• Keine Ergebnisse gefunden

5.1 Binding Energy Shifts of Aun-(H2O)m . . . 80 5.2 6s Peak Position of Au-(H2O)m . . . 85 5.3 Binding Energy of Possible Dissociation Products . . . 97

Bibliography

[1] Energy in Sweden facts and Figures 2010 - Swedish Energy Agency. Cited in page(s): 1.

[2] M. Graetzel. Photoelectrochemical cells. Nature, 414:338–344, November 2001.

Cited in page(s): 1.

[3] Masaaki Kitano and Michikazu Hara. Heterogeneous photocatalytic cleavage of water. Journal of Materials Chemistry, 20(4):627–641, 2010. Cited in page(s): 1.

[4] B. C. H. Steele and A. Heinzel. Materials for fuel-cell technologies. Nature, 414:345–352, November 2001. Cited in page(s): 2.

[5] Lawrence W. Jones. Toward a liquid hydrogen fuel economy. Technical report, University of Michigan, 2010. Cited in page(s): 2.

[6] G. A. Olah. Beyond oil and gas: The methanol economy. Angewandte Chemie-International Edition, 44(18):2636–2639, 2005. Cited in page(s): 2.

[7] Somnath C. Roy, Oomman K. Varghese, Maggie Paulose, and Craig A. Grimes.

Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hy-drocarbons. American Chemical Society NANO, 4(3):1259–1278, MAR 2010.

Cited in page(s): 2.

[8] A. Fujishima and K. Honda. Electrochmichal Photolysis of Water at a Semi-conductor Electrode. Nature, 238(5358):37+, 1972. Cited in page(s): 2.

[9] A. Fujishima and K. Honda. Studies on photosensitive electrode Reactions.

Electrochmichal Evidence for Mechanism of Primary Stage of photosynthesis.

Bulletin of the Chemical Society of Japan, 44(4):1148–&, 1971. Cited in page(s): 2.

[10] Frank E. Osterloh. Inorganic materials as catalysts for photochemical splitting of water. Chemistry of Materials, 20(1):35–54, JAN 8 2008. Cited in page(s):

2.

[14] O. Echt, K. Sattler, and E. Recknagel. Magic Numbers for Sphere Packings:

Experimental Verification in Free Xenon Clusters. Phys. Rev. Lett., 47:1121–

1124, Oct 1981. Cited in page(s): 3.

[15] W. D. Knight, Keith Clemenger, Walt A. de Heer, Winston A. Saunders, M. Y.

Chou, and Marvin L. Cohen. Electronic Shell Structure and Abundances of Sodium Clusters. Phys. Rev. Lett., 52:2141–2143, Jun 1984. Cited in page(s):

3, 8, and 11.

[16] Haberland Hellmut. Clusters of atoms and molecules. Springer-Verlag, 1994.

Cited in page(s): 3 and 13.

[17] Simon Bonanni, Kamel Ait-Mansour, Wolfgang Harbich, and Harald Brune.

Effect of the TiO2 Reduction State on the Catalytic CO Oxidation on De-posited Size-Selected Pt Clusters. Journal of the Americal Chemical Society, 134(7):3445–3450, FEB 22 2012. Cited in page(s): 3.

[18] H. Poppa. Model Studies in Catalysis with UHV-deposited Metal Particles and Clusters. Vacuum, 34(12):1081–1095, 1984. Cited in page(s): 3.

[19] Scott P. Price, Xiao Tong, Claron Ridge, Vladimir Shapovalov, Zhenpeng Hu, Paul Kemper, Horia Metiu, Michael T. Bowers, and Steven K. Buratto. STM characterization of size-selected V1, V2, VO and VO2 clusters on a TiO2

(110)-(1 x 1) surface at room temperature. Surface Science, 605(9-10):972–

976, MAY 2011. Cited in page(s): 3.

[20] Yoshihide Watanabe, Xingyang Wu, Hirohito Hirata, and Noritake Isomura.

Size-dependent catalytic activity and geometries of size-selected Pt clusters on TiO2(110) surfaces. Catalysis Science and Technology, 1(8):1490–1495, 2011.

Cited in page(s): 3.

