• Keine Ergebnisse gefunden

20. Chesebro, B. , Race, R., Wehrly, K., Nishio, J., Bloom, M., Lechner, D., Bergstrom, S., Robbins, K., Mayer, L. and Keith, J. M. Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature, 315: 331-3, 1985.

21. Kretzschmar, H. A., Prusiner, S. B., Stowring, L. E. and DeArmond, S. J. Scrapie prion proteins are synthesized in neurons. Am J Pathol, 122: 1-5, 1986.

22. Moser, M., Colello, R. J., Pott, U. and Oesch, B. Developmental expression of the prion protein gene in glial cells. Neuron, 14: 509-17, 1995.

23. Cashman, N. R., Loertscher, R., Nalbantoglu, J., Shaw, I., Kascsak, R. J., Bolton, D. C. and Bendheim, P. E. Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell, 61: 185-92, 1990.

24. Bueler, H., Aguzzi, A., Sailer, A., Greiner, R. A., Autenried, P., Aguet, M. and Weissmann, C.

Mice devoid of PrP are resistant to scrapie. Cell, 73: 1339-47, 1993.

25. Bueler, H., Fischer, M., Lang, Y., Bluethmann, H., Lipp, H. P., DeArmond, S. J., Prusiner, S.

B., Aguet, M. and Weissmann, C. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature, 356: 577-82, 1992.

26. Sailer, A., Bueler, H., Fischer, M., Aguzzi, A. and Weissmann, C. No propagation of prions in mice devoid of PrP. Cell, 77: 967-8, 1994.

27. Tahiri-Alaoui, A., Gill, A. C., Disterer, P. and James, W. Methionine 129 variant of human prion protein oligomerizes more rapidly than the valine 129 variant: implications for disease susceptibility to Creutzfeldt-Jakob disease. J Biol Chem, 279: 31390-7, 2004.

28. Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W. K. and Yee, V. C. Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol, 8: 770-4, 2001.

29. Zahn, R., Liu, A., Luhrs, T., Riek, R., von Schroetter, C., Lopez Garcia, F., Billeter, M., Calzolai, L., Wider, G. and Wuthrich, K. NMR solution structure of the human prion protein.

Proc Natl Acad Sci U S A, 97: 145-50, 2000.

30. Pan, K. M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Huang, Z., Fletterick, R. J. and Cohen, F. E. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A, 90: 10962-6, 1993.

31. Prusiner, S. B., Scott, M. R., DeArmond, S. J. and Cohen, F. E. Prion protein biology. Cell, 93:

337-48, 1998.

32. Telling, G. C., Scott, M., Mastrianni, J., Gabizon, R., Torchia, M., Cohen, F. E., DeArmond, S.

J. and Prusiner, S. B. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell, 83: 79-90, 1995.

33. Jarrett, J. T. and Lansbury, P. T. Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell, 73: 1055-8, 1993.

34. Aguzzi, A. and Heppner, F. L. Pathogenesis of prion diseases: a progress report. Cell Death Differ, 7: 889-902, 2000.

35. Safar, J., Wille, H., Itri, V., Groth, D., Serban, H., Torchia, M., Cohen, F. E. and Prusiner, S. B.

Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med, 4: 1157-65, 1998.

36. Caughey, B., Raymond, G. J. and Bessen, R. A. Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J Biol Chem, 273: 32230-5, 1998.

37. Bessen, R. A., Kocisko, D. A., Raymond, G. J., Nandan, S., Lansbury, P. T. and Caughey, B.

Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature, 375:

698-700, 1995.

38. Kocisko, D. A., Come, J. H., Priola, S. A., Chesebro, B., Raymond, G. J., Lansbury, P. T. and Caughey, B. Cell-free formation of protease-resistant prion protein. Nature, 370: 471-4, 1994.

39. Hill, A. F., Antoniou, M. and Collinge, J. Protease-resistant prion protein produced in vitro lacks detectable infectivity. J Gen Virol, 80: 11-4, 1999.

40. Saborio, G. P., Permanne, B. and Soto, C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature, 411: 810-3, 2001.

41. Castilla, J., Saa, P., Hetz, C. and Soto, C. In vitro generation of infectious scrapie prions. Cell, 121: 195-206, 2005.

42. Stahl, N., Borchelt, D. R., Hsiao, K. and Prusiner, S. B. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell, 51: 229-40, 1987.

43. Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R. and Wuthrich, K. NMR structure of the mouse prion protein domain PrP(121-321). Nature, 382: 180-2, 1996.

44. Horwich, A. L. and Weissman, J. S. Deadly conformations-protein misfolding in prion disease.

Cell, 89: 499-510, 1997.

