• Keine Ergebnisse gefunden

Konstrueeritud bakteritüvede MG1655 (∆rluC ∆rlmE), MG1655 (∆rluC

3.2 Escherichia coli konstrueeritud bakteritüvede MG1655 (∆rluC ∆rlmE), MG1655

3.2.3 Konstrueeritud bakteritüvede MG1655 (∆rluC ∆rlmE), MG1655 (∆rluC

∆rluF), MG1655 (∆rluC ∆rlmKL ∆rlmN ∆rlmM) ribosoomide analüüs

Valitud tüvede (MG1655 (∆rluC ∆rlmE::Km), MG1655 (∆rluC ∆rlmKL ∆rluF), MG1655 (∆rluC ∆rlmKL ∆rlmN ∆rlmM)) ribosoomide ja subühikute analüüsimiseks fraktsioneeriti ribosoomid 15% - 40% sahharoosigradiendil ning visualiseeriti vastavalt metoodikas kirjeldatud meetoditele (ptk 2.9). Referentstüvedena kasutati tüvesid MG1655 wt, MG1655 (ΔrluC) ja JW3146-2 (∆rlmE::Km).

Joonisel 18 on näha, et konstrueeritud tüvedest (∆rluC ∆rlmKL ∆rluF ja ∆rluC ∆rlmKL

∆rlmN ∆rlmM) 70S, 50S ja 30S partiklite osakaal sarnaneb MG1655 referentstüvele. Samas on kõigil konstrueeritud tüvedel vähenenud polüsoomide osakaal võrreldes wt tüvega, mis viitab, et mRNA transleerimisel võib ribosoomidel kerge probleem olla.

∆rluC ∆rlmE mutandil (joonis 18) on selgelt eristuv sahharoosi gradiendi profiil: 70S

partiklite osakaal on oluliselt vähenenud 50S ja 30S partiklite osakaalud aga kasvanud. Lisaks on muutunud ka polüsoomide pilt. Võrreldes metsiktüüpi tüvega on ti- ja trisoome

silmnähtavalt vähem. Põhjenduseks võib pidada suurt vabade subühikute osakaalu ja

funktsionaalsete 70S ribosoomide vähest hulka, mis võib tuleneda probleemidest subühikute assambleerumisel. Selline sahharoosigradiendi profiil põhjendab ära ka oluliselt pikema lag-faasi ning aeglasema kasvukiiruse eksponentsiaalses lag-faasis (joonis 18). ∆rluC ja ∆rlmE tüved on küllaltki sarnased MG1655 wt tüvele, kuid ∆rlmE tüve puhul on näha veidi suurenenud vabade subühikute hulk. Bügl et al. poolt tehtud sahharoosi gradiendi profiil (joonis 17)

∆rlmE tüvest (ftsJ -) näitab ∆rluC ∆rlmE mutandile sarnasemat partiklite jaotumist, kus

45

vabade 50S ja 30S subühikute osakaal on suurenenud ning 70S ribosoomide osakaal

vähenenud (Bügl et al., 2000). Üks põhjus, miks antud bakalaureuse töö käigus saadud ∆rlmE tüve sahharoosi gradiendi profiil on teistsugune võib olla põhjustatud kompenseerivate mutatsioonide tekkest. Tan et al. on näidanud, et väikeste GTPaaside Obg ja EngA

üleekspressioon taastab ∆rlmE mutanttüvel wild type fenotüübi ja ribosoomide sahharoosi gradiendi profiili (Tan et al., 2002). Väljaselgitamaks, kas ∆rluC ∆rlmE mutandi fenotüüp on põhjustatud ainult rlmE geeni deletsioonist või süveneb kahe geeni puudumise koosmõjul või on seotud retsipienttüvega oleks vaja teha täiendavaid katseid, kus transduktsiooni

geeniülekandes oleks doonortüveks MG1665 ∆rluC::Km ning retsipienttüveks MG1655 (∆rlmE).

Joonis 17. Polüsoomide profiil 10% - 50% sahharoosi gradiendis. Võrreldud on HB24 (wt) ja HB23 (ftsJΔ567).

HB23 tüvest on deleteeritud ftsJ ehk rlmE geen. (Bügl et al., 2000).

