beffa M, Becerra J: Interactions of the lepidotrichial matrix components during tail fin regeneration in teleosts. Differentiation 1992, 49:143-150.

48. Wong BB, Rosenthal GG: Female disdain for swords in a swordtail fish. Am Nat 2006, 167:136-140.

49. Fisher HS, Rosenthal GG: Male swordtails court with an audience in mind.

Biol Lett 2007, 3:5-7.

50. Walling CA, Royle NJ, Metcalfe NB, Lindstrom J: Green swordtails alter their age at maturation in response to the population level of male ornamentation.

Biol Lett 2007.

51. Benson KE, Basolo AL: Male-male competition and the sword in male swordtails, Xiphophorus helleri. Animal Behaviour 2006, 71:129-134.

52. Eibner C, Pittlik S, Meyer A, Begemann G: The developmental basis of evolutionary innovation: Inductive signals coordinate the development of a sexually selected trait in swordtail fish. Evol Dev 2008, 10:403-412.

53. Rauchenberger M, Kallman KD, Morizot DC: Monophyly and geography of the Río Pánuco Basin swordtails (genus Xiphophorus) with descriptions of four new species. Am Mus Novitates 1990, 2975:1-41.

54. Basolo AL: Phylogenetic evidence for the role of a pre-existing bias in sexual selection. Proc Biol Sci 1995, 259:307-311.

55. Basolo AL: Congruence between the sexes in preexisting receiver responses.

Behav Ecol 2002, 13:832-837.

56. Ryan MJ: Sexual selection, receiver biases, and the evolution of sex differences. Science 1998, 281:1999-2003.

57. McClintock WJ, Uetz GW: Female choice and pre-existing bias: Visual cues during courtship in two Schizocosa wolf spiders (Araneae: Lycosidae).

Animal Behaviour 1996, 52:167-181.

58. Ryan MJ, Rand AS: Sexual Selection and Signal Evolution - the Ghost of Biases Past. Philos T Roy Soc B 1993, 340:187-195.

59. Zauner H, Begemann G, Mari-Beffa M, Meyer A: Differential regulation of msx genes in the development of the gonopodium, an intromittent organ, and of the "sword," a sexually selected trait of swordtail fishes (Xiphophorus). Evol Dev 2003, 5:466-477.

60. Hrbek T, Seckinger J, Meyer A: A phylogenetic and biogeographic perspective on the evolution of poeciliid fishes. Mol Phylogenet Evol 2007, 43:986-998.

61. Meyer A, Lydeard C: The evolution of copulatory organs, internal

fertilization, placentae and viviparity in killifishes (Cyprinodontiformes) inferred from a DNA phylogeny of the tyrosine kinase gene X-src. Proc Biol Sci 1993, 254:153-162.

62. Basolo AL, Alcaraz G: The turn of the sword: length increases male swimming costs in swordtails. Proc Biol Sci 2003, 270:1631-1636.

63. Endler JA: Natural Selection on Color Patterns in Poecilia reticulata.

Evolution 1980, 34:76-91.

64. Karim N, Gordon SP, Schwartz AK, Hendry AP: This is not deja vu all over again: male guppy colour in a new experimental introduction. J Evol Biol 2007, 20:1339-1350.

65. Millar NP, Reznick DN, Kinnison MT, Hendry AP: Disentangling the selective factors that act on male colour in wild guppies. Oikos 2006, 113:1-12.

66. Johnson JB, Basolo AL: Predator exposure alters female mate choice in the green swordtail. Behav Ecol 2003, 14:619-625.

67. Dzwillo M: Einfluss von Methyltestosteron auf die Aktivierung sekundärer Geschlechtsmerkmale über den arttypischen Zustand hinaus

(Untersuchungen an xiphophorinen Zahnkarpfen). Verh Deutsch Zool Gesellsch Wien 1962:151–159.

