• Keine Ergebnisse gefunden

— Policy interventions were instrumental in decoupling energy-related air pollution from economic growth in the past, and further interventions will determine future air quality.

— At the global scale, even full implementation and enforcement of current policies are unlikely to reduce present exposure [and health burden] from air pollution in the next 20 years. Improvements in North America, Europe and East Asia will be compensated by further deterioration in South Asia, Africa and the Middle East.

— Theoretically, a portfolio of ambitious policy interventions could bring ambient PM2.5 concentrations below the WHO air quality guideline in most parts of the world, except in

22

ro ya lsociet ypublishing .or g/journal/rsta Phil.T ran s.R .So c.A 378 :2 0190331

...

areas where natural sources (e.g. soil dust) contribute major shares to or even exceed the guideline value.

— Such a portfolio needs to involve (i) environmental policies focusing on pollution controls, (ii) energy and climate policies, (iii) policies to transform the agricultural production system, and (iv) policies to modify human food consumption patterns. None of these policy areas alone can deliver clean air, and interventions need to be coordinated across sectors.

— These policy interventions would require fundamental transformations of today’s practices in many sectors. They are visionary but considered likely to be technically achievable in the future. As they exceed current policy ambitions, their implementation would require strong political will.

— Political will could emerge from a solid understanding of the full range of benefits.

The policy package would avoid annually millions of premature deaths worldwide through drastic improvements in air quality and through healthier diets. It would reduce emissions that contribute to global temperature increase, alleviate distortions of the global nitrogen and phosphorous cycles, and enhance the protection of ecosystems and biodiversity. At the same time, policies would contribute to multiple UN Sustainable Development Goals and trigger transformations that are required for global long-term sustainability.

— Lowering emissions from agricultural activities will be critical for achieving clean air worldwide. The scientific understanding of the relevance of nitrogen emission reductions that has emerged over the last decade has not yet penetrated decision-making in many parts of the world, and possible measures often face strong resistance from interest groups. However, a focus on industrialized agriculture would provide competitive advantages to small and subsistence farmers. Also, some of the more advanced measures considered in the agricultural policy package reduce the greenhouse gas footprint of the agricultural sector as well.

Data accessibility. Data are accessible in the online version of IIASA’s Greenhouse gas—Air pollution Interactions and Synergies (GAINS) model (http://gains.iiasa.ac.at). Data will be made available after acceptance of the paper. Key data are provided in the electronic supplementary material.

Authors’ contributions. M.A. coordinated work and drafted the article. G.K. conducted the atmospheric dispersion calculations and computed population exposure for the various scenarios. W.S. managed the database system and developed routines to compute emissions for the policy scenarios. Z.K. led the estimates of past and future PM and VOC emissions. W.W. specified the control measures for the agricultural and food policies. J.C.

and P.R. conducted the calculations of emissions of the energy system, and imported IEA energy scenarios into the GAINS model. L.H.-I. estimated the impacts of the policy packages on future CH4 emissions.

A.G.-S. was responsible for emission estimates from the waste sector. C.H. developed the gridded emission fields for all scenario and managed the data exchange with the Norwegian Meteorological Institute. P.P.

focused on emissions from developing countries, especially from the non-conventional non-point sources.

J.B.-K. specialized on current and future emissions from the transport sector. F.W. estimated the emission control potentials for the various policy packages. R.S. managed the GAINS database system. H.F. and A.N. conducted the full atmospheric dispersion calculations with the EMEP chemistry-transport model of the Norwegian Meteorological Institute, and transferred results to IIASA. L.C. and C.P. contributed to the development of the IEA energy scenarios, transferred data to GAINS and assisted in the interpretation of results.

Competing interests. We declare we have no competing interests.

Funding. IIASA’s modelling work was funded by core funds of the International Institute for Applied Systems Analysis. In addition, the development of the air pollution scenarios has been supported by the European Union project ‘Action on Black Carbon in the Arctic’ (Commission Implementing Decision on the 2016 Annual Action programme for the Partnership Instrument). The contributions of the International Energy Agency (IEA) were funded through the IEA resources (this sentence needs to be refined before final publications). The contributions of the Norwegian Meteorological Institute (met.no) have been funded by the met.no.

