• Keine Ergebnisse gefunden

MRGSHHHHHHTDPHAALEEAPWPPPEGAFVGFVLSRKEPMWADLLALAAARGGRVHRAPEPYKAL RDLKEARGLLAKDLSVLALREGLGLPPGDDPMLLAYLLDPSNTTPEGVARRYGGEWTEEAGERAALSE RLFANLWGRLEGEERLLWLYREVERPLSAVLAHMEATGVRLDVAYLRALSLEVAEEIARLEAEVFRLAG HPFNLNSRDQLERVLFDELGLPAIGKTEKTGKRSTSAAVLEALREAHPIVEKILQYRELTKLKSTYIDPLP DLIHPRTGRLHTRFNQTATATGRLSSSDPNLQNIPVRTPLGQRIRRAFIAEEGWLLVALDYSQIELRVLA HLSGDENLIRVFQEGRDIHTETASWMFGVPREAVDPLMRRAAKTINFGVLYGMSAHRLSQELAIPYEE AQAFIERYFQSFPKVRAWIEKTLEEGRRRGYVETLFGRRRYVPDLEARVKSVREAAERMAFNMPVQGTA ADLMKLAMVKLFPRLEEMGARMLLQVHDELVLEAPKERAEAVARLAKEVMEGVYPLAVPLEVEVGIGE DWLSAKEKA*

Mutation Y671A was introduced by changing codon TAC into GCC by site-directed mutagenesis. Mutation Y671W was introducted by changing codon TAC into TGG by site directed mutagenesis (see also Section 5.22.3).

8 References

1. Drew, H. R. et al. Structure of a B-DNA dodecamer: conformation and dynamics.

Proc Natl Acad Sci U S A 78, 2179-83 (1981).

2. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737-8 (1953).

3. Castro, C. et al. Nucleic acid polymerases use a general acid for nucleotidyl transfer. Nat Struct Mol Biol 16, 212-8 (2009).

4. Loeb, L. A. & Preston, B. D. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet 20, 201-30 (1986).

5. Lehman, I. R., Bessman, M. J., Simms, E. S. & Kornberg, A. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J Biol Chem 233, 163-70 (1958).

6. Kim, Y. et al. Crystal structure of Thermus aquaticus DNA polymerase. Nature 376, 612-6 (1995).

7. Li, Y., Korolev, S. & Waksman, G. Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. Embo J 17, 7514-25 (1998).

8. Berdis, A. J. Mechanisms of DNA Polymerases. Chem Rev (2009).

9. Camps, M. & Loeb, L. A. When pol I goes into high gear: processive DNA synthesis by pol I in the cell. Cell Cycle 3, 116-8 (2004).

10. Kuchta, R. D., Benkovic, P. & Benkovic, S. J. Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity. Biochemistry 27, 6716-25 (1988).

11. Frey, M. W., Sowers, L. C., Millar, D. P. & Benkovic, S. J. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase. Biochemistry 34, 9185-92 (1995).

12. Sucato, C. A. et al. Modifying the beta,gamma leaving-group bridging oxygen alters nucleotide incorporation efficiency, fidelity, and the catalytic

mechanism of DNA polymerase beta. Biochemistry 46, 461-71 (2007).

13. Boyer, P. L. et al. YADD mutants of human immunodeficiency virus type 1 and Moloney murine leukemia virus reverse transcriptase are resistant to

lamivudine triphosphate (3TCTP) in vitro. J Virol 75, 6321-8 (2001).

14. Meyer, P. R., Matsuura, S. E., So, A. G. & Scott, W. A. Unblocking of chain-terminated primer by HIV-1 reverse transcriptase through a nucleotide-dependent mechanism. Proc Natl Acad Sci U S A 95, 13471-6 (1998).

15. Xiao, M. et al. Role of excess inorganic pyrophosphate in primer-extension genotyping assays. Genome Res 14, 1749-55 (2004).

16. Sambrook, J. & Russell, D. W. Molecular cloning : a laboratory manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001).

17. Mullis, K. B. & Faloona, F. A. Specific synthesis of DNA in vitro via a

polymerase-catalyzed chain reaction. Methods Enzymol 155, 335-50 (1987).