45. Aronoff-Spencer, E., Burns, C. S., Avdievich, N. I., Gerfen, G. J., Peisach, J., Antholine, W.

E., Ball, H. L., Cohen, F. E., Prusiner, S. B. and Millhauser, G. L. Identification of the Cu2+

binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy.

Biochemistry, 39: 13760-71, 2000.

46. Viles, J. H., Cohen, F. E., Prusiner, S. B., Goodin, D. B., Wright, P. E. and Dyson, H. J.

Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci U S A, 96: 2042-7, 1999.

47. Brown, D. R., Qin, K., Herms, J. W., Madlung, A., Manson, J., Strome, R., Fraser, P. E., Kruck, T., von Bohlen, A., Schulz-Schaeffer, W., Giese, A., Westaway, D. and Kretzschmar, H. The cellular prion protein binds copper in vivo. Nature, 390: 684-7, 1997.

48. Brown, D. R. , Wong, B. S., Hafiz, F., Clive, C., Haswell, S. J. and Jones, I. M. Normal prion protein has an activity like that of superoxide dismutase. Biochem J, 344: 1-5, 1999.

49. Pauly, P. C. and Harris, D. A. Copper stimulates endocytosis of the prion protein. J Biol Chem, 273: 33107-10, 1998.

50. Calzolai, L. and Zahn, R. Influence of pH on NMR structure and stability of the human prion protein globular domain. J Biol Chem, 278: 35592-6, 2003.

51. Apetri, A. C. and Surewicz, W. K. Atypical effect of salts on the thermodynamic stability of human prion protein. J Biol Chem, 278: 22187-92, 2003.

52. Redecke, L., Bergen, M., Clos, J., Konarev, P. V., Svergun, D. I., Meyer-Klaucke, W., Fittschen, U. E., Broekaert, A. C., Bruns, O., Georgieva, D., Genov, N. and Betzel, C.

Structural characterization of β-sheeted oligomers formed by metal-induced oxidation of human prion protein. submitted.

53. Berlett, B. S. and Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem, 272: 20313-6, 1997.

54. Shiraishi, N., Inai, Y., Bi, W. and Nishikimi, M. Fragmentation and dimerization of copper-loaded prion protein by copper-catalysed oxidation. Biochem J, 387: 247-55, 2005.

55. Rezaei, H., Eghiaian, F., Perez, J., Doublet, B., Choiset, Y., Haertle, T. and Grosclaude, J.

Sequential generation of two structurally distinct ovine prion protein soluble oligomers displaying different biochemical reactivities. J Mol Biol, 347: 665-79, 2005.

56. Torrent, J., Alvarez-Martinez, M. T., Heitz, F., Liautard, J. P., Balny, C. and Lange, R.

Alternative prion structural changes revealed by high pressure. Biochemistry, 42: 1318-25, 2003.

57. Xiong, L. W., Raymond, L. D., Hayes, S. F., Raymond, G. J. and Caughey, B. Conformational change, aggregation and fibril formation induced by detergent treatments of cellular prion protein. J Neurochem, 79: 669-78, 2001.

58. Endo, T., Groth, D., Prusiner, S. B. and Kobata, A. Diversity of oligosaccharide structures linked to asparagines of the scrapie prion protein. Biochemistry, 28: 8380-8, 1989.

59. Stimson, E., Hope, J., Chong, A. and Burlingame, A. L. Site-specific characterization of the N-linked glycans of murine prion protein by high-performance liquid chromatography/

electrospray mass spectrometry and exoglycosidase digestions. Biochemistry, 38: 4885-95, 1999.

60. Rudd, P. M., Wormald, M. R., Wing, D. R., Prusiner, S. B. and Dwek, R. A. Prion glycoprotein:

structure, dynamics, and roles for the sugars. Biochemistry, 40: 3759-66, 2001.

61. Wormald, M. R. and Dwek, R. A. Glycoproteins: glycan presentation and protein-fold stability.

Structure Fold Des, 7: 155-60, 1999.

62. Korth, C., Kaneko, K. and Prusiner, S. B. Expression of unglycosylated mutated prion protein facilitates PrP(Sc) formation in neuroblastoma cells infected with different prion strains. J Gen Virol, 81: 2555-63, 2000.

63. Zuegg, J. and Gready, J. E. Molecular dynamics simulation of human prion protein including both N-linked oligosaccharides and the GPI anchor. Glycobiology, 10: 959-74, 2000.

64. Bosques, C. J. and Imperiali, B. The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment. Proc Natl Acad Sci U S A, 100: 7593-8, 2003.