Acknowledgements. We are grateful to GLOBIOM modellers, specifically to Andre Deppermann, for providing results of their diet scenario model runs.

23

ro ya lsociet ypublishing .or g/journal/rsta Phil.T ran s.R .So c.A 378 :2 0190331

...

References

1. WHO. 2016Ambient air pollution: A global assessment of exposure and burden of disease. Geneva, Switzerland: World Health Organization (WHO).

2. Lamarque J-Fet al.2010 Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application.Atmos. Chem. Phys.10, 7017–7039. (doi:10.5194/acp-10-7017-2010)

3. Stanaway JD et al. 2018 Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017.The Lancet392, 1923–1994. (doi:10.1016/S0140-6736(18)32225-6)

4. Lelieveld J, Klingmüller K, Pozzer A, Burnett RT, Haines A, Ramanathan V. 2019 Effects of fossil fuel and total anthropogenic emission removal on public health and climate.Proc. Natl Acad. Sci. USA116, 7192–7197. (doi:10.1073/pnas.1819989116)

5. Shafik N. 1994 Economic development and environmental quality: an econometric analysis.

Oxf. Econ. Pap.46, 757–773. (doi:10.1093/oep/46.Supplement_1.757)

6. Grossman GM, Krueger AB. 1995 Economic growth and the environment.Q. J. Econ.110, 353–377. (doi:10.2307/2118443)

7. Bruvoll A, Medin H. 2003 Factors behind the environmental Kuznets curve: a decomposition of the changes in air pollution.Environ. Resour. Econ.24, 27–48. (doi:10.1023/A:1022881928158) 8. Stern DI, Common MS. 2001 Is there an environmental Kuznets curve for sulfur?J. Environ.

Econ. Manage.41, 162–178. (doi:10.1006/jeem.2000.1132)

9. Selden TM, Song D. 1994 Environmental quality and development: Is there a Kuznets curve for air pollution emissions?J. Environ. Econ. Manage.27, 147–162. (doi:10.1006/jeem.1994.1031) 10. Markandya A, Golub A, Pedroso-Galinato S. 2006 Empirical analysis of national income and SO2 emissions in selected European countries. Environ. Resour. Econ. 35, 221–257.

(doi:10.1007/s10640-006-9014-2)

11. Kaufmann RK, Davidsdottir B, Garnham S, Pauly P. 1998 The determinants of atmospheric SO2 concentrations: reconsidering the environmental Kuznets curve.Ecol. Econ.25, 209–220.

(doi:10.1016/S0921-8009(97)00181-X)

12. Ru M, Shindell DT, Seltzer KM, Tao S, Zhong Q. 2018 The long-term relationship between emissions and economic growth for SO2, CO2, and BC. Environ. Res. Lett. 13, 124021.

(doi:10.1088/1748-9326/aaece2)

13. Rafaj P, Amann M, Siri JG. 2014 Factorization of air pollutant emissions: projections versus observed trends in Europe. Sci. Total Environ. 494–495, 272–282. (doi:10.1016/

j.scitotenv.2014.07.013)

14. Crippa M, Janssens-Maenhout G, Dentener F, Guizzardi D, Sindelarova K, Muntean M, Van Dingenen R, Granier C. 2016 Forty years of improvements in European air quality:

regional policy-industry interactions with global impacts.Atmos. Chem. Phys.16, 3825–3841.

(doi:10.5194/acp-16-3825-2016)

15. Butt EW et al. 2017 Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environ. Res. Lett. 12, 104017.

(doi:10.1088/1748-9326/aa87be)

16. Sun W, Shao M, Granier C, Liu Y, Ye CS, Zheng JY. 2018 Long-term trends of anthropogenic SO2, NOx, CO, and NMVOCs emissions in China.Earths Future6, 1112–1133.