46

Joonis 18. Ribosoomide fraktsioneerimine 15% - 40% sahsahharoosi gradiendis. Gradiendi kontsentratsioon muutub lineaarselt. Võrreldud on tüvede MG1655 wt, MG1655 (ΔrluC), JW3146-2, MG1655 (ΔrluC ΔrlmE::Km) MG1655 (∆rluC ∆rlmKL ∆rluF) ja MG1655 (∆rluC ∆rlmKL ∆rlmN ∆rlmM) fraktsioone.

47

Antud töös jäid vaatluse alt välja modifikatsiooniensüümid RluB, RluE ja RlmB, mis modifitseerivad nukleotiide vastavalt positsioonides U2605, U2457 ja G2251. Nendest modifikatsioonidest paigutuvad Green ja Nolleri poolt määratud 80 nukleotiidsesse piirkonda vaid RluE poolt katalüüsitav pseudouridiin Ψ2457. Samas modifikatsioon Gm2251 paikneb strateegiliselt olulises piirkonnas – P-lingus, mis on oluline peptidüül-tRNA seondumiseks.

Bakalaureusetöös saadud tulemustest võib järeldada, et kuigi enamus 23S rRNA domeeni V modifikatsioone ei pruugi olla Escherichia coli jaoks hädavajalikud, siis võib leiduda modifikatsioonide kombinatsioone, mille puudumise korral ei ole võimalik konstrueerida E.

coli tüve. Selle kindlamaks tõestamiseks on tulevikus vaja konstrueerida E. coli tüvesid, milles puuduvad erinevates kombinatsioonides domeeni V modifikatsioonid. Lisaks

võimalikule modifikatsioonide tähtsusele valgusünteesis võivad 23S rRNA modifikatsioonid olla seotud ka bakterirakkude omandatud kaitsemehhanismiga antibiootikumide vastu.

48 KOKKUVÕTE

Käesoleva töö eesmärk oli konstrueerida Escherichia coli tüvi, milles puuduvad kõik 23S rRNA domeeni V modifikatsioonid. Bakalaureuse töö käigus konstrueeriti Escherichia coli mutanttüvesid, kus puuduvad erinevates kombinatsioonides 23S rRNA domeeni V

modifikatsioonid. Konstrueeritud tüvede fenotüüpide iseloomustamiseks uuriti bakterirakkude temperatuuritundlikkust, kasvuparameetreid ning analüüsiti ribosomaalset koostist sahharoosi gradiendis fraktsioneerimisega.

Üksikute modifikatsioonide puudumine domeenis V ei mõjuta ribosoomide funktsionaalsust ja bakterirakkude fenotüüpi. Siiski arvatakse, et võib leiduda kombinatsioone domeenis V asuvatest modifikatsioonidest, mille puudumisel ei ole ribosoom funktsionaalne. Sellise tüve loomisel võib eeldada, et bakterirakkude ribosoomid on väga haiged või rakud pole

elujõulised. Antud töös jõuti sellise tüve loomisele lähemale. Modifikatsioonide olulisuse paremaks mõistmiseks ribosoomi funktsionaalsusele, oleks oluline jätkata Escherichia coli mutanttüvede loomisega, millest võimaluse korral puuduksid kõik domeeni V

modifikatsioonid.

Töös tehtud analüüsi käigus leiti kombinatsioon modifikatsioonidest, mille puudumine ei avalda mõju rakkude kasvukiirusele ega temperatuuritundlikkusele. Samas konstrueeriti ka tüvi, millel esines tugev kasvudefekt, oli suurenenud vabade subühikute osakaal ning 70S ribosoomide hulk oli oluliselt vähenenud.

Esialgsete tulemuste põhjal võib arvata, et tõenäoliselt leidub kombinatsioon 23S rRNA domeeni V modifikatsioonidest, mille puhul ribosoomid on väga defektsed. Kui sellise tüve loomine on võimalik, siis suure tõenäosusega on sellel tüvel väga tugev kasvudefekt.

49

On the importance of modifications in Eschericia coli 23S rRNA domain V

Triin Truu SUMMARY

Escherichia coli is one of the most used organisms for studying ribosomes and protein

synthesis. In all domains of life ribosomal RNA contains modifications. 23S rRNA contains a number of modifications around domain V peptidyl transferase center (PTC). It has been noted that the absence of single modifications around that area has almost no effect on ribosomal maturation, function or cell growth (Del Campo et al., 2001; Lövgren and Wikström, 2001; Conrad et al., 1998). Only the absence of methyltransferase/heat-shock protein RlmE/FtsJ thus the absence of methylation of U2552 seems to be somewhat important for ribosomal assembly. Deletion of this enzyme leads to decrease in 70S ribosomes and increase of free subunits which explains defects in growth rate (Bügl et al., 2000).

