• Keine Ergebnisse gefunden

hLu, ue i ≥eckuk2 for all u∈X.

Proof. We decompose u =v +y into v ∈ V and y ∈ Y. The positivity of L on the subspace Y and LX

X ≤C for some C >0 lead to hLu, ui=hLy, yi+hLy, vi+hLv, yi+hLv, vi

≥ckyk2−C(2kykkvk+kvk2)≥mkyk2−Mkvk2,

where the last step is due to LemmaA.4.1. The proof is finished by applying the squared triangle inequality

kuk2 ≤(kyk+kvk)2 ≤2kyk2+ 2kvk2 to the positivity estimate

hLu, ue i=hLu, ui+λkvk2≥mkyk2+ (λ−M)kvk2, where we have to choose λ > M =C+ C2

2c.

A.6 Lipschitz Inverse

Lemma A.6.1. Let X,·

X

and Y,·

Y

be Banach spaces withx0 ∈X and denote by L: X → Y a linear homeomorphism. If there exist positive constants δ, c1, c2 >0 and a mapping F: Bδ(x0)⊆X →Y such that

(i) F(x1)−F(x2)Y ≤c0

x1−x2

X,

(ii) c0 < c1 ≤ 1 L1

XY

,

(iii) Lx0+F(x0)Y ≤δ(c1−c0), then the equation

(L+F)(x) = 0

has a unique solution x ∈ Bδ(x0), and the stability estimate x1−x2X ≤ 1

c1−c0

(L+F)(x1)−(L+F)(x2)Y

holds for all x1, x2 ∈ Bδ(x0).

140 Appendix A. Auxiliaries Proof. By defining T(x) =−L1F(x), we rewrite the equationLx+F(x) = 0 as an equivalent fixed point problem T(x) =x. From the inequality

T(x1)−T(x2)X ≤L1X

Y

F(x1)−F(x2)Y ≤ c0

c1

x1−x2

X

for x1, x2 ∈ Bδ(x0) and T(x1)−x0

X ≤T(x1)−T(x0)X +T(x0)−x0

X

≤ c0 c1

x1−x0

X +L1

XY

F(x0) +Lx0

Y

≤ c0 c1δ+ 1

c1δ(c1−c0) =δ,

we conclude thatT is a contraction on the closed ballBδ(x0). Hence, the existence of a unique solution follows from the contraction mapping principle. Moreover, the stability estimate is a consequence of

x1−x2

X ≤(I−T)x1−(I−T)x2

X +T x1−T x2

X

≤L1X

Y

(L+F)x1−(L+F)x2

Y +c0 c1

x1−x2X

for x1, x2 ∈ Bδ(x0).

Bibliography

[1] R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, tensor analysis, and applications, volume 75 of Applied Mathematical Sciences. Springer-Verlag, New York, second edition, 1988.

[2] V. I. Arnold. Matematicheskie metody klassicheskoi mekhaniki. “Nauka”, Moscow, third edition, 1989.

[3] D. Bambusi, E. Faou, and B. Gr´ebert. Existence and stability of ground states for fully discrete approximations of the nonlinear Schr¨odinger equa-tion. Numer. Math., 123(3):461–492, 2013.

[4] D. Bambusi and T. Penati. Continuous approximation of breathers in one-and two-dimensional DNLS lattices. Nonlinearity, 23(1):143–157, 2010.

[5] N. Benes, A. Kasman, and K. Young. On decompositions of the KdV 2-soliton. J. Nonlinear Sci., 16(2):179–200, 2006.

[6] W.-J. Beyn, D. Otten, and J. Rottmann-Matthes. Stability and computation of dynamic patterns in PDEs. In Current challenges in stability issues for numerical differential equations, volume 2082 of Lecture Notes in Math., pages 89–172. Springer, Cham, 2014.

[7] W.-J. Beyn, S. Selle, and V. Th¨ummler. Freezing multipulses and multi-fronts. SIAM J. Appl. Dyn. Syst., 7(2):577–608, 2008.

[8] W.-J. Beyn and V. Th¨ummler. Freezing solutions of equivariant evolution equations. SIAM J. Appl. Dyn. Syst., 3(2):85–116 (electronic), 2004.

[9] J. L. Bona and R. Smith. The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London Ser. A, 278(1287):555–601, 1975.

[10] J. L. Bona, P. E. Souganidis, and W. A. Strauss. Stability and instability of solitary waves of Korteweg-de Vries type. Proc. Roy. Soc. London Ser. A, 411(1841):395–412, 1987.

[11] J. P. Borgna. Stability of periodic nonlinear Schr¨odinger equation. Nonlinear Anal., 69(12):4252–4265, 2008.

[12] J. P. Borgna and D. F. Rial. Orbital stability of numerical periodic nonlinear Schr¨odinger equation. Commun. Math. Sci., 6(1):149–169, 2008.