Bibliography [21] M. Schmidt, J. Donges, T. Hippler, and H. Haberland. Influence of Energy and Entropy on the Melting of Sodium Clusters. Physical Review Letters, 90(10):103401, March 2003. Cited in page(s): 3.

[22] H. Wu, S. R. Desai, and L.-S. Wang. Electronic Structure of Small Titanium Clusters: Emergence and Evolution of the 3d Band. Physical Review Letters, 76:212–215, January 1996. Cited in page(s): 3.

[23] R. Busani, M. Folkers, and O. Cheshnovsky. Direct Observation of Band-Gap Closure in Mercury Clusters. Physical Review Letters, 81:3836–3839, November 1998. Cited in page(s): 3.

[24] B. E. Salisbury, W. T. Wallace, and R. L. Whetten. Low-temperature activa-tion of molecular oxygen by gold clusters: a stoichiometric process correlated to electron affinity. Chemical Physics, 262(1, SI):131–141, DEC 1 2000. Cited in page(s): 3.

[25] D. Stolcic, M. Fischer, G. Gantefor, Y. D. Kim, Q. Sun, and P. Jena. Direct observation of key reaction intermediates on gold clusters. Journal of the American Chemical Society, 125(10):2848–2849, MAR 12 2003. No citations.

[26] Y. Dok Kim. Formation of di-oxygen species on Ag anion clusters. Chemical Physics Letters, 383:80–83, January 2004. Cited in page(s): 3.

[27] Bokwon Yoon, Pekka Koskinen, Bernd Huber, Oleg Kostko, Bernd von Issendorff, Hannu Hakkinen, Michael Moseler, and Uzi Landman. Size-dependent structural evolution and chemical reactivity of gold clusters.Chem.

Phys. Chem., 8(1):157–161, JAN 8 2007. Cited in page(s): 3.

[28] A Sanchez, S Abbet, U Heiz, WD Schneider, H Hakkinen, RN Barnett, and U Landman. When gold is not noble: Nanoscale gold catalysts. Journal of Physical Chemistry A, 103(48):9573–9578, DEC 2 1999. No citations.

[29] Dong Chan Lim, Rainer Dietsche, Moritz Bubek, Gerd Gantefor, and Young Dok Kim. Oxidation and reduction of mass-selected au clusters on SiO2/Si. Chem. Phys. Chem, 7(9):1909–1911, SEP 11 2006. No citations.

[30] D. C. Lim, I. Lopez-Salido, R. Dietsche, M. Bubek, and Y. D. Kim. Oxi-dation of Au nanoparticles on HOPG using atomic oxygen. Surface Science, 600(3):507–513, FEB 1 2006. No citations.

[34] M. Schmidt, J. Donges, Th. Hippler, and H. Haberland. Influence of Energy and Entropy on the Melting of Sodium Clusters. Phys. Rev. Lett., 90:103401, Mar 2003. Cited in page(s): 5.

[35] A. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon, and G. J. Hutchings.

Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science, 321:1331, September 2008. Cited in page(s): 5.

[36] E. Recknagel. Clusterphysik - Vorlesung Experimentalphysik SS 1995. Univer-sitaet Konstanz. Cited in page(s): 6.

[37] Wilko Westhäuser. Relaxationsdynamik und Femtochemie in massenselek-tierten Metall-Clustern. PhD thesis. Cited in page(s): 6, 41, and 48.

[38] Marco Niemetz. Time-Resolved Spectroscopy of Bare and Reacted Gold and Silver Clusters: Materials for New Photochemistry? PhD thesis, 2007. Cited in page(s): 7, 10, 16, 30, 33, 37, 38, 48, and 73.

[39] W. A. de Heer. The physics of simple metal clusters: experimental aspects and simple models. Reviews of Modern Physics, 65:611–676, July 1993. Cited in page(s): 9, 11, 12, and 33.

[40] H. A. Jahn and E. Teller. Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy. Royal Society of London Proceedings Series A, 161:220–235, July 1937. Cited in page(s): 10.

[41] Keith Clemenger. Ellipsoidal shell structure in free-electron metal clusters.

Phys. Rev. B, 32:1359–1362, Jul 1985. Cited in page(s): 10.