The aim of this thesis was to construct an Escherichia coli strain that lacked all of the

modifications located in the domain V of 23S rRNA. The experimenter was able to construct strains of E. coli lacking combinations of different domain V modifications. Some

combinations have almost no effect on ribosomal profile in sucrose gradient, cell growth and temperature sensitivity while a strain lacking two modification enzymes rluC and rlmE showed severe growth defects and decrease in 70S ribosomes. Interestingly the constructed strain showed increased sensitivity to lower temperatures whereas the methyltransferase absent from the strain is also a heat shock protein. All of the strains constructed showed decrease in polysome profile.

Even though most modifications in the PTC area may not be essential for ribosome assembly they could contribute to bacterial defense mechanism against various antibiotics targeting PTC. In order to investigate further the importance of modifications in 23S rRNA domain V the experimenter needs to construct more strains variating combinations of deleted

modification enzyme genes.

50 TÄNUSÕNAD

Autor tänab molekulaarbioloogia ja biokeemia labori meeldivat seltskonda. Eriline tänu kuulub juhendajale Aivar Liivile, professor Jaanus Remmele ja Margus Leppikule kannatlikkuse ja väärtuslike nõuannete eest.

51 KASUTATUD KIRJANDUS

Artiklid:

Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A.,Tomita, M., Wanner, B. L. and Mori, H. (2006). Construction of Escherichia coli K-12 inframe, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2: 2006 0008.

Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol. 62: 293-300.

Blattner, F. R., Plunkett, G., 3rd, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B. and Shao, Y. (1997). The complete genoome sequence of Escherichia coli K-12. Science. 277: 1453-1462.

Cherepanov, P. P. and Wackernagel, W. (1995). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance

determinant. Gene. 158: 9-14.

Datsenko, K. A. and Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 97: 6640-6645.

Decatur, W., and Fournier, M. (2002). rRNA modifications and ribosome function. Trends in biochemical sciences, 27(7), 344-351. doi: 10.1016/S0968-0004(02)02109-6

Del Campo, M., Kaya, Y., and Ofengand, J. (2001). Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli. RNA (New York, N.Y.), 7(11), 1603-1615.

Dokudovskaya, S., Dontsova, O., Shpanchenko, O., Bogdanov, A., and Brimacombe, R.

(1996). Loop IV of 5S ribosomal RNA has contacts both to domain II and to domain V of the 23S RNA. RNA (New York, N.Y.), 2(2), 146-152.

Egebjerg, J., Leffers, H., Christensen, A., Andersen, H., and Garrett, R. A. (1987). Structure and accessibility of domain I of Escherichia coli 23 S RNA in free RNA, in the L24-RNA complex and in 50 S subunits: Implications for ribosomal assembly. J Mol Biol, 196(1), 125-136. doi: http://dx.doi.org/10.1016/0022-2836(87)90515-8

52

Gao, H., Sengupta, J., Valle, M., Korostelev, A., Eswar, N., Stagg, S. M., . . . Frank, J. (2003).

Study of the Structural Dynamics of the E. coli 70S Ribosome Using Real-Space Refinement.

Cell, 113(6), 789-801. doi: 10.1016/S0092-8674(03)00427-6

Ge, J., and Yu, Y.-T. (2013). RNA pseudouridylation: new insights into an old modification.

Trends in biochemical sciences, 38(4), 210-218. doi: 10.1016/j.tibs.2013.01.002

Green, R., and Noller, H. (1996). In vitro complementation analysis localizes 23S rRNA posttranscriptional modifications that are required for Escherichia coli 50S ribosomal subunit assembly and function. RNA (New York, N.Y.), 2(10), 1011-1021.

Grosjean, H. (2005). Modification and editing of RNA: historical overview and important facts to remember. In H. Grosjean (Ed.), Fine-Tuning of RNA Functions by Modification and Editing (Vol. 12, pp. 1-22): Springer Berlin Heidelberg.