18. Holland, P. M., Abramson, R. D., Watson, R. & Gelfand, D. H. Detection of specific polymerase chain reaction product by utilizing the 5'----3'

exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88, 7276-80 (1991).

19. Strerath, M. & Marx, A. Genotyping--from genomic DNA to genotype in a single tube. Angew Chem Int Ed Engl 44, 7842-9 (2005).

20. Lynch, J. R. & Brown, J. M. The polymerase chain reaction: current and future clinical applications. J Med Genet 27, 2-7 (1990).

21. Bustin, S. A. & Mueller, R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Sci (Lond) 109, 365-79 (2005).

22. Kranaster, R. & Marx, A. Increased single-nucleotide discrimination in allele-specific polymerase chain reactions through primer probes bearing nucleobase and 2'-deoxyribose modifications. Chemistry 13, 6115-22 (2007).

23. Strerath, M. & Marx, A. Tuning PCR specificity by chemically modified primer probes. Angew Chem Int Ed Engl 41, 4766-9 (2002).

24. Gaster, J. & Marx, A. Tuning single nucleotide discrimination in polymerase chain reactions (PCRs): synthesis of primer probes bearing polar

4'-C-modifications and their application in allele-specific PCR. Chemistry 11, 1861-70 (2005).

25. Gibson, D. G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215-20 (2008).

26. Porter-Jordan, K. et al. Nested polymerase chain reaction assay for the detection of cytomegalovirus overcomes false positives caused by contamination with fragmented DNA. J Med Virol 30, 85-91 (1990).

27. Wang, A. M., Doyle, M. V. & Mark, D. F. Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci U S A 86, 9717-21 (1989).

28. Sauter, K. B. & Marx, A. Evolving thermostable reverse transcriptase activity in a DNA polymerase scaffold. Angew Chem Int Ed Engl 45, 7633-5 (2006).

29. Wang, Y. et al. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Res 32, 1197-207 (2004).

30. Gilje, B., Heikkila, R., Oltedal, S., Tjensvoll, K. & Nordgard, O. High-fidelity DNA polymerase enhances the sensitivity of a peptide nucleic acid clamp PCR assay for K-ras mutations. J Mol Diagn 10, 325-31 (2008).

31. Summerer, D., Rudinger, N. Z., Detmer, I. & Marx, A. Enhanced fidelity in mismatch extension by DNA polymerase through directed combinatorial enzyme design. Angew Chem Int Ed Engl 44, 4712-5 (2005).

32. Strerath, M., Gloeckner, C., Liu, D., Schnur, A. & Marx, A. Directed DNA polymerase evolution: effects of mutations in motif C on the mismatch-extension selectivity of thermus aquaticus DNA polymerase. Chembiochem 8, 395-401 (2007).

33. Kermekchiev, M. B., Kirilova, L. I., Vail, E. E. & Barnes, W. M. Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole

35. d'Abbadie, M. et al. Molecular breeding of polymerases for amplification of ancient DNA. Nat Biotechnol 25, 939-43 (2007).

36. Gloeckner, C., Sauter, K. B. & Marx, A. Evolving a thermostable DNA polymerase that amplifies from highly damaged templates. Angew Chem Int Ed Engl 46, 3115-7 (2007).

37. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules.

Science 323, 133-8 (2009).

38. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53-9 (2008).

39. Patel, P. H. & Loeb, L. A. Multiple amino acid substitutions allow DNA polymerases to synthesize RNA. J Biol Chem 275, 40266-72 (2000).

40. Patel, P. H., Kawate, H., Adman, E., Ashbach, M. & Loeb, L. A. A single highly mutable catalytic site amino acid is critical for DNA polymerase fidelity. J Biol Chem 276, 5044-51 (2001).

41. Brakmann, S. & Grzeszik, S. An error-prone T7 RNA polymerase mutant generated by directed evolution. Chembiochem 2, 212-9 (2001).

42. Kermekchiev, M. B., Tzekov, A. & Barnes, W. M. Cold-sensitive mutants of Taq DNA polymerase provide a hot start for PCR. Nucleic Acids Res 31, 6139-47 (2003).

