• Keine Ergebnisse gefunden

The discrete points at the front, rear and side keyhole wall computed by (A.12) can be used to construct a level set function whose zero level set represents the whole keyhole geometry. Let xfi = (xfi,0, zi), xri = (xri,0, zi) and xsi1 = (xsi, yis, zi) = (xHSi , yis, zi) resp. xsi2 = (xsi,−ysi, zi) = (xHSi ,−yis, zi),i= 1, . . . , M, be the coordinates of the points at the front, rear and side keyhole wall. For every depth layer zi, we approximate the keyhole shape by two half-ellipses using the front and rear keyhole wall points as semi-major axes and the side keyhole wall points as semi-minor axes, see FigureA.4.

x y

(xHS,0)

(xr,0) = (ˆxr−xHS,0) (xf,0) = (ˆxf −xHS,0) (xs, ys) = (xHS, ys)

(xs,−ys) = (xHS,−ys)

Figure A.4 Keyhole wall approximated at a fixed depth and with a heat source location (xHS,0) in both coordinate systems.

By doing this, the half-ellipse connectingxfi,xsi1 and xsi2 is given by y2 = (yis)2−(ysi)2

(xfi)2(x−xsi)2. (A.15) and the half-ellipse connectingxri,xsi1 and xsi2 is given by

y2 = (yis)2−(ysi)2

(xri)2(x−xsi)2. (A.16) Based on this equations, we introduce the level set functions

φ1|zi(x) =φ(x, y, zi)

=

(y2−(ysi)2(yis)2

(xfi)2(x−xsi)2), forx≥xHS

(y2−(ysi)2(y(xsir)2

i)2(x−xsi)2), forx < xHS

, (A.17)

which are signed distance functions whose zero level sets Γ1|zi represents the (2D) keyhole wall for each depth layer zi, i= 1, . . . , M in thex-y plane. In the vertical direction, the different ellipses (or equivalently the level set functions) are linearly interpolated between the z-layers

to obtain a continuous function φ1 whose zero level set Γ1 defines the 3D keyhole geometry.

Thereby, φ1 has to be extended for z < zM in an arbitrarily but continuous way. For problem (5.88), the keyhole geometry is considered as constant and moves along the welding line at the given welding speed V⃗L. Hence, our sharp interface between keyhole and molten area is given by

Γ1(t) ={x∈Ω : (x−(t−t0)V⃗L)∈Γ1(t0), t∈[t0, tf]}. (A.18) Remark A.2. While in a first step, the discrete keyhole Γh is computed using a very small step size ∆z for a high precision approximation of the keyhole shape and depth, the level set functionφ1 and the corresponding zero level set Γ1 are constructed using only a set of keyhole wall coordinates which contains only about 10% of the previously computed points including the first and the last one. This does not represent any remarkable reduction in precision, as the interfaces are in the end linearly interpolated during the XFEM enrichment of elements.

[1] A. Logg, K.-A. Mardal, and G. N. Wells, editors. Automated solution of differential equations by the finite element method, volume 84 of Lecture Notes in Computational Science and Engineering. Springer, 2012. doi: 10.1007/978-3-642-23099-8.

[2] M. Jahn and T. Klock. A level set toolbox including reinitialization and mass correction algorithms for FEniCS. Technical Report 16-01, ZeTeM, Bremen, 2016.

[3] Lamineries MATTHEY SA. Stahl 1.4301. Technical Report 2013/01, Lamineries MATTHEY SA, Lamineries MATTHEY SA, CH-2520 La Neuveville, 2013.

[4] W.F. Gale and T.C. Totemeier. Smithells Metals Reference Book. Elsevier Science, 2003.

ISBN 9780080480961.

[5] H. R. Shanks, A. H. Klein, and G. C. Danielson. Thermal properties of armco iron. 38:

2885 – 2892, 07 1967.

[6] F. Vollertsen, D. Biermann, H.N. Hansen, I.S. Jawahir, and K. Kuzman. Size effects in manufacturing of metallic components. CIRP Annals - Manufacturing Technology, 58(2):

566 – 587, 2009. ISSN 0007-8506. doi: 10.1016/j.cirp.2009.09.002.

[7] F. Vollertsen and R. Walther. Energy balance in laser based free form heading. CIRP Annals, 57:291–294, 2008.

[8] A. Stephen and F. Vollertsen. Influence of the rod diameter on the upset ratio in laser-based free form heading. Steel Research Int., Special Edition: 10th Int. Conf. on Tech-nology of Plasticity (ICTP), pages 220–223, 2011.