68. Iovine MK: Conserved mechanisms regulate outgrowth in zebrafish fins. Nat Chem Biol 2007, 3:613-618.

69. Stoick-Cooper CL, Moon RT, Weidinger G: Advances in signaling in

vertebrate regeneration as a prelude to regenerative medicine. Genes & Dev 2007, 21:1292-1315.

70. Poss KD, Shen J, Nechiporuk A, McMahon G, Thisse B, Thisse C, Keating MT:

Roles for Fgf signaling during zebrafish fin regeneration. Dev Biol 2000, 222:347-358.

71. Thummel R, Bai S, Sarras MP, Jr., Song P, McDermott J, Brewer J, Perry M, Zhang X, Hyde DR, Godwin AR: Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb. Dev Dyn 2006, 235:336-346.

72. Fischer S, Draper BW, Neumann CJ: The zebrafish fgf24 mutant identifies an additional level of Fgf signaling involved in vertebrate forelimb initiation.

Development 2003, 130:3515-3524.

73. Whitehead GG, Makino S, Lien CL, Keating MT: fgf20 is essential for initiating zebrafish fin regeneration. Science 2005, 310:1957-1960.

74. Grobstein C: Endocrine and developmental studies of gonopod differentiation in certain Poeciliid fishes. II. Effect of testosterone propionate on the normal and regenerating anal fin of adult Platypoecilus maculatus females. J Exp Zool 1942, 89:305 - 328.

75. Turner CL: Gonopodial characteristics produced in the anal fins of females of Gambusia affinis affinis by treatment with ethinyl testosterone. Biol Bull 1941, 80:371-383.

76. Nishidate M, Nakatani Y, Kudo A, Kawakami A: Identification of novel markers expressed during fin regeneration by microarray analysis in medaka fish. Dev Dyn 2007, 236:2685-2693.

77. Schebesta M, Lien CL, Engel FB, Keating MT: Transcriptional profiling of caudal fin regeneration in zebrafish. ScientificWorldJournal 2006, 6:38-54.

78. Katogi R, Nakatani Y, Shin-i T, Kohara Y, Inohaya K, Kudo A: Large-scale analysis of the genes involved in fin regeneration and blastema formation in the medaka, Oryzias latipes. Mech Dev 2004, 121:861-872.

79. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD: Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 1996, 93:6025-6030.

80. Turner CL: Morphogenesis of the gonopodium in Gambusia affinis affinis.

Ibid 1941, 69:161-185.

81. Grobstein C: Endocrine and developmental studies of gonopod differentiation in certain poeciliid fishes. I. The structure and development of the gonopod in Platypoecilus maculatus. Univ Calif Publ Zool 1940, 47:1-22.

82. Langer WF: Beiträge zur Morphologie der viviparen Cyprinodontiden.

Gegenbauer's Morph Jahrb 1913, 47:193-307.

83. Clark E, Aronson LR, Gordon M: Mating behavior patterns in two sympatric species of xiphophorin fishes: their inheritance and significance in sexual isolation. Bull Amer Mus Nat Hist 1954, 103:139-225.

84. Rosen DE, Bailey RM: The poeciliid fishes (Cyprinodontiformes), their structure, zoogeography, and systematics. Bull Amer Mus Nat Hist 1963, 126:1-176.

85. Gordon M, Rosen DE: Genetics of species differences in the morphology of the male genitalia of xiphophorin fishes. Bull Amer Mus Nat Hist 1951, 95:413-464.

86. Ogino Y, Katoh H, Yamada G: Androgen dependent development of a

modified anal fin, gonopodium, as a model to understand the mechanism of secondary sexual character expression in vertebrates. FEBS Lett 2004, 575:119-126.

87. Begemann G, Schilling TF, Rauch GJ, Geisler R, Ingham PW: The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development 2001, 128:3081-3094.

88. Gibert Y, Gajewski A, Meyer A, Begemann G: Induction and prepatterning of the zebrafish pectoral fin bud requires axial retinoic acid signaling.