43. Loh, E., Choe, J. & Loeb, L. A. Highly tolerated amino acid substitutions increase the fidelity of Escherichia coli DNA polymerase I. J Biol Chem 282, 12201-9 (2007).

44. Fa, M., Radeghieri, A., Henry, A. A. & Romesberg, F. E. Expanding the substrate repertoire of a DNA polymerase by directed evolution. J Am Chem Soc 126, 1748-54 (2004).

45. Leconte, A. M., Chen, L. & Romesberg, F. E. Polymerase evolution: efforts toward expansion of the genetic code. J Am Chem Soc 127, 12470-1 (2005).

46. Xia, G. et al. Directed evolution of novel polymerase activities: mutation of a DNA polymerase into an efficient RNA polymerase. Proc Natl Acad Sci U S A 99, 6597-602 (2002).

47. Vichier-Guerre, S., Ferris, S., Auberger, N., Mahiddine, K. & Jestin, J. L. A population of thermostable reverse transcriptases evolved from Thermus aquaticus DNA polymerase I by phage display. Angew Chem Int Ed Engl 45, 6133-7 (2006).

48. Ghadessy, F. J., Ong, J. L. & Holliger, P. Directed evolution of polymerase function by compartmentalized self-replication. Proc Natl Acad Sci U S A 98, 4552-7 (2001).

49. Ghadessy, F. J. et al. Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution. Nat Biotechnol 22, 755-9 (2004).

50. Ong, J. L., Loakes, D., Jaroslawski, S., Too, K. & Holliger, P. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide. J Mol Biol 361, 537-50 (2006).

51. Gillam, S. & Smith, M. Site-specific mutagenesis using synthetic

oligodeoxyribonucleotide primers: I. Optimum conditions and minimum ologodeoxyribonucleotide length. Gene 8, 81-97 (1979).

52. Bosley, A. D. & Ostermeier, M. Mathematical expressions useful in the construction, description and evaluation of protein libraries. Biomol Eng 22, 57-61 (2005).

53. Cadwell, R. C. & Joyce, G. F. Mutagenic PCR. PCR Methods Appl 3, S136-40 (1994).

54. Neylon, C. Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res 32, 1448-59 (2004).

55. Wong, T. S., Roccatano, D. & Schwaneberg, U. Are transversion mutations better? A Mutagenesis Assistant Program analysis on P450 BM-3 heme domain.

Biotechnol J 2, 133-42 (2007).

56. Wong, T. S., Tee, K. L., Hauer, B. & Schwaneberg, U. Sequence saturation mutagenesis (SeSaM): a novel method for directed evolution. Nucleic Acids Res 32, e26 (2004).

57. Stemmer, W. P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A 91, 10747-51 (1994).

58. Zhao, H., Giver, L., Shao, Z., Affholter, J. A. & Arnold, F. H. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16, 258-61 (1998).

59. Goodman, M. F. DNA replication fidelity: kinetics and thermodynamics. Mutat Res 200, 11-20 (1988).

60. Petruska, J. et al. Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc Natl Acad Sci U S A 85, 6252-6 (1988).

61. Bentley, D. R. Genomes for medicine. Nature 429, 440-5 (2004).

62. Kunkel, T. A. & Bebenek, K. DNA replication fidelity. Annu Rev Biochem 69, 497-529 (2000).

63. Kunkel, T. A. DNA replication fidelity. J Biol Chem 279, 16895-8 (2004).

64. Kunkel, T. A. DNA replication fidelity. J Biol Chem 267, 18251-4 (1992).

65. Kunkel, T. A. & Bebenek, K. Recent studies of the fidelity of DNA synthesis.

Biochim Biophys Acta 951, 1-15 (1988).

66. Kool, E. T. & Sintim, H. O. The difluorotoluene debate--a decade later. Chem Commun (Camb), 3665-75 (2006).

67. Matray, T. J. & Kool, E. T. A specific partner for abasic damage in DNA. Nature 399, 704-8 (1999).

68. Johnson, S. J. & Beese, L. S. Structures of mismatch replication errors observed in a DNA polymerase. Cell 116, 803-16 (2004).