142 Bibliography [13] J. Bourgain. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schr¨odinger equations. Geom. Funct. Anal., 3(2):107–156, 1993.

[14] B. Cano. Conserved quantities of some Hamiltonian wave equations after full discretization. Numer. Math., 103(2):197–223, 2006.

[15] T. Cazenave. Semilinear Schr¨odinger equations, volume 10 of Courant Lec-ture Notes in Mathematics. New York University, Courant Institute of Math-ematical Sciences, New York; American MathMath-ematical Society, Providence, RI, 2003.

[16] P. Chossat and R. Lauterbach. Methods in equivariant bifurcations and dynamical systems, volume 15 of Advanced Series in Nonlinear Dynamics.

World Scientific Publishing Co., Inc., River Edge, NJ, 2000.

[17] E. Di Nezza, G. Palatucci, and E. Valdinoci. Hitchhiker’s guide to the frac-tional Sobolev spaces. Bull. Sci. Math., 136(5):521–573, 2012.

[18] A. Dur´an and J. M. Sanz-Serna. The numerical integration of relative equilib-rium solutions. The nonlinear Schr¨odinger equation. IMA J. Numer. Anal., 20(2):235–261, 2000.

[19] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.

[20] E. Faou. Geometric numerical integration and Schr¨odinger equations. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Z¨urich, 2012.

[21] E. Faou and B. Gr´ebert. Hamiltonian interpolation of splitting approxima-tions for nonlinear PDEs. Found. Comput. Math., 11(4):381–415, 2011.

[22] G. Fibich. The nonlinear Schr¨odinger equation, volume 192 ofApplied Math-ematical Sciences. Springer, Cham, 2015. Singular solutions and optical collapse.

[23] M. J. Field. Dynamics and symmetry, volume 3 of ICP Advanced Texts in Mathematics. Imperial College Press, London, 2007.

[24] T. Gallay and M. H˘ar˘agu¸s. Stability of small periodic waves for the nonlinear Schr¨odinger equation. J. Differential Equations, 234(2):544–581, 2007.

[25] L. Gauckler and C. Lubich. Nonlinear Schr¨odinger equations and their spec-tral semi-discretizations over long times. Found. Comput. Math., 10(2):141–

169, 2010.

[26] L. Gauckler and C. Lubich. Splitting integrators for nonlinear Schr¨odinger equations over long times. Found. Comput. Math., 10(3):275–302, 2010.

Bibliography 143 [27] J. Ginibre and G. Velo. On the global Cauchy problem for some nonlinear Schr¨odinger equations.Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 1(4):309–

323, 1984.

[28] J. Ginibre and G. Velo. The global Cauchy problem for the nonlinear Klein-Gordon equation. Math. Z., 189(4):487–505, 1985.

[29] J. Ginibre and G. Velo. The global Cauchy problem for the nonlinear Klein-Gordon equation. II. Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 6(1):15–35, 1989.

[30] J. P. Ginzburg and I. S. Iohvidov. A study of the geometry of infinite-dimensional spaces with bilinear metric.Uspehi Mat. Nauk, 17(4 (106)):3–56, 1962.

[31] W. Greiner. Relativistic quantum mechanics. Springer-Verlag, Berlin, third edition, 2000. Wave equations, Translated from the second German (1987) edition.

[32] M. Grillakis, J. Shatah, and W. Strauss. Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal., 74(1):160–197, 1987.

[33] M. Grillakis, J. Shatah, and W. Strauss. Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal., 94(2):308–348, 1990.

[34] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31 of Springer Series in Computational Mathematics. Springer, Hei-delberg, 2010. Structure-preserving algorithms for ordinary differential equa-tions, Reprint of the second (2006) edition.

[35] R. H. Hardin and F. D. Tappert. Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. In SIAM 1972 Fall Meeting, volume 15 of SIAM Rev., page 423.

Society for Industrial and Applied Mathematics, 1973.

[36] K. R. Helfrich and W. K. Melville. Long nonlinear internal waves. In Annual review of fluid mechanics. Vol. 38, volume 38 of Annu. Rev. Fluid Mech., pages 395–425. Annual Reviews, Palo Alto, CA, 2006.

[37] H. Holden, C. Lubich, and N. H. Risebro. Operator splitting for partial differential equations with Burgers nonlinearity. Math. Comp., 82(281):173–

185, 2013.

[38] T. Kapitula and K. Promislow. Spectral and dynamical stability of nonlinear waves, volume 185 of Applied Mathematical Sciences. Springer, New York, 2013. With a foreword by Christopher K. R. T. Jones.

[39] T. Kato. On nonlinear Schr¨odinger equations. Ann. Inst. H. Poincar´e Phys.