Development 2006, 133:2649-2659.

89. Mic FA, Sirbu IO, Duester G: Retinoic acid synthesis controlled by Raldh2 is required early for limb bud initiation and then later as a proximodistal signal during apical ectodermal ridge formation. Journal of Biological Chemistry 2004, 279:26698-26706.

90. Mercader N, Leonardo E, Azpiazu N, Serrano A, Morata G, Martinez C, Torres M: Conserved regulation of proximodistal limb axis development by Meis1/Hth. Nature 1999, 402:425-429.

91. Mercader N, Leonardo E, Piedra ME, Martinez AC, Ros MA, Torres M:

Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes. Development 2000, 127:3961-3970.

92. Mercader N, Tanaka EM, Torres M: Proximodistal identity during vertebrate limb regeneration is regulated by Meis homeodomain proteins. Development 2005, 132:4131-4142.

93. Morriss-Kay GM, Ward SJ: Retinoids and mammalian development. Int Rev Cytol 1999, 188:73-131.

94. Panhuis TM, Butlin R, Zuk M, Tregenza T: Sexual selection and speciation.

Trends Ecol Evol 2001, 16:364-371.

95. Ritchie MG: Sexual Selection and Speciation. Annu Rev Ecol Evol Syst 2007, 38:79-102.

96. Wiens JJ, Morris MR: Character definition, sexual selection, and the Evolution of swordtails. Am Nat 1996, 147:866-869.

97. Parzefall J: Zur vergleichenden Ethologie verschiedener Mollienesia-Arten einschliesslich einer Höhlenform von M. sphenops. Behaviour 1969, 33:1-37.

98. Lindholm AK, Brooks R, Breden F: Extreme polymorphism in a Y-linked sexually selected trait. Heredity 2004, 92:156-162.

99. Warren I, Smith H: Stalk-eyed flies (Diopsidae): modelling the evolution and development of an exaggerated sexual trait. Bioessays 2007, 29:300-307.

100. Emlen DJ, Corley Lavine L, Ewen-Campen B: On the origin and evolutionary diversification of beetle horns. Proc Natl Acad Sci U S A 2007, 104 Suppl 1:8661-8668.

101. Gordon M, Cohen H, Nigrelli RF: A hormone-produced taxonomic character in Platypoecilius maculatus diagnostic of wild P. xiphidium. Am Nat 1942, 77:569-572.

102. Satoh Y, Haraguchi R, Wright TJ, Mansour SL, Partanen J, Hajihosseini MK, Eswarakumar VP, Lonai P, Yamada G: Regulation of external genitalia development by concerted actions of FGF ligands and FGF receptors. Anat Embryol (Berl) 2004, 208:479-486.

103. Tawk M, Tuil D, Torrente Y, Vriz S, Paulin D: High-efficiency gene transfer into adult fish: a new tool to study fin regeneration. Genesis 2002, 32:27-31.

104. Lee Y, Grill S, Sanchez A, Murphy-Ryan M, Poss KD: Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration.

Development 2005, 132:5173-5183.

105. Groth C, Lardelli M: The structure and function of vertebrate fibroblast growth factor receptor 1. Int J Dev Biol 2002, 46:393-400.

106. Smith A, Zhang J, Guay D, Quint E, Johnson A, Akimenko MA: Gene expression analysis on sections of zebrafish regenerating fins reveals

limitations in the whole-mount in situ hybridization method. Dev Dyn 2008, 237:417-425.

107. Laforest L, Brown CW, Poleo G, Geraudie J, Tada M, Ekker M, Akimenko MA:

Involvement of the sonic hedgehog, patched 1 and bmp2 genes in patterning of the zebrafish dermal fin rays. Development 1998, 125:4175-4184.