65. Farquhar, C., Dickinson, A. and Bruce, M. Prophylactic potential of pentosan polysulphate in transmissible spongiform encephalopathies. Lancet, 353: 117, 1999.

66. Caughey, W. S., Raymond, L. D., Horiuchi, M. and Caughey, B. Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc Natl Acad Sci U S A, 95: 12117-22, 1998.

67. Priola, S. A., Raines, A. and Caughey, W. S. Porphyrin and phthalocyanine antiscrapie compounds. Science, 287: 1503-6, 2000.

68. Soto, C., Kascsak, R. J., Saborio, G. P., Aucouturier, P., Wisniewski, T., Prelli, F., Kascsak, R., Mendez, E., Harris, D. A., Ironside, J., Tagliavini, F., Carp, R. I. and Frangione, B.

Reversion of prion protein conformational changes by synthetic beta-sheet breaker peptides.

Lancet, 355: 192-7, 2000.

69. Chabry, J., Caughey, B. and Chesebro, B. Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J Biol Chem, 273: 13203-7, 1998.

70. Horiuchi, M., Baron, G. S., Xiong, L. W. and Caughey, B. Inhibition of interactions and interconversions of prion protein isoforms by peptide fragments from the C-terminal folded domain. J Biol Chem, 276: 15489-97, 2001.

71. Ettaiche, M., Pichot, R., Vincent, J. P. and Chabry, J. In vivo cytotoxicity of the prion protein fragment 106-126. J Biol Chem, 275: 36487-90, 2000.

72. Adessi, C., Halazy, S., Saborio, G. and Soto-Jara, C. Prion-inhibiting peptides and derivatives thereof for the treatment of transmissible spongiform encephalopathies. PCT Int Appl, 2003.

73. Sklaviadis, T., Panagiotides, C., Paspaltsis, J. and Karageorgis, B. Prion protein-binding peptides, and therapeutic and diagnostic use. PCT Int Appl, 2004.

74. Soto-Jara, C., Baumann, M. H. and Frangione, B. Peptides and pharmaceutical compositions thereof for treatment of disorders or diseases associated with abnormal protein folding into amyloid or amyloid-like deposits. U S, 2002.

75. Soto-Jara, C. Peptide analogs and mimetics suitable for in vivo use in the treatment of diseases associated with abnormal protein folding into amyloid, amyloid-like deposits or b-sheet rich pathological precursor thereof. PCT Int Appl, 2001.

76. Chesebro, B. W., Caughey, B. W., Chabry, J. and Priola, S. Sequences of peptide inhibitors for formation of protease resistant prion proteins associated with transmissible spongiform encephalopathies. U S, 2001.

77. Prusiner, S. B., Kaneko, K. and Cohen, F. E. Prion protein peptides PrP and assays for PrPSc and inhibitors of PrPSc formation. PCT Int Appl, 1997.

78. Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev, 46: 3-26, 2001.

79. Maienfisch, P. and Hall, R. G. The importance of fluorine in the life science industry. Chimia, 58: 93-9, 2004.

80. Park, B. K., Kitteringham, N. R. and O'Neill, P. M. Metabolism of fluorine-containing drugs.

Annu Rev Pharmacol Toxicol, 41: 443-70, 2001.

81. Meyer, B. and Peters, T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed Engl, 42: 864-90, 2003.

82. Shuker, S. B., Hajduk, P. J., Meadows, R. P. and Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science, 274: 1531-4, 1996.

83. Pervushin, K., Riek, R., Wider, G. and Wuthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A, 94: 12366-71, 1997.

84. Hajduk, P. J., Augeri, D. J., Mack, J., Mendoza, R., Yang, J., Betz, S. F. and Fesik S. W.

NMR-based screening of proteins containing 13C-labeled methyl groups. J Am Chem Soc, 122: 7898-904, 2000.

85. Meyer, B., Weimar, T. and Peters, T. Screening mixtures for biological activity by NMR. Eur J Biochem, 246: 705-9, 1997.

86. Ni, F. Recent developments in transferred NOE methods. Prog Nucl Magn Reson Spectrosc, 26: 517-606, 1994.

87. Chen, A. and Shapiro, M. J. NOE Pumping: A Novel NMR Technique for Identification of Compounds with Binding Affinity to Macromolecules. J Am Chem Soc, 120: 10258-9, 1998.

88. Chen, A. and Shapiro, M. J. NOE Pumping. 2. A high-throughput method to determine compounds with binding affinity to macromolecules by NMR. J Am Chem Soc, 122: 414-5, 2000.

89. Hajduk, P. J., Olejniczak, E. T. and Fesik, S. W. One-dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules. J Am Chem Soc, 119: 12257-61, 1997.