[9] E. B¨ansch, J. Paul, and A. Schmidt. An ALE finite element method for a coupled Stefan problem and Navier–Stokes equations with free capillary surface. International Journal for Numerical Methods in Fluids, 71(10):1282–1296, 2013. ISSN 1097-0363. doi: 10.1002/

fld.3711.

[10] M. Jahn, A. Luttmann, and A. Schmidt. A FEM simulation for solid-liquid-solid phase transitions during the production of micro-components. In Proceedings of 11th Interna-tional Scientific Conference MMA - Advanced Production Technologies, 2012.

173

[11] M. Jahn, H. Br¨uning, A. Schmidt, and F. Vollertsen. Energy dissipation in laser-based free form heading: a numerical approach. Production Engineering, 8(1-2):51–61, 2014.

ISSN 0944-6524. doi: 10.1007/s11740-013-0509-8.

[12] H. Br¨uning, M. Teepe, and F. Vollertsen. Surface roughness and size effect in dendrite arm spacing at preforms of aisi 304 (1.4301) generated by laser rod end melting. Procedia Engineering, 81(0):1589 – 1594, 2014. ISSN 1877-7058. doi: http://dx.doi.org/10.1016/

j.proeng.2014.10.195. 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress Center, Nagoya, Japan.

[13] A. Luttmann.Modellierung und Simulation von Prozessen mit fest-fl¨ussig Phasen¨ubergang und freiem Kapillarrand. Dissertation, Universit¨at Bremen, 2018.

[14] M. Jahn A. Barr A. Schmidt A. von Hehl F. Vollertsen M. Kowalschuk, A. Luttmann.

Challenges in simulation of welded hybrid joints. In F. Gr¨un W. Eichlseder, editor, Proceedings of the 3rd Fatigue Symposium Leoben, pages 85–112, 2012.

[15] L. I. Rubinˇste˘in. The Stefan Problem, volume 27 ofTranslations of Mathematical Mono-graphs. American Mathematical Society, Rhode Island, 1971.

[16] A. Visintin. Models of phase transition. Birkh¨auser Boston Inc., 1996.

[17] E. B¨ansch. Finite element discretization of the Navier-Stokes equations with a free cap-illary surface. Numerische Mathematik, 88(2):203–235, 2001.

[18] C. Grossmann, H.G. Roos, and M. Stynes. Numerical Treatment of Partial Differential Equations. Universitext. Springer Berlin Heidelberg, 2007. ISBN 9783540715849.

[19] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Ap-plied Mathematics. Cambridge University Press, 2002. doi: 10.1017/CBO9780511791253.

[20] M. Jahn, A. Luttmann, A. Schmidt, and J. Paul. Finite element methods for problems with solid-liquid-solid phase transitions and free melt surface. PAMM, 12(1):403–404, 2012. ISSN 1617-7061. doi: 10.1002/pamm.201210190.

[21] M. Jahn and A. Schmidt. Finite element simulation of a material accumulation process including phase transitions and a capillary surface. Technical Report 12-03, ZeTeM, Bremen, 2012.

[22] M. Jahn, A. Luttmann, and A. Schmidt. Finite element simulation for material accumu-lation and welding processes including a free melt surface. PAMM, 13(1):235–236, 2013.

ISSN 1617-7061. doi: 10.1002/pamm.201310113.

[23] L. Tan and N. Zabaras. A level set simulation of dendritic solidification of multi-component alloys.Journal of Computational Physics, 221(1):9 – 40, 2007. ISSN 0021-9991.

doi: https://doi.org/10.1016/j.jcp.2006.06.003.

[24] B. Schott. Stabilized Cut Finite Element Methods for Complex Interface Coupled Flow Problems. Dissertation, TU M¨unchen, M¨unchen, 2017.

[25] S. Zlotnik and P. D´ıez. Hierarchical x-fem for n-phase flow (n¿2). Computer Methods in Applied Mechanics and Engineering, 198(30):2329 – 2338, 2009. ISSN 0045-7825. doi:

https://doi.org/10.1016/j.cma.2009.02.025.

[26] T.-P. Fries and T. Belytschko. The extended/generalized finite element method: An overview of the method and its applications.International Journal for Numerical Methods in Engineering, 84(3):253–304, 2010. ISSN 1097-0207. doi: 10.1002/nme.2914.

[27] J. Nitsche. ¨Uber ein Variationsprinzip zur L¨osung von Dirichlet-Problemen bei Verwen-dung von Teilr¨aumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universit¨at Hamburg, 36(1):9–15, 1971. ISSN 1865-8784. doi: 10.1007/BF02995904.