69. Kim, T. W., Brieba, L. G., Ellenberger, T. & Kool, E. T. Functional evidence for a small and rigid active site in a high fidelity DNA polymerase: probing T7 DNA polymerase with variably sized base pairs. J Biol Chem 281, 2289-95 (2006).

70. Kim, T. W., Delaney, J. C., Essigmann, J. M. & Kool, E. T. Probing the active site tightness of DNA polymerase in subangstrom increments. Proc Natl Acad Sci U S A 102, 15803-8 (2005).

72. Rudinger, N. Z., Kranaster, R. & Marx, A. Hydrophobic amino acid and single-atom substitutions increase DNA polymerase selectivity. Chem Biol 14, 185-94 (2007).

73. Latorra, D., Campbell, K., Wolter, A. & Hurley, J. M. Enhanced allele-specific PCR discrimination in SNP genotyping using 3' locked nucleic acid (LNA) primers. Hum Mutat 22, 79-85 (2003).

74. Gaster, J., Rangam, G. & Marx, A. Increased single nucleotide discrimination in arrayed primer elongation by 4'C-modified primer probes. Chem Commun (Camb), 1692-4 (2007).

75. Summerer, D. & Marx, A. Differential minor groove interactions between DNA polymerase and sugar backbone of primer and template strands. J Am Chem Soc 124, 910-1 (2002).

76. Strerath, M., Gaster, J., Summerer, D. & Marx, A. Increased single-nucleotide discrimination of PCR by primer probes bearing hydrophobic 4'C modifications.

Chembiochem 5, 333-9 (2004).

77. Kranaster, R., Ketzer, P. & Marx, A. Mutant DNA polymerase for improved detection of single-nucleotide variations in microarrayed primer extension.

Chembiochem 9, 694-7 (2008).

78. Echols, H. & Goodman, M. F. Fidelity mechanisms in DNA replication. Annu Rev Biochem 60, 477-511 (1991).

79. Patel, P. H. & Loeb, L. A. Getting a grip on how DNA polymerases function. Nat Struct Biol 8, 656-9 (2001).

80. Loh, E. & Loeb, L. A. Mutability of DNA polymerase I: implications for the creation of mutant DNA polymerases. DNA Repair (Amst) 4, 1390-8 (2005).

81. Homepage of the SNP Consortium: http://snp.cshl.org/.

82. Evans, W. E. & Relling, M. V. Moving towards individualized medicine with pharmacogenomics. Nature 429, 464-8 (2004).

83. Bell, J. Predicting disease using genomics. Nature 429, 453-6 (2004).

84. Licinio, J., Alvarado, I. & Wong, M. L. Will pharmacogenomics guide clinical practice? Pharmacogenomics J 2, 71 (2002).

85. McCarthy, J. J. & Hilfiker, R. The use of single-nucleotide polymorphism maps in pharmacogenomics. Nat Biotechnol 18, 505-8 (2000).

86. Novembre, J. et al. Genes mirror geography within Europe. Nature 456, 98-101 (2008).

87. Lao, O. et al. Correlation between genetic and geographic structure in Europe.

Curr Biol 18, 1241-8 (2008).

88. Relling, M. V. & Dervieux, T. Pharmacogenetics and cancer therapy. Nat Rev Cancer 1, 99-108 (2001).

89. Chicurel, M. Faster, better, cheaper genotyping. Nature 412, 580-2 (2001).

90. Kwok, P. Y. Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet 2, 235-58 (2001).

91. Kirk, B. W., Feinsod, M., Favis, R., Kliman, R. M. & Barany, F. Single nucleotide polymorphism seeking long term association with complex disease. Nucleic Acids Res 30, 3295-311 (2002).

92. Syvanen, A. C. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2, 930-42 (2001).

93. Shi, M. M. Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. Clin Chem 47, 164-72 (2001).

94. Twyman, R. M. & Primrose, S. B. Techniques patents for SNP genotyping.

Pharmacogenomics 4, 67-79 (2003).