Th´eor., 46(1):113–129, 1987.

144 Bibliography [40] C. E. Kenig, G. Ponce, and L. Vega. Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Amer. Math. Soc., 4(2):323–

347, 1991.

[41] P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonz´alez. The de-focusing nonlinear Schr¨odinger equation. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2015. From dark solitons to vortices and vortex rings.

[42] D. J. Korteweg and G. de Vries. XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves.

Philosophical Magazine Series 5, 39(240):422–443, 1895.

[43] J. Lee. Introduction to Smooth Manifolds. Graduate Texts in Mathematics.

Springer, 2003.

[44] J. H. Maddocks and R. L. Sachs. Constrained variational principles and sta-bility in Hamiltonian systems. In Hamiltonian dynamical systems (Cincin-nati, OH, 1992), volume 63 of IMA Vol. Math. Appl., pages 231–264.

Springer, New York, 1995.

[45] J. E. Marsden and T. J. R. Hughes. Mathematical foundations of elasticity.

Dover Publications, Inc., New York, 1994. Corrected reprint of the 1983 original.

[46] J. E. Marsden and T. S. Ratiu. Introduction to mechanics and symmetry, volume 17 of Texts in Applied Mathematics. Springer-Verlag, New York, second edition, 1999. A basic exposition of classical mechanical systems.

[47] J. Pava. Nonlinear Dispersive Equations: Existence and Stability of Solitary and Periodic Travelling Wave Solutions. Mathematical surveys and mono-graphs. American Mathematical Society, 2009.

[48] S. Ramaswamy. The Lax-Milgram theorem for Banach spaces. I. Proc. Japan Acad. Ser. A Math. Sci., 56(10):462–464, 1980.

[49] J. Rottmann-Matthes. Stability of parabolic-hyperbolic traveling waves.

Dyn. Partial Differ. Equ., 9(1):29–62, 2012.

[50] C. W. Rowley, I. G. Kevrekidis, J. E. Marsden, and K. Lust. Reduction and reconstruction for self-similar dynamical systems. Nonlinearity, 16(4):1257–

1275, 2003.

[51] A. A. Sagle and R. E. Walde. Introduction to Lie groups and Lie algebras.

Academic Press, New York-London, 1973. Pure and Applied Mathematics, Vol. 51.

[52] B. Sandstede. Stability of travelling waves. In Handbook of dynamical sys-tems, Vol. 2, pages 983–1055. North-Holland, Amsterdam, 2002.

Bibliography 145 [53] G. Strang. On the construction and comparison of difference schemes. SIAM

J. Numer. Anal., 5:506–517, 1968.

[54] R. S. Strichartz. Multipliers on fractional Sobolev spaces. J. Math. Mech., 16:1031–1060, 1967.

[55] R. Stuhlmeier. KdV theory and the Chilean tsunami of 1960. Discrete Contin. Dyn. Syst. Ser. B, 12(3):623–632, 2009.

[56] C. Sulem and P.-L. Sulem. The nonlinear Schr¨odinger equation, volume 139 of Applied Mathematical Sciences. Springer-Verlag, New York, 1999. Self-focusing and wave collapse.

[57] T. Tao. Low-regularity global solutions to nonlinear dispersive equations.

In Surveys in analysis and operator theory (Canberra, 2001), volume 40 of Proc. Centre Math. Appl. Austral. Nat. Univ., pages 19–48. Austral. Nat.

Univ., Canberra, 2002.

[58] T. Tao. Nonlinear dispersive equations, volume 106 ofCBMS Regional Con-ference Series in Mathematics. Published for the ConCon-ference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis.

[59] T. Tao. Global behaviour of nonlinear dispersive and wave equations. In Current developments in mathematics, 2006, pages 255–340. Int. Press, Somerville, MA, 2008.

[60] V. Th¨ummler. Numerical analysis of the method of freezing traveling waves.

PhD thesis, Universit¨at Bielefeld, 2005.

[61] M. V¨ath. Topological Analysis: From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions. De Gruyter Series in Nonlinear Analysis and Applications. De Gruyter, 2012.

[62] J. A. C. Weideman and B. M. Herbst. Split-step methods for the solution of the nonlinear Schr¨odinger equation. SIAM J. Numer. Anal., 23(3):485–507, 1986.

[63] S. Weinberg. The quantum theory of fields. Vol. I. Cambridge University Press, Cambridge, 2005. Foundations.

[64] M. I. Weinstein. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math., 39(1):51–67, 1986.

[65] G. B. Whitham.Linear and nonlinear waves. Wiley-Interscience [John Wiley

& Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics.

[66] N. J. Zabusky and M. D. Kruskal. Interaction of Solitons in a Collisionless Plasma and the Recurrence of Initial States. Phys. Rev. Lett., 15:240–243, Aug 1965.