[28] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algo-rithms based on Hamilton-Jacobi formulations.J. Comput. Phys., 79(1):12–49, November 1988. ISSN 0021-9991. doi: 10.1016/0021-9991(88)90002-2.

[29] S. Gross and A. Reusken. Numerical Methods for two-phase Incompressible Flows.

Springer Series in Computational Mathematics. Springer, 2011. ISBN 9783642196867.

[30] E. O˜nate and M. Manz´an. A general procedure for deriving stabilized space–time fi-nite element methods for advective–diffusive problems. International Journal for Nu-merical Methods in Fluids, 31(1):203–221, 1999. ISSN 1097-0363. doi: 10.1002/(SICI) 1097-0363(19990915)31:1⟨203::AID-FLD964⟩3.0.CO;2-Z.

[31] W.E. Schiesser. The Numerical Method of Lines: Integration of Partial Differential Equa-tions. Academic Press, 1991. ISBN 9780126241303.

[32] W.E. Schiesser. Computational Mathematics in Engineering and Applied Science: ODEs, DAEs, and PDEs. Symbolic & Numeric Computation. Taylor & Francis, 1993. ISBN 9780849373732.

[33] T. E. Tezduyar. Interface-tracking and interface-capturing techniques for finite ele-ment computation of moving boundaries and interfaces. Computer Methods in Ap-plied Mechanics and Engineering, 195(23):2983 – 3000, 2006. ISSN 0045-7825. doi:

https://doi.org/10.1016/j.cma.2004.09.018. Incompressible CFD.

[34] C.W Hirt, A.A Amsden, and J.L Cook. An arbitrary lagrangian-eulerian computing method for all flow speeds. Journal of Computational Physics, 14(3):227 – 253, 1974.

ISSN 0021-9991. doi: https://doi.org/10.1016/0021-9991(74)90051-5.

[35] R. H. Nochetto, K. G. Siebert, and A. Veeser. Theory of adaptive finite element methods:

An introduction. In R. DeVore and A. Kunoth, editors,Multiscale, Nonlinear and Adap-tive Approximation, pages 409–542, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[36] I. Babuˇska. The finite element method with penalty. Mathematics of Computation, 27 (122):221–228, 1973. ISSN 00255718, 10886842.

[37] I. Babuˇska and M. Zl´amal. Nonconforming elements in the finite element method with penalty. SIAM Journal on Numerical Analysis, 10(5):863–875, 1973. doi: 10.1137/

0710071.

[38] J. W. Barrett and C. M. Elliott. Finite element approximation of the dirichlet problem using the boundary penalty method. Numerische Mathematik, 49(4):343–366, Jul 1986.

[39] J. M. Melenk and I. Babuˇska. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1-4):

289–314, 12 1996. ISSN 0374-2830.

[40] I. Babuˇska and J. M. Melenk. The partition of unity method. International Journal for Numerical Methods in Engineering, 40(4):727–758, 1997. ISSN 1097-0207. doi: 10.1002/

(SICI)1097-0207(19970228)40:4⟨727::AID-NME86⟩3.0.CO;2-N.

[41] T. Strouboulis, K. Copps, and I. Babuˇska. The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering, 47(8):1401–1417, 2000. ISSN 1097-0207. doi:

10.1002/(SICI)1097-0207(20000320)47:8⟨1401::AID-NME835⟩3.0.CO;2-8.

[42] C. A. Duarte, I. Babuˇska, and J. T. Oden. Generalized finite element methods for three-dimensional structural mechanics problems. Computers & Structures, 77(2):215 – 232, 2000. ISSN 0045-7949.

[43] J. E. Dolbow. An extended finite element method with discontinuous enrichment for applied mechanics. Northwestern University, 1999.

[44] N. Mo¨es, J. Dolbow, and T. Belytschko. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1):131–150, 1999. ISSN 1097-0207. doi: 10.1002/(SICI)1097-0207(19990910)46:1⟨131::AID-NME726⟩

3.0.CO;2-J.

[45] T. Belytschko, R. Gracie, and G. Ventura. A review of extended/generalized finite ele-ment methods for material modeling. Modelling and Simulation in Materials Science and Engineering, 17(4):043001, 2009.

[46] J. Chessa, P. Smolinski, and T. Belytschko. The extended finite element method (XFEM) for solidification problems. International Journal for Numerical Methods in Engineering, 53(8):1959–1977, 2002. ISSN 1097-0207. doi: 10.1002/nme.386.