Gutgsell, N., Deutscher, M., and Ofengand, J. (2005). The pseudouridine synthase RluD is required for normal ribosome assembly and function in Escherichia coli. RNA (New York, N.Y.), 11(7), 1141-1152. doi: 10.1261/rna.2550105

Hager, J., Staker, B. L., and Jakob, U. (2004). Substrate binding analysis of the 23S rRNA methyltransferase RrmJ. J Bacteriol, 186(19), 6634-6642. doi: 10.1128/jb.186.19.6634-6642.2004

Hamma, T., and Ferré-D'Amaré, A. (2006). Pseudouridine synthases. Chemistry and biology, 13(11), 1125-1135. doi: 10.1016/j.chembiol.2006.09.009

Hansen, J., Ippolito, J., Ban, N., Nissen, P., Moore, P., and Steitz, T. (2002). The structures of four macrolide antibiotics bound to the large ribosomal subunit. Molecular cell, 10(1), 117-128. doi: 10.1016/S1097-2765(02)00570-1

Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., . . . Yonath, A.

(2001). High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell, 107(5), 679-688. doi: 10.1016/S0092-8674(01)00546-3

Havelund, J. F., Giessing, A. M. B., Hansen, T., Rasmussen, A., Scott, L. G., and Kirpekar, F.

(2011). Identification of 5-Hydroxycytidine at Position 2501 Concludes Characterization of Modified Nucleotides in E. coli 23S rRNA. J Mol Biol, 411(3), 529-536. doi:

http://dx.doi.org/10.1016/j.jmb.2011.06.036

53

Helm, M. (2006). Post-transcriptional nucleotide modification and alternative folding of RNA. Nucleic acids research, 34(2), 721-733. doi: 10.1093/nar/gkj471

Huang, L., Ku, J., Pookanjanatavip, M., Gu, X., Wang, D., Greene, P., and Santi, D. (1998).

Identification of two Escherichia coli pseudouridine synthases that show multisite specificity for 23S RNA. Biochemistry, 37(45), 15951-15957. doi: 10.1021/bi981002n

Jean, S. S., Hsueh, P. R. (2011). Antimicrobial drug resistance in Taiwan. J Formos Med Assoc. 110(1):4-13. doi: 10.1016/S0929-6646(11)60002-8.

Jiang, M., Sullivan, S., Walker, A., Strahler, J., Andrews, P., and Maddock, J. (2007).

Identification of novel Escherichia coli ribosome-associated proteins using isobaric tags and multidimensional protein identification techniques. Journal of bacteriology, 189(9), 3434-3444. doi: 10.1128/JB.00090-07

Johansen, S., Maus, C., Plikaytis, B., and Douthwaite, S. (2006). Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2'-O-methylations in 16S and 23S rRNAs.

Molecular cell, 23(2), 173-182. doi: 10.1016/j.molcel.2006.05.044

Kaczanowska, M., and Rydén-Aulin, M. (2007). Ribosome biogenesis and the translation process in Escherichia coli. Microbiology and molecular biology reviews : MMBR, 71(3), 477-494. doi: 10.1128/MMBR.00013-07

Kaya, Y., and Ofengand, J. (2003). A novel unanticipated type of pseudouridine synthase with homologs in bacteria, archaea, and eukarya. Rna, 9(6), 711-721.

Kehrenberg, C., Schwarz, S., Jacobsen, L., Hansen, L., and Vester, B. (2005). A new

mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol, 57(4), 1064-1073. doi:

10.1111/j.1365-2958.2005.04754.x

Kim, D. F., and Green, R. (1999). Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol Cell, 4(5), 859-864.

Kimura, S., Ikeuchi, Y., Kitahara, K., Sakaguchi, Y., Suzuki, T., and Suzuki, T. (2012). Base methylations in the double-stranded RNA by a fused methyltransferase bearing unwinding activity. Nucleic acids research, 40(9), 4071-4085. doi: 10.1093/nar/gkr1287

54

King, T., Liu, B., McCully, R., and Fournier, M. (2003). Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center.

Molecular cell, 11(2), 425-435.

Koonin, E. (1996). Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic acids research, 24(12), 2411-2415. doi: 10.1093/nar/24.12.2411

Kowalak, J., Bruenger, E., and McCloskey, J. (1995). Posttranscriptional modification of the central loop of domain V in Escherichia coli 23 S ribosomal RNA. The Journal of biological chemistry, 270(30), 17758-17764. doi: 10.1074/jbc.270.30.17758

Lane, B. G., Ofengand, J., and Gray, M. W. (1992). Pseudouridine in the large-subunit (23 S-like) ribosomal RNA. The site of peptidyl transfer in the ribosome? FEBS Lett, 302(1), 1-4.