(doi:10.1029/2018EF000822)

17. Zheng Bet al.2018 Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions.Atmos. Chem. Phys.18, 14 095–14 111. (doi:10.5194/acp-2018-374)

18. Silver B, Reddington CL, Arnold SR, Spracklen DV. 2018 Substantial changes in air pollution across China during 2015–2017.Environ. Res. Lett.13, 114012. (doi:10.1088/1748-9326/aae718) 19. Rafaj P, Amann M. 2018 Decomposing air pollutant emissions in Asia: determinants and

projections.Energies11, 1299. (doi:10.3390/en11051299)

20. IPCC. 2014 Working Group III contribution to the IPCC 5th Assessment Report ‘Climate Change 2014: Mitigation of Climate Change’. Intergovernmental Panel on Climate Change.

Geneva, Switzerland. (https://archive.ipcc.ch/report/ar5/wg3/)

21. Nakicenovic Net al.2000 Special Report on Emissions Scenarios. Intergovernmental Panel on Climate Change (IPCC). (https://www.ipcc.ch/report/emissions-scenarios/)

24

ro ya lsociet ypublishing .or g/journal/rsta Phil.T ran s.R .So c.A 378 :2 0190331

...

22. van Vuuren DPet al. 2011 The representative concentration pathways: an overview.Clim.

Change109, 5–31. (doi:10.1007/s10584-011-0148-z)

23. Rogelj J, Rao S, McCollum DL, Pachauri S, Klimont Z, Krey V, Riahi K. 2014 Air-pollution emission ranges consistent with the representative concentration pathways.Nat. Clim. Change 4, 446–450. (doi:10.1038/nclimate2178)

24. Rao Set al.2017 Future air pollution in the shared socio-economic pathways.Glob. Environ.

Change42, 346–358. (doi:10.1016/j.gloenvcha.2016.05.012)

25. Amann M, Klimont Z, Wagner F. 2013 Regional and global emissions of air pollutants:

recent trends and future scenarios. Annu. Rev. Environ. Resour. 38, 31–55. (doi:10.1146/

annurev-environ-052912-173303)

26. Wuebbles DJ, Sanyal S. 2015 Air quality in a cleaner energy world.Curr. Pollut. Rep.1, 117–129.

(doi:10.1007/s40726-015-0009-x)

27. Rao S et al. 2012 Environmental modeling and methods for estimation of the global health impacts of air pollution.Environ. Model. Assess.17, 613–622. (doi:10.1007/s10666-012-9317-3)

28. Riahi K et al. 2017 The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168.

(doi:10.1016/j.gloenvcha.2016.05.009)

29. Shindell D, Lamarque J-F, Unger N, Koch D, Faluvegi G, Bauer S, Amann M, Cofala J, Teich H.

2008 Climate forcing and air quality change due to regional emissions reductions by economic sector.Atmos. Chem. Phys.8, 7101–7113. (doi:10.5194/acp-8-7101-2008)

30. Rafaj P, Schöpp W, Russ P, Heyes C, Amann M. 2013 Co-benefits of post-2012 global climate mitigation policies.Mitig. Adapt. Strateg. Glob. Change18, 801–824. (doi:10.1007/s11027-012-9390-6)

31. Markandya A, Sampedro J, Smith SJ, Dingenen RV, Pizarro-Irizar C, Arto I, González-Eguino M. 2018 Health co-benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study.Lancet Planet. Health2, e126–e133. (doi:10.1016/S2542-5196(18)30029-9) 32. Shindell D et al.2012 Simultaneously mitigating near-term climate change and improving

human health and food security.Science335, 183–189. (doi:10.1126/science.1210026)

33. Rogelj J, Schaeffer M, Meinshausen M, Shindell DT, Hare W, Klimont Z, Velders GJM, Amann M, Schellnhuber HJ. 2014 Disentangling the effects of CO2 and short-lived climate forcer mitigation.Proc. Natl Acad. Sci. USA111, 16 325–16 330. (doi:10.1073/pnas.1415631111) 34. Shindell D, Smith CJ. 2019 Climate and air-quality benefits of a realistic phase-out of fossil

fuels.Nature573, 408–411. (doi:10.1038/s41586-019-1554-z)

35. Bond TC et al. 2013 Bounding the role of black carbon in the climate system: A scientific assessment.J. Geophys. Res. Atmos.118, 5380–5552. (doi:10.1002/jgrd.50171)

36. Chafe ZA, Brauer M, Héroux M-E, Klimont Z, Lanki T, Salonen RO, Smith KR. 2015Residential heating with wood and coal: health impacts and policy options in Europe and North America. Bonn, Germany: World Health Organization. See http://www.euro.who.int/en/health-topics/

environment-and-health/air-quality/publications/2015/residential-heating-with-wood-and-coal-health-impacts-and-policy-options-in-europe-and-north-america.