90. Carr, H. Y. and Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev, 94: 630-8, 1954.

91. Meiboom, S. and Gill, D. Modified spin-echo method for measuring nuclear relaxation times.

Rev Sci Instrum, 29: 688-91, 1958.

92. Otting, G. NMR studies of water bound to biological molecules. Prog NMR Spectrosc, 31:

259-85, 1997.

93. Dalvit, C., Fogliatto, G., Stewart, A., Veronesi, M. and Stockman, B. WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR, 21: 349-59, 2001.

94. Hyde, E. I., Birdsall, B., Roberts, G. C., Feeney, J. and Burgen, A. S. Proton nuclear magnetic resonance saturation transfer studies of coenzyme binding to Lactobacillus casei dihydrofolate reductase. Biochemistry, 19: 3738-46, 1980.

95. Clore, G. M. , Roberts, G. C., Gronenborn, A. M., Birdsall, B. and Feeney, J. Transfer of saturation NMR studies of protein-ligand complexes. Three site exchange. J Magn Reson, 45:

151-61, 1981.

96. Mayer, M. and Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed, 38: 1784-8, 1999.

97. Mayer, M. and Meyer, B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc, 123:

6108-17, 2001.

98. Mayer, M. STD-NMR-Spektroskopie: Eine neue Methode zur Identifizierung und Charakterisierung von Ligand-Rezeptor-Interaktionen. Dissertation, Hamburg, 2001.

99. Klein, J., Meinecke, R., Mayer, M. and Meyer, B. Detecting binding affinity to immobilized receptor proteins in compound libraries by HR-MAS STD NMR. J Am Chem Soc, 121: 5336-7, 1999.

100. Meinecke, R. and Meyer, B. Determination of the binding specificity of an integral membrane protein by saturation transfer difference NMR: RGD peptide ligands binding to integrin αIIbβ3. J Med Chem, 44: 3059-65, 2001.

101. Claasen, B., Axmann, M., Meinecke, R. and Meyer, B. Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin αIIbβ3 in native platelets than in liposomes. J Am Chem Soc, 127: 916-9, 2005.

102. Hesse, M., Meier, H. and Zeeh, B. Spektroskopische Methoden in der Organischen Chemie.

Georg Thieme Verlag, 5. Auflage, Stuttgart, 1995.

103. Gerig, J. T. Fluorine NMR of proteins. Prog Nucl Magn Reson Spectrosc, 26: 293-370, 1994.

104. Jenkins, B. G. Detection of site-specific binding and co-binding of ligands to macromolecules using 19F NMR. Life Sci, 48: 1227-40, 1991.

105. London, R. E. and Scott, A. G. Fluorine-19 NMR Studies of Fluorobenzeneboronic Acids. 1.

Interaction Kinetics with Biologically Significant Ligands. J Am Chem Soc, 116: 2562-9, 1994.

106. Dalvit, C., Fagerness, P. E., Hadden, D. T., Sarver, R. W. and Stockman, B. J. Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. J Am Chem Soc, 125: 7696-703, 2003.

107. Dalvit, C., Flocco, M., Veronesi, M. and Stockman, B. J. Fluorine-NMR competition binding experiments for high-throughput screening of large compound mixtures. Comb Chem High Throughput Screen, 5: 605-11, 2002.

108. Neuhaus, D. and Williamson, M. P. The nuclear Overhauser effect in structural and conformational analysis. Wiley-VCH, 2. Auflage, New York, 2000.

109. Dalvit, C., Ardini, E., Flocco, M., Fogliatto, G. P., Mongelli, N. and Veronesi, M. A general NMR method for rapid, efficient, and reliable biochemical screening. J Am Chem Soc, 125:

14620-5, 2003.

110. Wüthrich, K. NMR of proteins and nucleic acids. Wiley-Interscience, New York, 1986.

111. Karplus, M. Contact electron-spin coupling of nuclear nagnetic moments. J Chem Phys, 30:

11-5, 1959.

112. Ramachandran, G. N. and Sasisekharan, V. Conformation of polypeptides and proteins. Adv Protein Chem, 23: 283-438, 1968.

113. Havel, T. and Wüthrich, K. A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of intramolecular proton-proton proximities in solution. Bull Math Biol, 46: 673-98, 1984.

114. Guntert, P., Mumenthaler, C. and Wüthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol, 273: 283-98, 1997.

115. Nemethy, G. , Pottle, M. S. and Scheraga, H. A. Energy parameters in polypeptides. 9.

Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids. J Phys Chem, 87: 1883-7, 1983.