108. Borday V, Thaeron C, Avaron F, Brulfert A, Casane D, Laurenti P, Geraudie J:

evx1 transcription in bony fin rays segment boundaries leads to a reiterated pattern during zebrafish fin development and regeneration. Dev Dyn 2001, 220:91-98.

109. Johnson SL, Weston JA: Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration. Genetics 1995, 141:1583-1595.

110. Draper BW, Stock DW, Kimmel CB: Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development. Development 2003, 130:4639-4654.

111. Poulin ML, Patrie KM, Botelho MJ, Tassava RA, Chiu IM: Heterogeneity in the expression of fibroblast growth factor receptors during limb regeneration in newts (Notophthalmus viridescens). Development 1993, 119:353-361.

112. D'Jamoos CA, McMahon G, Tsonis PA: Fibroblast growth factor receptors regulate the ability for hindlimb regeneration in Xenopus laevis. Wound Repair Regen 1998, 6:388-397.

113. Li C, Xu X, Nelson DK, Williams T, Kuehn MR, Deng CX: FGFR1 function at the earliest stages of mouse limb development plays an indispensable role in subsequent autopod morphogenesis. Development 2005, 132:4755-4764.

114. Verheyden JM, Lewandoski M, Deng C, Harfe BD, Sun X: Conditional inactivation of Fgfr1 in mouse defines its role in limb bud establishment, outgrowth and digit patterning. Development 2005, 132:4235-4245.

115. Lallemand Y, Nicola MA, Ramos C, Bach A, Cloment CS, Robert B: Analysis of Msx1; Msx2 double mutants reveals multiple roles for Msx genes in limb development. Development 2005, 132:3003-3014.

116. Zhang H, Hu G, Wang H, Sciavolino P, Iler N, Shen MM, Abate-Shen C:

Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. Mol Cell Biol 1997, 17:2920-2932.

117. Quint E, Smith A, Avaron F, Laforest L, Miles J, Gaffield W, Akimenko MA:

Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine.

Proc Natl Acad Sci U S A 2002, 99:8713-8718.

118. Lee RK, Stainier DY, Weinstein BM, Fishman MC: Cardiovascular

development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. Development 1994, 120:3361-3366.

119. Woo K, Fraser SE: Specification of the hindbrain fate in the zebrafish. Dev Biol 1998, 197:283-296.

120. Connors SA, Trout J, Ekker M, Mullins MC: The role of tolloid/mini fin in dorsoventral pattern formation of the zebrafish embryo. Development 1999, 126:3119-3130.

121. Mintzer KA, Lee MA, Runke G, Trout J, Whitman M, Mullins MC: Lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development 2001, 128:859-869.

122. Chen W-J, Orti G, Meyer A: Novel evolutionary relationship among four fish model systems. Trends Genet 2004, 20:424-431.

123. Steinke D, Salzburger W, Braasch I, Meyer A: Many genes in fish have species-specific asymmetric rates of molecular evolution. BMC Genomics 2006, 7:20.

124. Yokoi H, Shimada A, Carl M, Takashima S, Kobayashi D, Narita T, Jindo T, Kimura T, Kitagawa T, Kage T, et al: Mutant analyses reveal different

functions of fgfr1 in medaka and zebrafish despite conserved ligand-receptor relationships. Dev Biol 2007, 304:326-337.

125. Khokha MK, Hsu D, Brunet LJ, Dionne MS, Harland RM: Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 2003, 34:303-307.

126. Smith A, Avaron F, Guay D, Padhi BK, Akimenko MA: Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblast differentiation and function. Dev Biol 2006, 299:438-454.

127. Wang CK, Omi M, Ferrari D, Cheng HC, Lizarraga G, Chin HJ, Upholt WB, Dealy CN, Kosher RA: Function of BMPs in the apical ectoderm of the developing mouse limb. Dev Biol 2004, 269:109-122.

128. Binato R, Alvarez Martinez CE, Pizzatti L, Robert B, Abdelhay E: SMAD 8 binding to mice Msx1 basal promoter is required for transcriptional activation. Biochem J 2006, 393:141-150.