[42] B. R. Mottelson and S. G. Nilsson. Classification of the Nucleonic States in Deformed Nuclei. Physical Review, 99:1615–1617, September 1955. Cited in page(s): 10.

Bibliography [43] Albert Einstein. Über einen die Erzeugung und Verwandlung des Lichts betre-ffenden heuristischen Gesichtspunkt.Annalen der Physik, 17:132, 1905. Cited in page(s): 12.

[44] Marvin Johann Weber. Handbook of Laser Wavelength. CRC Press, 1999.

Cited in page(s): 13.

[45] Tim Koopmans. Ueber die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Atoms. Physical Review A, 1:104–

113, 1934. Cited in page(s): 13.

[46] Photoabsorption, photoionization, and photoelectron spectroscopy. Academic Press, 1979. Cited in page(s): 14.

[47] C.-Y. Cha, G. Ganteför, and W. Eberhardt. Photoelectron spectroscopy of Cun clusters: Comparison with jellium model predictions. Journal of Chem-ical Physics, 99:6308–6312, November 1993. Cited in page(s): 15.

[48] H. Handschuh, C. Y. Cha, P. S. Bechthold, G. Gantefoer, and W. Eberhardt.

Electronic shells or molecular orbitals: Photoelectron spectra of Agnclusters.

Journal of Chemical Physics, 102:6406–6422, April 1995. No citations.

[49] Shiv N. Khanna and Albert W. Castleman. Quantum Phenomena in Clusters and Nanostructures. Springer-Verlag, 2003. Cited in page(s): 15 and 17.

[50] D. G. Leopold, J. Ho, and W. C. Lineberger. Photoelectron spectroscopy of mass-selected metal cluster anions. I. Cun, n=1-10. Journal of Chemical Physics, 86:1715–1726, February 1987. Cited in page(s): 17 and 29.

[51] J. Ho, K. M. Ervin, and W. C. Lineberger. Photoelectron spectroscopy of metal cluster anions: Cun, Agn, and Aun. Journal of Chemical Physics, 93:6987–7002, November 1990. Cited in page(s): 17 and 29.

[52] J. Franck and E. G. Dymond. Elementary processes of photochemical reac-tions. Trans. Faraday Soc., 21:536–542, 1926. Cited in page(s): 17.

[53] E. Condon. A Theory of Intensity Distribution in Band Systems. Physical Review, 28:1182–1201, December 1926. Cited in page(s): 17.

[54] Wolfgang Demtroeder. Atoms, Molecules and Photons. Springer-Verlag, 2006.

Cited in page(s): 19.

[58] Wolfgang Demtroeder.Molecular Physics. Wiley-VCH, 2005. Cited in page(s):

22.

[59] Martin Klessinger and Josef Michl. Excited States and Photochemistry of Organic Molecules. John Wiley and Sons, 1995. Cited in page(s): 23.

[60] G. A. Worth and L. S. Cederbaum. BEYOND BORN-OPPENHEIMER:

Molecular Dynamics Through a Conical Intersection. Annual Review of Phys-ical Chemistry, 55:127–158, January 2004. Cited in page(s): 23.

[61] Riken Research. September 2009 Volume 4 Number 9. Cited in page(s): 24.

[62] J. S. Baskin, L. Banares, S. Pedersen, and A. H. Zewail. Femtosecond real-time probing of reactions .20. Dynamics of twisting, alignment, and IVR in the trans-stilbene isomerization reaction. Journal of Physical Chemistry, 100(29):11920–11933, JUL 18 1996. Cited in page(s): 26.

[63] M. Polanyi. Atomic Reactions. London: Williams and Norgate Ltd., 1932.

Cited in page(s): 26.

[64] Dr Herschbach. Molecular-Dynamics of Elementary Chemical-Reactions (Nobel Lecture). Angewandte Chemie-International Edition in English, 26(12):1221–1243, DEC 1987. Cited in page(s): 26.

[65] O. David, C. Dedonder-Lardeux, and C. Jouvet. Is there an excited state pro-ton transfer in phenol (or 1 -naphthol)-ammonia clusters? Hydrogen detach-ment and transfer to Solvent. International Reviews in Physical Chemistry, 21:499–523, 2002. Cited in page(s): 27.