[47] R. Merle and J. Dolbow. Solving thermal and phase change problems with the extended finite element method. Computational Mechanics, 28(5):339–350, 2002. ISSN 1432-0924.

doi: 10.1007/s00466-002-0298-y.

[48] Y. Abdelaziz and A. Hamouine. A survey of the extended finite element. Computers &

Structures, 86(11):1141 – 1151, 2008. ISSN 0045-7949. doi: https://doi.org/10.1016/j.

compstruc.2007.11.001.

[49] A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Computer Methods in Applied Mechanics and Engineer-ing, 191(47–48):5537 – 5552, 2002. ISSN 0045-7825. doi: http://dx.doi.org/10.1016/

S0045-7825(02)00524-8.

[50] C. Lehrenfeld. On a Space-Time Extended Finite Element Method for the Solution of a Class of Two-Phase Mass Transport Problems. Dissertation, RWTH Aachen, February 2015.

[51] N. Moes, M. Cloirec, P. Cartraud, and J.-F. Remacle. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 192:3163–3177, 07 2003.

[52] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing. Cutfem: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104(7):472–501, 2015. ISSN 1097-0207. doi: 10.1002/nme.4823.

[53] K. W. Cheng and T.-P. Fries. Higher-order XFEM for curved strong and weak discontinu-ities. International Journal for Numerical Methods in Engineering, 82(5):564–590, 2010.

ISSN 1097-0207. doi: 10.1002/nme.2768.

[54] M. Nikbakht. Automated solution of partial differential equations with discontinuities using the Partition of Unity method. PhD thesis, TU Delft, 2012.

[55] N. Mo¨es, E. B´echet, and M. Tourbier. Imposing dirichlet boundary conditions in the extended finite element method. International Journal for Numerical Methods in Engi-neering, 67(12):1641–1669, 2006. ISSN 1097-0207. doi: 10.1002/nme.1675.

[56] J. E. Dolbow and H. Ji. On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. International Journal for Numerical Methods in Engineering, 61(14):2508–2535, 2004.

[57] I. Babuˇska. The finite element method with lagrangian multipliers. Numerische Mathe-matik, 20(3):179–192, Jun 1973. ISSN 0945-3245. doi: 10.1007/BF01436561.

[58] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems aris-ing from lagrangian multipliers.ESAIM: Mathematical Modelling and Numerical Analysis - Mod´elisation Math´ematique et Analyse Num´erique, 8(R2):129–151, 1974.

[59] D. Braess. Finite Elemente: Theorie, schnelle L¨oser und Anwendungen in der Elas-tizit¨atstheorie. Masterclass. Springer Berlin Heidelberg, 2013. ISBN 9783662072332.

[60] E. Burman. Ghost penalty. Comptes Rendus Mathematique, 348(21):1217 – 1220, 2010.

ISSN 1631-073X. doi: https://doi.org/10.1016/j.crma.2010.10.006.

[61] R. Bank and R. Santos. Analysis of some moving space-time finite element methods.

SIAM Journal on Numerical Analysis, 30(1):1–18, 1993. doi: 10.1137/0730001.

[62] T.-P. Fries and A. Zilian. On time integration in the XFEM. International Journal for Numerical Methods in Engineering, 79(1):69–93, 2009. ISSN 1097-0207. doi: 10.1002/

nme.2558.

[63] R.A. Adams and J.J.F. Fournier.Sobolev Spaces. Pure and Applied Mathematics. Elsevier Science, 2003. ISBN 9780080541297.

[64] B. Merriman, J. K. Bence, and S. J. Osher. Motion of multiple junctions: A level set approach. Journal of Computational Physics, 112(2):334 – 363, 1994. ISSN 0021-9991.

doi: https://doi.org/10.1006/jcph.1994.1105.

[65] H-K Zhao, T. Chan, B. Merriman, and S. Osher. A variational level set approach to multiphase motion. Journal of Computational Physics, 127(1):179 – 195, 1996. ISSN 0021-9991. doi: https://doi.org/10.1006/jcph.1996.0167.

[66] S. J. Ruuth. A diffusion-generated approach to multiphase motion. Journal of Compu-tational Physics, 145(1):166 – 192, 1998. ISSN 0021-9991. doi: https://doi.org/10.1006/

jcph.1998.6028.