95. Kwok, P. Y. & Chen, X. Detection of single nucleotide polymorphisms. Curr Issues Mol Biol 5, 43-60 (2003).

96. Newton, C. R. et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17, 2503-16 (1989).

97. Gibbs, R. A., Nguyen, P. N. & Caskey, C. T. Detection of single DNA base differences by competitive oligonucleotide priming. Nucleic Acids Res 17, 2437-48 (1989).

98. Germer, S., Holland, M. J. & Higuchi, R. High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR. Genome Res 10, 258-66 (2000).

99. Wu, D. Y., Ugozzoli, L., Pal, B. K. & Wallace, R. B. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia.

Proc Natl Acad Sci U S A 86, 2757-60 (1989).

100. Shively, L. et al. Real-time PCR assay for quantitative mismatch detection.

Biotechniques 34, 498-502, 504 (2003).

101. Guo, Z., Liu, Q. & Smith, L. M. Enhanced discrimination of single nucleotide polymorphisms by artificial mismatch hybridization. Nat Biotechnol 15, 331-5 (1997).

102. Ishikawa, Y. et al. Sequence-based typing of HLA-A2 alleles using a primer with an extra base mismatch. Hum Immunol 42, 315-8 (1995).

103. Wilhelm, J., Reuter, H., Tews, B., Pingoud, A. & Hahn, M. Detection and

quantification of insertion/deletion variations by allele-specific real-time PCR:

application for genotyping and chimerism analysis. Biol Chem 383, 1423-33 (2002).

104. Strerath, M., Gaster, J. & Marx, A. Recognition of remote mismatches by DNA polymerases. Chembiochem 5, 1585-8 (2004).

105. Tews, B. et al. Application of the C4'-alkylated deoxyribose primer system (CAPS) in allele-specific real-time PCR for increased selectivity in

discrimination of single nucleotide sequence variants. Biol Chem 384, 1533-41 (2003).

106. Biedermann, M., Hartung, H., Dolling, W. & Verjus, P. Acta Crystallogr. Sect. C 54, 507-509 (1998).

107. Kranaster, R. Wirkungen Schwefel-modifizierter Thymidine auf die Selektivität von DNA Polymerasen. Universität Konstanz (2006).

108. Pon, R. T. Attachment of nucleosides to solid-phase supports. Curr Protoc Nucleic Acid Chem Chapter 3, Unit 3 2 (2001).

109. Bar, J. et al. Molecular analysis of acid ceramidase deficiency in patients with Farber disease. Hum Mutat 17, 199-209 (2001).

111. Creighton, S., Bloom, L. B. & Goodman, M. F. Gel fidelity assay measuring nucleotide misinsertion, exonucleolytic proofreading, and lesion bypass efficiencies. Methods Enzymol 262, 232-56 (1995).

112. Sintim, H. O. & Kool, E. T. Enhanced base pairing and replication efficiency of thiothymidines, expanded-size variants of thymidine. J Am Chem Soc 128, 396-7 (2006).

113. Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol 5, e254 (2007).

114. Sachidanandam, R. et al. A map of human genome sequence variation

containing 1.42 million single nucleotide polymorphisms. Nature 409, 928-33 (2001).

115. Gibson, N. J. The use of real-time PCR methods in DNA sequence variation analysis. Clin Chim Acta 363, 32-47 (2006).

116. Sobrino, B., Brion, M. & Carracedo, A. SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154, 181-94 (2005).

117. Sobrino, B. & Carracedo, A. SNP typing in forensic genetics: a review. Methods Mol Biol 297, 107-26 (2005).

118. Csako, G. Present and future of rapid and/or high-throughput methods for nucleic acid testing. Clin Chim Acta 363, 6-31 (2006).

119. Nakatani, K. Chemistry challenges in SNP typing. Chembiochem 5, 1623-33 (2004).

120. Southern, E. M. DNA microarrays. History and overview. Methods Mol Biol 170, 1-15 (2001).

121. Clark, J. M. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res 16, 9677-86 (1988).

122. Thum, O., Jager, S. & Famulok, M. Functionalized DNA: A New Replicable Biopolymer We thank Dr. Andreas Marx, University of Bonn, for helpful advice and discussions. This work was supported by the Fonds der Chemischen Industrie, the Karl-Ziegler Stiftung, and the Deutsche

Forschungsgemeinschaft. Angew Chem Int Ed Engl 40, 3990-3993 (2001).