[66] O. David, C. Dedonder-Lardeux, C. Jouvet, H. Kang, S. Martrenchard, T. Ebata, and A. L. Sobolewski. Hydrogen transfer in excited pyrrole-ammonia clusters. Journal of Chemical Physics, 120:10101–10110, June 2004. Cited in page(s): 27.

Bibliography [67] O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, and R. E. Smal-ley. Magnetic time-of-flight photoelectron spectrometer for mass-selected neg-ative cluster ions. Review of Scientific Instruments, 58(11):2131–2137, 1987.

Cited in page(s): 29, 40, and 42.

[68] G. Gantefoer, M. Gausa, K. H. Meiwes-Broer, and H. O. Lutz. Photoelectron spectroscopy of jet-cooled aluminium cluster anions. Zeitschrift fur Physik D Atoms Molecules Clusters, 9:253–261, September 1988. Cited in page(s): 29.

[69] I. M. Goldby, B. von Issendorff, L. Kuipers, and R. E. Palmer. Gas con-densation source for production and deposition of size-selected metal clusters.

Review of Scientific Instruments, 68:3327–3334, September 1997. Cited in page(s): 33.

[70] T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley. Laser production of supersonic metal cluster beams.Journal of Chemical Physics, 74:6511–6512, June 1981. Cited in page(s): 33.

[71] V. E. Bondybey and J. H. English. Laser excitation spectra and lifetimes of Pb2 and Sn2 produced by YAG laser vaporization. Journal of Chemical Physics, 76:2165–2170, March 1982. Cited in page(s): 33.

[72] G. Gantefoer, H.R. Siekmann, H.O. Lutz, and K.H. Meiwes-Broer. Pure metal and metal-doped rare-gas clusters grown in a pulsed ARC cluster ion source.

Chemical Physics Letters, 165(4):293 – 296, 1990. Cited in page(s): 33.

[73] H. R. Siekmann, C. Lüder, J. Faehrmann, H. O. Lutz, and K. H. Meiwes-Broer. The pulsed arc cluster ion source (PACIS). Zeitschrift fur Physik D Atoms Molecules Clusters, 20:417–420, March 1991. Cited in page(s): 33.

[74] W. C. Wiley and I. H. McLaren. Time-of-Flight Mass Spectrometer with Im-proved Resolution. Review of Scientific Instruments, 26:1150–1157, December 1955. Cited in page(s): 37.

[75] P. Kruit and F. H. Read. Magnetic-field parallelizer for 2-Pi electronspectrom-eter and electron-imag magnifier.Journal of Physics E-Acientific Instruments, 16(4):313–324, 1983. Cited in page(s): 40.

[76] Gerd Ganteför, K. H. Meiwes-Broer, and H. O. Lutz. Photodetachment Spec-troscopy of cold aluminum cluster anions. Physical Review A, 37:2716–2718, 1988. Cited in page(s): 40.

[81] Friedhelm Kaypers. Physik für Ingenieure. Cited in page(s): 61.

[82] Mark S. Taylor, Claus-Peter Schlutz Jack Barbera, Felician Muntean, Anne B McCoay, and W. Carl Lineberg. Femtosecond dynamics of Cu(H2O)2. Journal of Chemical Physics, 122:054310, 2005. Cited in page(s): 61.

[83] M. Niemietz, M. Engelke, Y. D. Kim, and G. Ganteför. Electronic relaxation in Ag nanoclusters studied with time-resolved photoelectron spectroscopy. Phys.

Rev. B, 75:085438, Feb 2007. Cited in page(s): 62.

[84] Arthur C. Reber, Shiv N. Khanna, Patrick J. Roach, W. Hunter Woodward, and A. W. Castleman, Jr. Reactivity of Aluminum Cluster Anions with Water:

Origins of Reactivity and Mechanisms for H2 Release.The Journal of Physical Chemistry A, 114(20):6071–6081, MAY 27 2010. Cited in page(s): 68.

[85] G. Jeffrey Rathbone, Todd Sanford, Django Andrews, and W. Carl Lineberger.

Photoelectron imaging spectroscopy of Cu(H2O)1,2 anion complexes.Chemical Physics Letters, 401:570 – 574, 2005. Cited in page(s): 70, 71, 74, and 85.