[67] D. P. Starinshak, S. Karni, and P. L. Roe. A new level set model for multimaterial flows. Journal of Computational Physics, 262:1 – 16, 2014. ISSN 0021-9991. doi: https:

//doi.org/10.1016/j.jcp.2013.12.036.

[68] T.P. Fries and D. Sch¨ollhammer. Higher-order meshing of implicit geometries, part ii:

Approximations on manifolds. Computer Methods in Applied Mechanics and Engineering, 326:270 – 297, 2017. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2017.07.037.

[69] P. Hansbo. Nitsche’s method for interface problems in computa-tional mechanics. GAMM-Mitteilungen, 28(2):183–206, 2005. ISSN 1522-2608. doi: 10.1002/gamm.201490018.

[70] E. Burman. A penalty-free nonsymmetric nitsche-type method for the weak imposition of boundary conditions. SIAM Journal on Numerical Analysis, 50(4):1959–1981, 2012.

doi: 10.1137/10081784X.

[71] E. Burman and P. Hansbo. Fictitious domain finite element methods using cut elements:

Ii. a stabilized nitsche method. Applied Numerical Mathematics, 62(4):328 – 341, 2012.

ISSN 0168-9274. doi: https://doi.org/10.1016/j.apnum.2011.01.008. Third Chilean Work-shop on Numerical Analysis of Partial Differential Equations (WONAPDE 2010).

[72] A. N. Brooks and T. J.R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation. Computer Methods in Applied Mechanics and Engineering, 32(1):199 – 259, 1982. ISSN 0045-7825. doi: https://doi.org/10.1016/0045-7825(82)90071-8.

[73] F. Hecht. New development in FreeFem++. J. Numer. Math., 20(3-4):251–265, 2012.

ISSN 1570-2820.

[74] COMSOL. Multiphysics Reference Guide for COMSOL 5.3, 2017.

[75] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells. Unified form language: A domain-specific language for weak formulations of partial differential equa-tions. ACM Trans. Math. Softw., 40(2):9:1–9:37, March 2014. ISSN 0098-3500. doi:

10.1145/2566630.

[76] M. S. Alnæs. UFL: a finite element form language. In A. Logg, K.-A. Mardal, and G. N.

Wells, editors, Automated solution of differential equations by the finite element method, volume 84 ofLecture Notes in Computational Science and Engineering, chapter 17, pages 299–334. Springer, 2012. doi: 10.1007/978-3-642-23099-8.

[77] R. C. Kirby and A. Logg. A compiler for variational forms. ACM Trans. Math. Softw., 32(3):417–444, September 2006. ISSN 0098-3500. doi: 10.1145/1163641.1163644.

[78] K. B. Ølgaard and G. N. Wells. Optimizations for quadrature representations of finite element tensors through automated code generation. ACM Trans. Math. Softw., 37(1):

8:1–8:23, January 2010. ISSN 0098-3500. doi: 10.1145/1644001.1644009.

[79] A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells. FFC: the FEniCS form com-piler. In A. Logg, K.-A. Mardal, and G. N. Wells, editors, Automated solution of dif-ferential equations by the finite element method, volume 84 of Lecture Notes in Com-putational Science and Engineering, chapter 11, pages 223–234. Springer, 2012. doi:

10.1007/978-3-642-23099-8.

[80] R. C. Kirby. Algorithm 839: Fiat, a new paradigm for computing finite element basis functions. ACM Trans. Math. Softw., 30(4):502–516, December 2004. ISSN 0098-3500.

doi: 10.1145/1039813.1039820.

[81] R. C. Kirby. FIAT: numerical construction of finite element basis functions. In A. Logg, K.-A. Mardal, and G. N. Wells, editors, Automated solution of differential equations by the finite element method, volume 84 of Lecture Notes in Computational Science and Engineering, chapter 13, pages 243–252. Springer, 2012. doi: 10.1007/978-3-642-23099-8.

[82] M. S. Alnæs, A. Logg, K.-A. Mardal, O. Skavhaug, and H. P. Langtangen. Unified framework for finite element assembly. International Journal of Computational Science and Engineering, 4(4):231–244, 2009. doi: 10.1504/2009.029160.

[83] M. S. Alnæs, A. Logg, and K.-A. Mardal. UFC: a finite element code generation in-terface. In A. Logg, K.-A. Mardal, and G. N. Wells, editors, Automated solution of differential equations by the finite element method, volume 84 of Lecture Notes in Com-putational Science and Engineering, chapter 16, pages 279–298. Springer, 2012. doi:

10.1007/978-3-642-23099-8.