Lazaro, E., Rodriguez-Fonseca, C., Porse, B., Urena, D., Garrett, R. A., and Ballesta, J. P.

(1996). A sparsomycin-resistant mutant of Halobacterium salinarium lacks a modification at nucleotide U2603 in the peptidyl transferase centre of 23 S rRNA. J Mol Biol, 261(2), 231-238. doi: 10.1006/jmbi.1996.0455

Leffers, H., Egebjerg, J., Andersen, A., Christensen, T., and Garrett, R. A. (1988). Domain VI of Escherichia coli 23 S ribosomal RNA: Structure, assembly and function. J Mol Biol, 204(3), 507-522. doi: http://dx.doi.org/10.1016/0022-2836(88)90351-8

Lesnyak, D. V., Sergiev, P. V., Bogdanov, A. A., and Dontsova, O. A. (2006). Identification of Escherichia coli m2G methyltransferases: I. the ycbY gene encodes a methyltransferase specific for G2445 of the 23 S rRNA. J Mol Biol, 364(1), 20-25. doi:

10.1016/j.jmb.2006.09.009

Liang, X.-h., Liu, Q., and Fournier, M. (2007). rRNA modifications in an intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activity. Molecular cell, 28(6), 965-977. doi: 10.1016/j.molcel.2007.10.012

Liang, X.-H., Liu, Q., and Fournier, M. (2009). Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA (New York, N.Y.), 15(9), 1716-1728. doi: 10.1261/rna.1724409

55

Liiv, A., Karitkina, D., Maiväli, Ü., Remme, J. (2005) Analysis of the function of E. coli 23S rRNA helix-loop 69 by mutagenesis. BMC Molecular Biology, 6:18. doi:10.1186/1471-2199-6-18

Liu, M., and Douthwaite, S. (2002). Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy.

Proceedings of the National Academy of Sciences, 99(23), 14658-14663. doi:

10.1073/pnas.232580599

Łobocka, M. B. et al. (2004) Genome of Bacteriophage P1 Journal Of Bacteriology. 186, p.

7032–7068.

Long, K., Poehlsgaard, J., Kehrenberg, C., Schwarz, S., and Vester, B. (2006). The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones,

Pleuromutilins, and Streptogramin A antibiotics. Antimicrobial agents and chemotherapy, 50(7), 2500-2505. doi: 10.1128/AAC.00131-06

Lövgren, J., and Wikström, P. (2001). The rlmB gene is essential for formation of Gm2251 in 23S rRNA but not for ribosome maturation in Escherichia coli. Journal of bacteriology, 183(23), 6957-6960. doi: 10.1128/JB.183.23.6957-6960.2001

Maden, B. E. (1990). The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol, 39, 241-303.

Melnikov, S., Ben-Shem, A., Garreau de Loubresse, N., Jenner, L., Yusupova, G., and Yusupov, M. (2012). One core, two shells: bacterial and eukaryotic ribosomes. Nature structural and molecular biology, 19(6), 560-567. doi: 10.1038/nsmb.2313

Moazed, D., and Noller, H. F. (1989). Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell, 57(4), 585-597.

Neidhardt, F. C., Bloch, P. L. and Smith, D. F. (1974). Culture medium for enterobacteria. J Bacteriol. 119: 736-747.

Noller, H. F ja Woese C. R (1981). Secondary structure of 16S ribosomal RNA. Science. Vol.

212 no. 4493 pp. 403-411. DOI: 10.1126/science.6163215

Noller, H.F., Kop, J., Wheaton, V., Brosius, J., Gutell, R.R., Kopylov, A.M., Dohme, F., Herr, W., Stahl, D.A., Gupta, R. and Woese, C.R. (1981). Secondary structure model for 23S

ribosomal RNA. Nucleic Acids Res. 9, 6167-6189.

56

O'Connor, M., and Dahlberg, A. (1993). Mutations at U2555, a tRNA-protected base in 23S rRNA, affect translational fidelity. Proceedings of the National Academy of Sciences of the United States of America, 90(19), 9214-9218. doi: 10.1073/pnas.90.19.9214

Ofengand, J., Malhotra, A., Remme, J., Gutgsell, N. S., Del Campo, M., Jean-Charles, S., Kaya, Y. (2001). Pseudouridines and pseudouridine synthases of the ribosome. Cold Spring Harb Symp Quant Biol, 66, 147-159.