[86] Weijun Zheng, Xiang Li, Soren Eustis, Andrej Grubisic, Owen Thomas, Helen de Clercq, and Kit Bowen. Anion photoelectron spectroscopy of Au(H2O)1,2, Au2(D2O)1−4, and AuOH. Chemical Physics Letters, 444(4-6):232–236, AUG 27 2007. Cited in page(s): 70, 71, 74, 79, 84, 85, and 97.

[87] Chaoxian Chi, Hua Xie, Yuzhen Li, Ran Cong, Mingfei Zhou, and Zichao Tang. Photoelectron Imaging of Ag(H2O)x and AgOH(H2O)y (x = 1,2, y = 0,1,2,3,4). The Journal of Physical Chemistry A, 115(21):5380–5386, 2011.

Cited in page(s): 71.

[88] Ryozo Takasu, Fuminori Misaizu, Kenro Hashimoto, and Kiyokazu Fuke. Mi-croscopic Solvation Process of Alkali Atoms in Finite Clusters: Photoelectron

Bibliography and Photoionization Studies of M(NH3)n and M(H2O)n (M = Li, Li-, Na-).

The Journal of Physical Chemistry A, 101(17):3078–3087, 1997. Cited in page(s): 71.

[89] Private communications from Susanne Pietsch. Cited in page(s): 75.

[90] G. Gantefoer, S. Kraus, and W. Eberhardt. Femtosecond photoelectron spec-troscopy of the photodissociation of Au3. Journal of Electron Spectroscopy and Related Phenomena, 88(0):35 – 40, 1998. Cited in page(s): 77, 91, 93, and 97.

[91] Hubert Schmidbaur, Stephanie Cronje, Bratislav Djordjevic, and Oliver Schus-ter. Understanding gold chemistry through relativity. Chemical Physics, 311:151 – 161, 2005. Cited in page(s): 80.

[92] S Ikeda, T Nakajima, and K Hirao. A theoretical study of transition metal hydroxides: CuOH, AgOH and AuOH. Molecular Physics, 101(1-2):105–110, 2003. Cited in page(s): 80.

[93] A. J. Nozik and R. Memming. Physical chemistry of semiconductor-liquid interfaces. Journal of Physical Chemistry, 100(31):13061–13078, AUG 1 1996.

Cited in page(s): 84.

[94] N. Russo, E. Kryachko, and V.Y. Antonchenko.Self-Organization of Molecular Systems. Springer-Verlag, 2009. Cited in page(s): 86.

[95] M. S. Taylor, J. Barbera, C. P. Schulz, F. Muntean, A. B. McCoy, and W. C.

Lineberger. Femtosecond dynamics of Cu(H2O)2.Journal of Chemical Physics, 122(5), FEB 1 2005. Cited in page(s): 91.

[96] Christian Braun, Sebastian Proch, Hyun Ook Seo, Young Dok Kim, and Gerd Gantefoer. Studies of femtosecond time-resolved photoelectron spectroscopy of Au3(H2O)m clusters: Alteration of cluster relaxation dynamics of metal clusters by water molecules. Chemical Physics Letters, 530(0):35 – 38, 2012.

Cited in page(s): 91, 92, and 98.

[97] R. Wesendrup, T. Hunt, and P. Schwerdtfeger. Relativistic coupled cluster calculations for neutral and singly charged Au3 clusters.Journal of Chemical Physics, 112(21):9356–9362, JUN 1 2000. Cited in page(s): 93 and 97.

[98] P. Maksyutenko, T. R. Rizzo, and O. V. Boyarkin. A direct measurement of the dissociation energy of water.Journal of Chemical Physics, 125(18):181101, November 2006. Cited in page(s): 97 and 102.

and Vlasta Bonacic-Koutecky. Oxygen Adsorption on Hydrated Gold Cluster Anions: Experiment and Theory. Journal of the American Chemical Society, 125(27):8408–8414, 2003. PMID: 12837115. Cited in page(s): 97.

[102] Polarz Sebastian, Hoffmann Axel, and Gantefoer Gerd. Guiding excitons in nanostructured gradient materials - from model systems to application. Pro-posal to the German Research Foundation (DFG) - Priority Programm SPP 1613, 2011. Cited in page(s): 103.