123. Jager, S. & Famulok, M. Generation and enzymatic amplification of high-density functionalized DNA double strands. Angew Chem Int Ed Engl 43, 3337-40 (2004).

124. Jager, S. et al. A versatile toolbox for variable DNA functionalization at high density. J Am Chem Soc 127, 15071-82 (2005).

125. Capek, P. et al. An efficient method for the construction of functionalized DNA bearing amino acid groups through cross-coupling reactions of nucleoside triphosphates followed by primer extension or PCR. Chemistry 13, 6196-203 (2007).

126. Engel, H. et al. Phenotyping and genotyping of coagulation factor V Leiden.

Thromb Haemost 75, 267-9 (1996).

127. DelRio-LaFreniere, S. A. & McGlennen, R. C. Simultaneous allele-specific amplification: a strategy using modified primer-template mismatches for SNP detection--application to prothrombin 20210A (factor II) and factor V Leiden (1691A) gene mutations. Mol Diagn 6, 201-9 (2001).

128. Wei, X., McLeod, H. L., McMurrough, J., Gonzalez, F. J. & Fernandez-Salguero, P. Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest 98, 610-5 (1996).

129. Henry, A. A. & Romesberg, F. E. The evolution of DNA polymerases with novel activities. Curr Opin Biotechnol 16, 370-7 (2005).

130. Brakmann, S. Directed evolution as a tool for understanding and optimizing nucleic acid polymerase function. Cell Mol Life Sci 62, 2634-46 (2005).

131. Barnes, W. M. The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion. Gene 112, 29-35 (1992).

132. Goodman, M. F., Cai, H., Bloom, L. B. & Eritja, R. Nucleotide insertion and primer extension at abasic template sites in different sequence contexts. Ann N Y Acad Sci 726, 132-42; discussion 142-3 (1994).

133. Summerer, D. & Marx, A. DNA-templated synthesis: more versatile than expected. Angew Chem Int Ed Engl 41, 89-90 (2002).

134. Sewald, N. & Jakubke, H.-D. Peptides: Chemistry and Biology. WILEY-VCH, Weinheim (2002).

135. Li, Y., Mitaxov, V. & Waksman, G. Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation.

Proc Natl Acad Sci U S A 96, 9491-6 (1999).

136. Mockler, T. C. et al. Applications of DNA tiling arrays for whole-genome analysis. Genomics 85, 1-15 (2005).

137. Schmaljohn, C. & Hjelle, B. Hantaviruses: a global disease problem. Emerg Infect Dis 3, 95-104 (1997).

138. Palese, P. Influenza: old and new threats. Nat Med 10, S82-7 (2004).

139. De Paula, S. O. & Fonseca, B. A. Dengue: a review of the laboratory tests a clinician must know to achieve a correct diagnosis. Braz J Infect Dis 8, 390-8 (2004).

140. Nazarenko, I. A., Bhatnagar, S. K. & Hohman, R. J. A closed tube format for amplification and detection of DNA based on energy transfer. Nucleic Acids Res 25, 2516-21 (1997).

141. Myers, T. W. & Gelfand, D. H. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry 30, 7661-6 (1991).

142. Jones, M. D. & Foulkes, N. S. Reverse transcription of mRNA by Thermus aquaticus DNA polymerase. Nucleic Acids Res 17, 8387-8 (1989).

143. Lyamichev, V., Brow, M. A., Varvel, V. E. & Dahlberg, J. E. Comparison of the 5' nuclease activities of taq DNA polymerase and its isolated nuclease domain.

Proc Natl Acad Sci U S A 96, 6143-8 (1999).

144. Holzberger, B. & Marx, A. Enzymatic synthesis of perfluoroalkylated DNA.

Bioorg Med Chem 17, 3653-8 (2009).

145. Weidmann, M. et al. Identification of genetic evidence for dobrava virus spillover in rodents by nested reverse transcription (RT)-PCR and TaqMan RT-PCR. J Clin Microbiol 43, 808-12 (2005).