37. von Schneidemesser E, Monks PS. 2013 Air quality and climate – synergies and trade-offs.

Environ. Sci. Process. Impacts15, 1315–1325. (doi:10.1039/C3EM00178D)

38. Rauner S, Bauer N, Dirnaichner A, Dingenen RV, Mutel C, Luderer G. 2020 Coal-exit health and environmental damage reductions outweigh economic impacts.Nat. Clim. Change 10, 308–312. (doi:10.1038/s41558-020-0728-x)

39. Anenberg SCet al. 2012 Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls.Environ. Health Perspect.

120, 831–839. (doi:10.1289/ehp.1104301)

40. Likhvar VN, Pascal M, Markakis K, Colette A, Hauglustaine D, Valari M, Klimont Z, Medina S, Kinney P. 2015 A multi-scale health impact assessment of air pollution over the 21st century.

Sci. Total Environ.514, 439–449. (doi:10.1016/j.scitotenv.2015.02.002)

41. Stohl Aet al.2015 Evaluating the climate and air quality impacts of short-lived pollutants.

Atmos. Chem. Phys.15, 10 529–10 566. (doi:10.5194/acp-15-10529-2015)

42. Vandyck T, Keramidas K, Kitous A, Spadaro JV, Dingenen RV, Holland M, Saveyn B. 2018 Air quality co-benefits for human health and agriculture counterbalance costs to meet Paris Agreement pledges.Nat. Commun.9, 4939. (doi:10.1038/s41467-018-06885-9)

25

ro ya lsociet ypublishing .or g/journal/rsta Phil.T ran s.R .So c.A 378 :2 0190331

...

43. Dentener F, Keating T, Akimoto H. (eds). 2010Hemispheric transport of Air pollution; part A:

ozone and particulate matter. New York, NY: United Nations.

44. Li M, Zhang D, Li CT, Selin NE, Karplus VJ. 2019 Co-benefits of China’s climate policy for air quality and human health in China and transboundary regions in 2030.Environ. Res. Lett.14, 84006. (doi:10.1088/1748-9326/ab26ca)

45. Hong Y-C et al. 2019 Air Pollution in Asia and the Pacific: Science-based solutions.

See http://ccacoalition.org/en/resources/air-pollution-asia-and-pacific-science-based-solutions(accessed on 6 November 2018).

46. Stechow C, Minx J, Riahi K, Jewell J, McCollum D, Callaghan M, Bertram C, Luderer G, Baiocchi G. 2016 2°C and SDGs: united they stand, divided they fall?Environ. Res. Lett.11, 034022. (doi:10.1088/1748-9326/11/3/034022)

47. Rafaj Pet al.2018 Outlook for clean air in the context of sustainable development goals.Glob.

Environ. Change53, 1–11. (doi:10.1016/j.gloenvcha.2018.08.008)

48. WHO. 2013 Review of evidence on health aspects of air pollution – REVIHAAP Project. World Health Organization, Regional Office for Europe, Bonn, Germany. (https://www.euro.who.

int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report.pdf)

49. Amann Met al.2011 Cost-effective control of air quality and greenhouse gases in Europe:

modeling and policy applications. Environ. Model. Softw. 26, 1489–1501. (doi:10.1016/

j.envsoft.2011.07.012)

50. Simpson Det al.2012 The EMEP MSC-W chemical transport model–technical description.

Atmos. Chem. Phys.12, 7825–7865. (doi:10.5194/acp-12-7825-2012)

51. Kiesewetter G et al. 2015 Modelling street level PM10 concentrations across Europe:

source apportionment and possible futures. Atmos. Chem. Phys. 15, 1539–1553.