Okamoto, S., Tamaru, A., Nakajima, C., Nishimura, K., Tanaka, Y., Tokuyama, S., . . . Ochi, K. (2007). Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol, 63(4), 1096-1106. doi:

10.1111/j.1365-2958.2006.05585.x

Petrov, A., Bernier, C., Hershkovits, E., Xue, Y., Waterbury, C., Hsiao, C., . . . Williams, L.

(2013). Secondary structure and domain architecture of the 23S and 5S rRNAs. Nucleic acids research, 41(15), 7522-7535. doi: 10.1093/nar/gkt513

Petrov, A. S., Bernier, C. R., Gulen, B., Waterbury, C. C., Hershkovits, E., Hsiao, C., Harvey, S. C., Hud, N. V., Fox, G. E., Wartell, R. M., Williams, L. D. (2014). Secondary Structures of rRNAs from All Three Domains of Life. PLoS One, 9(2):e88222. doi:

10.1371/journal.pone.0088222

Piekna-Przybylska, D., Przybylski, P., Baudin-Baillieu, A., Rousset, J.-P., and Fournier, M.

(2008). Ribosome performance is enhanced by a rich cluster of pseudouridines in the A-site finger region of the large subunit. The Journal of biological chemistry, 283(38), 26026-26036.

doi: 10.1074/jbc.M803049200

Porse, B., and Garrett, R. (1999). Sites of interaction of streptogramin A and B antibiotics in the peptidyl transferase loop of 23 S rRNA and the synergism of their inhibitory mechanisms.

J Mol Biol, 286(2), 375-387. doi: 10.1006/jmbi.1998.2509

Punekar, A., Shepherd, T., Liljeruhm, J., Forster, A., and Selmer, M. (2012). Crystal structure of RlmM, the 2'O-ribose methyltransferase for C2498 of Escherichia coli 23S rRNA. Nucleic acids research, 40(20), 10507-10520. doi: 10.1093/nar/gks727

Purta, E., O'Connor, M., Bujnicki, J., and Douthwaite, S. (2009). YgdE is the 2'-O-ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA. Mol Microbiol, 72(5), 1147-1158. doi: 10.1111/j.1365-2958.2009.06709.x

57

Raychaudhuri, S., Conrad, J., Hall, B., and Ofengand, J. (1998). A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli. RNA (New York, N.Y.), 4(11), 1407-1417.

doi: 10.1017/S1355838298981146

Schlünzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., Albrecht, R., Franceschi, F.

(2001). Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature, 413(6858), 814-821. doi: 10.1038/35101544

Schuwirth, B., Borovinskaya, M., Hau, C., Zhang, W., Vila-Sanjurjo, A., Holton, J., and Cate, J. (2005). Structures of the bacterial ribosome at 3.5 A resolution. Science (New York, N.Y.), 310(5749), 827-834. doi: 10.1126/science.1117230

Schuwirth, B. S., Borovinskaya, M. A., Hau, C. W., Zhang, W., Vila-Sanjurjo, A., Holton, J.

M., and Cate, J. H. (2005). Structures of the bacterial ribosome at 3.5 A resolution. Science, 310(5749), 827-834. doi: 10.1126/science.1117230

Selmer, M., Dunham, C., Murphy, F., Weixlbaumer, A., Petry, S., Kelley, A., . . .

Ramakrishnan, V. (2006). Structure of the 70S ribosome complexed with mRNA and tRNA.

Science (New York, N.Y.), 313(5795), 1935-1942. doi: 10.1126/science.1131127 Sergiev, P., Golovina, A., Prokhorova, I., and Sergeeva…, O. (2011). Modifications of ribosomal RNA: From enzymes to function. Ribosomes.

Siibak, T., and Remme, J. (2010). Subribosomal particle analysis reveals the stages of bacterial ribosome assembly at which rRNA nucleotides are modified. RNA (New York, N.Y.), 16(10), 2023-2032. doi: 10.1261/rna.2160010

Sirum-Connolly, K., and Mason, T. L. (1993). Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science, 262(5141), 1886-1889.