146. Kuo, K. W., Leung, M. F. & Leung, W. C. Intrinsic secondary structure of human

147. O'Grady, J. et al. Rapid detection of Listeria monocytogenes in food using culture enrichment combined with real-time PCR. Food Microbiol 26, 4-7 (2009).

148. Kranaster, R. & Marx, A. Taking fingerprints of DNA polymerases: multiplex enzyme profiling on DNA arrays. Angew Chem Int Ed Engl 48, 4625-8 (2009).

149. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709-15 (1993).

150. Lindahl, T. & Nyberg, B. Rate of depurination of native deoxyribonucleic acid.

Biochemistry 11, 3610-8 (1972).

151. Gloeckner, C. Doktorarbeit. Universität Konstanz (2008).

152. Schnur, A. Doktorarbeit. Universität Konstanz (2009).

153. Obeid, S. unpublished results, Ph.D. student, Group of. Prof. Dr. A. Marx.

Universität Konstanz.

154. Seki, M. et al. High-efficiency bypass of DNA damage by human DNA polymerase Q. Embo J 23, 4484-94 (2004).

155. Kool, E. T. Active site tightness and substrate fit in DNA replication. Annu Rev Biochem 71, 191-219 (2002).

156. Xiong, Y. & Steitz, T. A. Mechanism of transfer RNA maturation by CCA-adding enzyme without using an oligonucleotide template. Nature 430, 640-5 (2004).

157. Nair, D. T., Johnson, R. E., Prakash, L., Prakash, S. & Aggarwal, A. K. Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science 309, 2219-22 (2005).

158. Peist, R. et al. Characterization of the aes gene of Escherichia coli encoding an enzyme with esterase activity. J Bacteriol 179, 7679-86 (1997).

159. Kibbe, W. A. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35, W43-6 (2007).

meine Promotion waren dafür einige Personen entscheidend verantwortlich und ich möchte mich hiermit bei diesen bedanken:

Mein Dank kann gar nicht groß genug ausfallen bei Herrn Prof. Dr. Andreas Marx für das immer spürbare Vertrauen, die Unterstützung in allen erdenklichen Fällen, natürlich für die Forschungsthemen die ich bearbeiten durfte, die Betreuung der Arbeit, und die wahrhaft exzellenten Forschungsbedingungen.

Mein Dank gilt auch Herrn Prof. Dr. Wittmann für die Übernahme der Funktion als Koreferent und mündlicher Prüfer. Der selbige Dank gilt Prof. Dr. Fischer für die Übernahme der Funktion des 3. Referenten.

Ebenfalls gilt mein Dank Herrn Prof. Dr. Hartig für die Übernahme des Prüfungsvorsitzes.

Bac und Matthias für die kameradschaftliche Männerbastion im Frauenlabor.

Selbstverständlich auch Sabrina und Nadine für die schöne Arbeitsatmosphäre im Labor und die Rücksichtnahme auf mancherlei Spinnereien.

Markus für die sehr anregenden Gespräche über Forschung und Science Fiction.

Weitere Freunde, die mir unter anderen die Zeit in Konstanz zur schönsten Zeit meines bisherigen Lebens gemacht haben: Armin, Jutta, Jochen, Georg (Joh!), Henning, Matthias, Samuel, Sascha, Philipp, Frank S, Frank K., Dominik.

Meine Bachelor- und Masterstudenten, die mir insbesondere zu einigen Publikationen geholfen haben: Christina, Patrick, Dirk, Nicole, Nina.

Nochmals bei Nina und Matthias, die meine angefangen Forschungsarbeiten exzellent weiterführen.

Jörg F. für die schöne Kooperation und den spannenden Arbeiten mit PAR.

Vielen Dank an alle weiteren namentlich nicht genannten Arbeitsgruppenmitglieder.

Vlasta für Ihre praktische Unterstützung im Labor.

Vielen Dank, Ellen einfach für Dich und Deine Liebe!

9 Eidesstattliche Erklärung

Eidesstattliche Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet. Weitere Personen, insbesondere Promotionsberater, waren an der inhaltlich materiellen Erstellung dieser Arbeit nicht beteiligt. Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Konstanz, im August 2009

(Ramon Kranaster)