(doi:10.5194/acp-15-1539-2015)

52. Brauer M et al.2016 Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013.Environ. Sci. Technol.50, 79–88. (doi:10.1021/acs.est.5b03709)

53. van Donkelaar A, Martin RV, Brauer M, Hsu NC, Kahn RA, Levy RC, Lyapustin A, Sayer AM, Winker DM. 2016 Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors.Environ. Sci. Technol.

50, 3762–3772. (doi:10.1021/acs.est.5b05833)

54. WHO. 2018 WHO Global Urban Ambient Air Pollution Database (update 2018). World Health Organization, Geneva, Switzerland. (https://www.who.int/airpollution/data/cities/en/) 55. EEA. 2018 AirBase - The European air quality database, version 8. European Environment

Agency, Copenhagen, Denmark. (https://www.eea.europa.eu/data-and-maps/data/

airbase-the-european-air-quality-database-7)

56. Watts Net al.2018 The lancet countdown on health and climate change: from 25 years of inaction to a global transformation for public health.The Lancet391, 581–630. (doi:10.1016/

S0140-6736(17)32464-9)

57. WHO. 2006 Air Quality Guidelines: Global Update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. World Health Organization, Regional Office for Europe, Bonn, Germany. (https://www.euro.who.int/en/health-topics/environment-and-health/air- quality/publications/pre2009/air-quality-guidelines.-global-update-2005.-particulate-matter,-ozone,-nitrogen-dioxide-and-sulfur-dioxide)

58. Kanter D, Winiwarter W, Bodirsky B, Bouwman L, Boyer K. 2020 Nitrogen futures in the shared socioeconomic pathways. Glob. Environ. Change 16, 102029. (doi:10.1016/

j.gloenvcha.2019.102029)

59. Bouwman L, Goldewijk KK, Van Der Hoek KW, Beusen AHW, Van Vuuren DP, Willems J, Rufino MC, Stehfest E. 2013 Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period.Proc. Natl Acad. Sci.

USA110, 20882. (doi:10.1073/pnas.1012878108)

60. IEA. 2018 World Energy Outlook 2018. International Energy Agency, Paris. (France,https://

www.iea.org/reports/world-energy-outlook-2018)

61. Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE. 2016 Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization.Geosci. Model Dev.9, 1937–1958. (doi:10.5194/gmd-9-1937-2016)

62. Alexandratos N, Bruinsma J. 2012 World agriculture towards 2030/2050: the 2012 revision.

Food and Agriculture Organization of the United Nations, Rome, Italy. (http://www.fao.org/

economic/esa/publications/details/en/c/147899/)

26

ro ya lsociet ypublishing .or g/journal/rsta Phil.T ran s.R .So c.A 378 :2 0190331

...

63. International Maritime Organization. 2009 Revised MARPOL annex VI: regulations for the prevention of air pollution from ships and NOx technical code 2008. Inter-Governmental Maritime. London, UK: International Maritime Organization.

64. Sachs JD, Schmidt-Traub G, Mazzucato M, Messner D, Nakicenovic N, Rockström J. 2019 Six Transformations to achieve the Sustainable Development Goals.Nat. Sustain.2, 805–814.

(doi:10.1038/s41893-019-0352-9)

65. FAO. 2019 Climate change and the global dairy sector. Food and Agriculture Organization of the United Nations, Rome, Italy. (www.fao.org/3/CA2929EN/ca2929en.pdf)

66. The EAT-Lancet Commission. 2019 Healthy Diets from Sustainable Food Systems. (https://

www.thelancet.com/commissions/EAT)

67. van den Verma MB, de Vreede L, Achterbosch T, Rutten MM. 2020 Consumers discard a lot more food than widely believed: estimates of global food waste using an energy gap approach and affluence elasticity of food waste.PLoS ONE15, e0228369. (doi:10.1371/journal.

pone.0228369)

68. Havlik Pet al.2014 Climate change mitigation through livestock system transitions.Proc. Natl Acad. Sci. USA111, 3709–3714. (doi:10.1073/pnas.1308044111)

69. The Food and Land Use Coalition. 2019 Growing Better: Ten Critical Transitions to Transform Food and Land Use. (https://www.foodandlandusecoalition.org/global-report/)

70. Gidden MJet al.2019 Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century.

Geosci. Model Dev.12, 1443–1475. (doi:10.5194/gmd-12-1443-2019)

71. Monks PSet al.2015 Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer.Atmospheric Chem. Phys.15, 8889.

72. Höglund-Isaksson L, Gómez-Sanabria A, Klimont Z, Rafaj P, Schöpp W. 2020 Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe –results from the GAINS model. Environ. Res. Commun. 2, 025004.