Sivaraman, J., Iannuzzi, P., Cygler, M., Matte, A. (2004) Crystal structure of the RluD pseudouridine synthase catalytic module, an enzyme that modifies 23S rRNA and is essential for normal cell growth of Escherichia coli. J Mol Biol. 335(1):87-101

Spillmann, S., Dohme, F., and Nierhaus, K. H. (1977). Assembly in vitro of the 50 S subunit from Escherichia coli ribosomes: proteins essential for the first heat-dependent

conformational change. J Mol Biol, 115(3), 513-523.

58

Sternberg, N. (1990) Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Nati. Acad. Sci. USA. Vol.

87, pp. 103-107.

Zengel, J. M., and Lindahl, L. (1993). Domain I of 23S rRNA competes with a paused transcription complex for ribosomal protein L4 of Escherichia coli. Nucleic Acids Res, 21(10), 2429-2435.

Tan, J., Jakob, U., Bardwell, J.C. (2002). Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase. J Bacteriol. 184(10):2692-8.

Thompson, J., and Cundliffe, E. (1980). Resistance to thiostrepton, siomycin, and

sporangiomycin in actinomycetes that produce them. Journal of bacteriology, 142(2), 455-461.

Toh, S. M., Xiong, L., Bae, T., and Mankin, A. (2008). The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA. RNA (New York, N.Y.), 14(1), 98-106. doi: 10.1261/rna.814408

Toh, S. M., and Mankin, A. S. (2008). An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors. J Mol Biol, 380(4), 593-597. doi: 10.1016/j.jmb.2008.05.027

Tu, D., Blaha, G., Moore, P., and Steitz, T. (2005). Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell, 121(2), 257-270. doi: 10.1016/j.cell.2005.02.005

Vester, B. and Garrett, R. (1988). The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transfer centre of Escherichia coli 23S ribosomal RNA. The EMBO journal, 7(11), 3577-3587.

Wang, K.-T., Desmolaize, B., Nan, J., Zhang, X.-W., Li, L.-F., Douthwaite, S., and Su, X.-D.

(2012). Structure of the bifunctional methyltransferase YcbY (RlmKL) that adds the

m7G2069 and m2G2445 modifications in Escherichia coli 23S rRNA. Nucleic acids research, 40(11), 5138-5148. doi: 10.1093/nar/gks160

Wilson, D. and Nierhaus, K. (2005). Ribosomal proteins in the spotlight. Critical reviews in biochemistry and molecular biology, 40(5), 243-267. doi: 10.1080/10409230500256523

59

Wilson, D. and Nierhaus, K. (2007). The weird and wonderful world of bacterial ribosome regulation. Critical reviews in biochemistry and molecular biology, 42(3), 187-219. doi:

10.1080/10409230701360843

Wimberly, B., Brodersen, D., Clemons, W., Morgan-Warren, R., Carter, A., Vonrhein, C., . . . Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature, 407(6802), 327-339. doi: 10.1038/35030006

Wittmann, H. (1982). Structure and evolution of ribosomes. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain), 216(1203), 117-135. doi: 10.1111/j.1432-1033.1976.tb09992.x

Yusupov, M., Yusupova, G., Baucom, A., Lieberman, K., Earnest, T., Cate, J., and Noller, H.

(2001). Crystal structure of the ribosome at 5.5 A resolution. Science (New York, N.Y.), 292(5518), 883-896. doi: 10.1126/science.1060089

Raamatud:

Douthwaite, S.R., Fourmy, D. ja Yoshizawa, S. 2005. Nucleotide methylations in rRNA that confer resistance to ribosome-targeting antibiotics, p. 287-309. in H Grosjean (ed.), Fine-tuning of RNA functions by modification and editing. Springer, New York.

Ofengand, J ja Del Campo, M. 2004. Modified nucleosides in Escherichia coli ribosomal RNA, EcoSal—Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC. doi:10.1128/ecosal.4.6.1.

Sambrook, J. and Russell, D. W. 2001. Liquid media for E.coli, p. A2.4. In J. Sambrook and D. W. Russell (ed.), Molecular cloning: a laboratory manual, 3rd ed., vol.3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Vester, B. ja Long, KS. 2009. Antibiotics resistance in bacteria caused by modified

nucleosides in 23S ribosomal RNA. H Grosjean (ed.), DNA and RNA Modification Enzymes:

Structure, Mechanism, Function and Evolution. p. 537-549. Plenum Publishing Co., N.Y.

60 LISAD