[84] A. Logg and G. N. Wells. DOLFIN: Automated finite element computing. ACM Trans Math Software, 37(2):20:1–20:28, 2010.

[85] A. Logg, G. N. Wells, and J. Hake. DOLFIN: a C++/Python finite element library.

In A. Logg, K.-A. Mardal, and G. N. Wells, editors, Automated solution of differ-ential equations by the finite element method, volume 84 of Lecture Notes in Com-putational Science and Engineering, chapter 10, pages 171–222. Springer, 2012. doi:

10.1007/978-3-642-23099-8.

[86] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 3.8, Argonne National Laboratory, 2017.

[87] W. Schroeder, Ken M., and B. Lorensen. Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, 4th Edition. Kitware, 4th edition, December 2006. ISBN 193093419X.

[88] M. Nikbakht and G. N. Wells. Automated modelling of evolving discontinuities. Algo-rithms, 2:1008–1030, 2009. doi: 10.3390/a2031008.

[89] M. Nikbakht and G. N.Wells. Modeling evolving discontinuities. In A. Logg, K.-A.

Mardal, and G. N. Wells, editors,Automated solution of differential equations by the finite element method, volume 84 of Lecture Notes in Computational Science and Engineering, chapter 30, pages 573–586. Springer, 2012. doi: 10.1007/978-3-642-23099-8.

[90] U. Ayachit. The ParaView Guide: A Parallel Visualization Application. Kitware, Inc., USA, 2015. ISBN 1930934300, 9781930934306.

[91] T. Williams, C. Kelley, and many others. Gnuplot 5.0: An interactive plotting program.

http://www.gnuplot.info, 2015.

[92] C. M. Elliot. On the finite element approximation of an elliptic variational inequality aris-ing from an implicit time discretization of the Stefan problem. IMA Journal of Numerical analysis, 1:115–125, 1981.

[93] T. Klock. Numerical solution of the two-phase Stefan problem with XFEM and level set methods. Master thesis, Universit¨at Bremen, 2016.

[94] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang. A PDE-based fast local level set method. Journal of Computational Physics, 155:410–438, November 1999. doi: 10.

1006/jcph.1999.6345.

[95] R. F. Ausas, E. A. Dari, and G. C. Buscaglia. A geometric mass-preserving redistancing scheme for the level set function. International Journal for Numerical Methods in Fluids, 65(8):989–1010, 2011. ISSN 1097-0363. doi: 10.1002/fld.2227.

[96] H.G. Roos, M. Stynes, and L. Tobiska. Robust numerical methods for singularly perturbed differential equations: Convection-diffusion-reaction and flow problems. Springer Series in Computational Mathematics. Springer, 2008. ISBN 9783540344674.

[97] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng., pages 199–259, 1990. ISSN 0045-7825.

[98] J. A. Sethian. A fast marching level set method for monotonically advancing fronts.

Proceedings of the National Academy of Sciences, 93(4):1591–1595, 1996.

[99] A. Reusken and E. Loch. On the Accuracy of the Level Set SUPG Method for Approxi-mating Interfaces. Bericht. Inst. f¨ur Geometrie und Praktische Mathematik, 2011.

[100] N. Anderson and ˚A. Bj¨orck. A new high order method of regula falsi type for computing a root of an equation. BIT Numerical Mathematics, 13(3):253–264, 1973.

[101] M. Bernauer. Motion planning for the two-phase Stefan problem in level set formulation.

Dissertation, 2010.

[102] M. Jahn and A. Luttmann. Solving the Stefan problem with prescribed interface using an XFEM toolbox for FEniCS. Technical Report 16-03, ZeTeM, Bremen, 2016.

[103] M. Jahn and T. Klock. Numerical solution of the Stefan problem in level set formulation with the eXtended finite element method in FEniCS. Technical Report 17-01, ZeTeM, Bremen, 2017.

[104] M. Jahn, T. Klock, and A. Luttmann. Levelset methods (and XFEM) in FEniCS, 2015.

FEniCS’15 Workshop at Imperial College London.

[105] M. Jahn, A. Luttmann, and T. Klock. An XFEM toolbox for FEniCS, 2016. FEniCS’16 Workshop at Simula Research Laboratory.

[106] M. Jahn. miXFEM - an XFEM toolbox to tackle multiphysics problems with FEniCS, 2018. FEniCS’18 Workshop at Oxford University.

[107] G. Dziuk. Theorie und Numerik partieller Differentialgleichungen. De-Gruyter-Studium.

De Gruyter, 2010. ISBN 9783110148435.