(doi:10.1088/2515-7620/ab7457)

73. WHO. 2016 Burning Opportunity: Clean Household Energy for Health, Sustainable Development, and Wellbeing of Women and Children. (https://www.who.int/airpollution/

publications/burning-opportunities/en/)

74. Lim SS et al. 2012 A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010.The Lancet380, 2224–2260.

(doi:10.1016/S0140-6736(12)61766-8)

75. EC. 2013 Impact Assessment accompanying the Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions on a Clean Air Programme for Europe. European Commission, Brussels, Belgium. (https://eur-lex.europa.eu/legal-content/EN/TXT/?

uri=CELEX:52013SC0531)

76. US EPA. 2009 Integrated science assessment for particulate matter. United States Environmental Protection Agency, Washington DC. (https://www.epa.gov/isa/integrated-science-assessment-isa-particulate-matter)

77. Zhang J, Wei Y, Fang Z. 2019 Ozone pollution: a major health hazard worldwide. Front.

Immunol.10, 2518. (doi:10.3389/fimmu.2019.02518)

78. Stevens CJ, Bell JNB, Brimblecombe P, Clark CM, Dise NB, Fowler D, Lovett GM, Wolseley PA. 2020 The impact of air pollution on terrestrial managed and natural vegetation.Phil. Trans.

R. Soc. A378, 20190317. (doi:10.1098/rsta.2019.0317)

79. Emberson L. 2020 Effects of ozone on agriculture, forests and grasslands.Phil. Trans. R. Soc. A 378, 20190327. (doi:10.1098/rsta.2019.0327)

80. Bobbink R et al. 2010 Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis.Ecol. Appl.20, 30–59. (doi:10.1890/08-1140.1)

81. Greaver TLet al.2012 Ecological effects of nitrogen and sulfur air pollution in the US: what do we know?Front. Ecol. Environ.10, 365–372. (doi:10.1890/110049)

82. Stevenson DSet al.2006 Multi-model ensemble simulations of present-day and near-future tropospheric ozone.J Geophys. Res.111, D08301. (doi:10.1029/2005JD006338)

83. IPCC. 2019 Special Report Climate Change and Land Use. Intergovernmental Panel on Climate Change, Geneva, Switzerland. (https://www.ipcc.ch/srccl/)

27

ro ya lsociet ypublishing .or g/journal/rsta Phil.T ran s.R .So c.A 378 :2 0190331

...

84. Cohen AJet al.2017 Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015.

Lancet389, 1907–1918. (doi:10.1016/S0140-6736(17)30505-6)

85. Burnett R et al. 2018 Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA 115, 9592–9597.

(doi:10.1073/pnas.1803222115)

86. Pope CA, Cropper M, Coggins J, Cohen A. 2015 Health benefits of air pollution abatement policy: Role of the shape of the concentration–response function.J. Air Waste Manage. Assoc.

65, 516–522. (doi:10.1080/10962247.2014.993004)

87. WHO Regional Office for Europe. 2013 Health risks of air pollution in Europe – HRAPIE project. World Health Organization, Regional Office for Europe, Bonn, Germany. (https://

www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/

2013/health-risks-of-air-pollution-in-europe-hrapie-project.-recommendations-for- concentrationresponse-functions-for-costbenefit-analysis-of-particulate-matter,-ozone-and-nitrogen-dioxide)

88. Papadogeorgou G, Kioumourtzoglou M-A, Braun D, Zanobetti A. 2019 Low levels of air pollution and health: effect estimates, methodological challenges, and future directions.Curr.

Environ. Health Rep.6, 105–115. (doi:10.1007/s40572-019-00235-7)

89. Forouzanfar MHet al. 2016 Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015.Lancet 388, 1659–1724. (doi:10.1016/S0140-6736(16)31679-8)

ÄHNLICHE DOKUMENTE