116. Jonsson, U. , Fagerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., Lofas, S., Persson, B., Roos, H. and Ronnberg, I. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques, 11: 620-7, 1991.

117. Xing, L., Tjarnlund, K., Lindqvist, B., Kaplan, G. G., Feigelstock, D., Cheng, R. H. and Casasnovas, J. M. Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO J, 19: 1207-16, 2000.

118. Holmes, S. D., May, K., Johansson, V., Markey, F. and Critchley, I. A. Studies on the interaction of Staphylococcus aureus and Staphylococcus epidermis with fibronectin using surface plasmon resonance. J Micro Methods, 28: 77-84, 1997.

119. Quinn, J. G., O'Neill, S., Doyle, A., McAtamney, C., Diamond, D., MacCraith, B. D. and O'Kennedy, R. Development and application of surface plasmon resonance-based biosensors for the detection of cell-ligand interactions. Anal Biochem, 281: 135-43, 2000.

120. Turbadar, T. Complete absorption of light by thin metal films. Proc Phy Soc, 73: 40-4, 1959.

121. Schmitz, K. An introduction to dynamic light scattering by macromolecules. Academic Press, New York, 1990.

122. Kullmann, J. Enzymatic peptide synthesis. CRC Press, Boca Raton, 1987.

123. Itakura, K. , Hirose, T., Crea, R., Riggs, A. D., Heyneker, H. L., Bolivar, F. and Boyer, H. W.

Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science, 198: 1056-63, 1977.

124. Merrifield, R. B. Peptide synthesis on a solid polymer. Fed Proc Amer Soc Exp Biol, 21: 412, 1962.

125. Carpino, L. A. and Han, G. Y. The 9-Fluorenylmethoxycarbonylamino-protecting group. J Org Chem, 37: 3404-9, 1972.

126. Reid, G. E. and Simpson, R. J. Automated solid-phase peptide synthesis: use of 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate for coupling of tert-butyloxycarbonyl amino acids. Anal Biochem, 200: 301-9, 1992.

127. Carpino L. A. 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J Am Chem Soc, 115: 4397-8, 1993.

128. Pearson, D. A., Blanchette, M., Baker, M. L. and Guindon, C. A. Trialkylsilanes as scavengers for the trifluoracetic acid deblocking of protecting groups in peptide synthesis. Tetrahedron Lett, 30: 2739-42, 1989.

129. Dwek, R. A. Glycobiology: "towards understanding the function of sugars". Biochem Soc Trans, 23: 1-25, 1995.

130. Bodanszky, M. and Kwei, J. Z. Side reactions in peptide synthesis. VII. Sequence dependence in the formation of aminosuccinyl derivatives from beta-benzyl-aspartyl peptides.

Int J Pept Protein Res, 12: 69-74, 1978.

131. Piotto, M., Saudek, V. and Sklenar, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR, 2: 661-5, 1992.

132. Sklenar, V. , Piotto, M., Leppik, R. and Saudek, V. Gradient-tailored water suppression for 1H - 15N HSQC experiments optimized to retain full sensitivity. J Magn Reson A, 102: 241-5, 1993.

133. Liu, M., Mao, X., Ye, C., Huang, H., Nicholson, J. K. and Lindon, J. C. Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J Magn Reson, 132: 125-9, 1998.

134. Bhattacharyya, L. and Brewer, C. F. Lectin-carbohydrate interactions. Studies of the nature of hydrogen bonding between D-galactose and certain D-galactose-specific lectins, and between D-mannose and concanavalin A. Eur J Biochem, 176: 207-12, 1988.

135. Solis, D., Fernandez, P., Diaz-Maurino, T., Jimenez-Barbero, J. and Martin-Lomas, M.

Hydrogen-bonding pattern of methyl beta-lactoside binding to the Ricinus communis lectins.

Eur J Biochem, 214: 677-83, 1993.

136. Freeman, R. A handbook of nuclear magnetic resonance. Addison Wesley Longman Limited, 2. Auflage, Edinburgh, 1997.

137. Eichler, J., Bienert, M., Stierandova, A. and Lebl, M. Evaluation of cotton as a carrier for solid-phase peptide synthesis. Pept Res, 4: 296-307, 1991.

138. Gasteiger, J. and Marsili, M. Iterative partial equalization of orbital electronegativity: a rapid access to atomic charges. Tetrahedron, 36: 3219-22, 1980.

139. Gasteiger, J. and Marsili, M. Prediction of proton magnetic resonance shifts: the dependence on hydrogen charges obtained by iterative partial equalization of orbital electronegativity.

Organ Magn Reson, 15: 353-60, 1981.