129. Beck CW, Christen B, Barker D, Slack JM: Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles. Mech Dev 2006, 123:674-688.

130. Kawakami Y, Rodriguez Esteban C, Raya M, Kawakami H, Marti M, Dubova I, Izpisua Belmonte JC: Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev 2006, 20:3232-3237.

131. Lin G, Slack JM: Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration. Dev Biol 2008, 316:323-335.

132. Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Major MB, Fausto N, Moon RT: Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 2007, 134:479-489.

133. Meyer A: Homology and Homoplasy: The Retention of Genetic Programmes.

In Homology. Edited by Brock GK, Cardew G. Chichester, UK: Wiley; 1999:

141-157

134. Yokoyama H, Ide H, Tamura K: FGF-10 stimulates limb regeneration ability in Xenopus laevis. Dev Biol 2001, 233:72-79.

135. Taylor GP, Anderson R, Reginelli AD, Muneoka K: FGF-2 induces regeneration of the chick limb bud. Dev Biol 1994, 163:282-284.

136. Kostakopoulou K, Vogel A, Brickell P, Tickle C: 'Regeneration' of wing bud stumps of chick embryos and reactivation of Msx-1 and Shh expression in response to FGF-4 and ridge signals. Mech Dev 1996, 55:119-131.

137. Mercader N: Early steps of paired fin development in zebrafish compared with tetrapod limb development. Dev Growth Differ 2007, 49:421-437.

138. Kuraku S, Usuda R, Kuratani S: Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evol Dev 2005, 7:3-17.

139. Abramoff MD, Magelhaes PJ, Ram SJ: Image Processing with ImageJ.

Biophoton Int 2004, 11:36-42.

140. Larget B, Simon DL: Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 1999, 16:750-759.

141. Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.

142. Posada D, Crandall KA: MODELTEST: testing the model of DNA substitution. Bioinformatics 1998, 14:817-818.

143. Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39:783-791.

144. Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogeny.

Bioinformatics 2001, 17:754-755.

145. Rodriguez F, Oliver JL, Marin A, Medina JR: The general stochastic model of nucleotide substitution. J Theor Biol 1990, 142:485-501.

146. Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993, 10:512-526.

147. Gattiker A, Gasteiger E, Bairoch A: ScanProsite: a reference implementation of a PROSITE scanning tool. Appl Bioinformatics 2002, 1:107-108.

148. Offen N, Blum N, Meyer A, Begemann G: Fgfr1 signalling in the development of a sexually selected trait in vertebrates, the sword of swordtail fish. BMC Dev Biol 2008, 8.

149. Petersen S, Petersen I: Expression profiling of lung cancer based on

suppression subtraction hybridization (SSH). Methods Mol Med 2003, 75:189-207.

150. Padhi BK, Joly L, Tellis P, Smith A, Nanjappa P, Chevrette M, Ekker M,

Akimenko MA: Screen for genes differentially expressed during regeneration of the zebrafish caudal fin. Dev Dyn 2004, 231:527-541.

151. Gebicke-Haerter P: Expression profiling methods used in drug abuse research.

Addict Biol 2005, 10:37-46.

152. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.

153. Bechara IJ, Joazeiro PP, Mari-Beffa M, Becerra J, Montes GS: Collagen-affecting drugs impair regeneration of teleost tail fins. J Submicrosc Cytol Pathol 2000, 32:273-280.

154. Yamada S, Wirtz D, Coulombe PA: Pairwise assembly determines the intrinsic potential for self-organization and mechanical properties of keratin

filaments. Mol Biol Cell 2002, 13:382-391.

155. Lu HC, Swindell EC, Sierralta WD, Eichele G, Thaller C: Evidence for a role of protein kinase C in FGF signal transduction in the developing chick limb bud.

Development 2001, 128:2451-2460.

156. McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ: The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol

156. McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ: The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol